Endothelial microparticles (EMP) in physiology and pathology

COMMENTARY ON THE LAW

Endothelial microparticles (EMP) in physiology and pathology

Ewa Sierko 1 , Monika Sokół 2 , Marek Z. Wojtukiewicz 1

1. Klinika Onkologii, Uniwersytet Medyczny w Białymstoku; Białostockie Centrum Onkologii
2. Klinika Onkologii, Uniwersytet Medyczny w Białymstoku

Published: 2015-08-18
DOI: 10.5604/17322693.1165195
GICID: 01.3001.0009.6563
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 925-932

 

Abstract

Endothelial microparticles (EMP) are released from endothelial cells (ECs) in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF) – a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes), leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9) at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 – components of the classical pathway – suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

References

  • 1. Abid Hussein M.N., Böing A.N., Biró E., Hoek F.J., Vogel G.M.,Meuleman D.G., Sturk A., Nieuwland R.: Phospholipid compositionof in vitro endothelial microparticles and their in vivo thrombogenicproperties. Thromb. Res., 2008; 121: 865-871
    Google Scholar
  • 2. Abid Hussein M.N., Meesters E.W., Osmanovic N., Romijn F.P.,Nieuwland R., Sturk A.: Antigenic characterization of endothelialcell-derived microparticles and their detection ex vivo. J. Thromb.Haemost., 2003; 1: 2434-2443
    Google Scholar
  • 3. Aharon A., Brenner B.: Microparticles, thrombosis and cancer.Best Pract. Res. Clin. Hematol., 2009; 22: 61-69
    Google Scholar
  • 4. Amabile N., Rautou P.E., Tedgui A., Boulanger C.M.: Microparticles:key protagonists in cardiovascular disorders. Semin. Thromb.Hemost., 2010; 36: 907-916
    Google Scholar
  • 5. Angelot F., Seillès E., Biichlé S., Berda Y., Gaugler B., Plumas J.,Chaperot L., Dignat-George F., Tiberghien P., Saas P., Garnache-OttouF.: Endothelial cell-derived microparticles induce plasmacytoiddendritic cell maturation: potential implications in inflammatorydiseases. Haematologica, 2009; 94: 1502-1512
    Google Scholar
  • 6. Ardoin S.P., Shanahan J.C., Pisetsky D.S.: The role of microparticlesin inflammation and thrombosis. Scand. J. Immunol., 2007;66: 159-165
    Google Scholar
  • 7. Brodsky S.V.: Endothelial microparticles: mediators or markersof endothelial cell dysfunction? Curr. Hypertens. Rev., 2008; 4: 78-85
    Google Scholar
  • 8. Brodsky S.V., Malinowski K., Golightly M., Jesty J., GoligorskyM.S.: Plasminogen activator inhibitor-1 promotes formation of endothelialmicroparticles with procoagulant potential. Circulation,2002; 106: 2372-2378
    Google Scholar
  • 9. Brogan P.A., Dillon M.J.: Endothelial microparticles and the diagnosisof the vasculitides. Intern. Med., 2004; 43: 1115-1119
    Google Scholar
  • 10. Celi A., Lorenzet R., Furie B.C., Furie B.: Microparticles and aP-selectin-mediated pathway of blood coagulation. Dis. Markers,2004; 20: 347-352
    Google Scholar
  • 11. Chironi G.N., Boulanger C.M., Simon A., Dignat-George F., FreyssinetJ.M., Tedgui A.: Endothelial microparticles in diseases. CellTissue Res., 2009; 335: 143-151
    Google Scholar
  • 12. Coleman M.L., Sahai E.A., Yeo M., Bosh M., Dewar A., Olson M.F.:Membrane blebbing during apoptosis results from caspase-mediatedactivation of ROCK I. Nat. Cell Biol., 2001; 3: 339-345
    Google Scholar
  • 13. Combes V., Simon A.C., Grau G.E., Arnoux D., Camoin L., SabatierF., Mutin M., Sanmarco M., Sampol J., Dignat-George F.: In vitrogeneration of endothelial microparticles and possible prothromboticactivity in patients with lupus anticoagulant. J. Clin. Invest.,1999; 104: 93-102
    Google Scholar
  • 14. Curtis A.M., Wilkinson P.F., Gui M., Gales T.L., Hu E., EdelbergJ.M.: p38 mitogen-activated protein kinase targets the production ofproinflammatory endothelial microparticles. J. Thromb. Haemost.,2009; 7: 701-709
    Google Scholar
  • 15. Davila M., Amirkhosravi A., Coll E., Desai H., Robles L., Colon J.,Baker C.H., Francis J.L.: Tissue factor-bearing microparticles derivedfrom tumor cells: impact on coagulation activation. J. Thromb.Haemost., 2008; 6: 1517-1524
    Google Scholar
  • 16. Davizon P., López J.A.: Microparticles and thrombotic disease.Curr. Opin. Hematol., 2009; 16: 334-341
    Google Scholar
  • 17. Diamant M., Tushuizen M.E., Sturk A., Nieuwland R.: Cellularmicroparticles: new players in the field of vascular disease? Eur. J.Clin. Invest., 2004; 34: 392-401
    Google Scholar
  • 18. Dignat-Gorge F.: Microparticles in vascular diseases. Thromb.Res., 2008; 122 (Suppl. 1): S55-S59
    Google Scholar
  • 19. Dignat-George F., Boulanger C.M.: The many faces of endothelialmicroparticles. Arterioscler. Thromb. Vasc. Biol., 2011; 31: 27-33
    Google Scholar
  • 20. Distler J.H., Huber L.C., Gay S., Distler O., Pisetsky D.S: Microparticlesas mediators of cellular cross-talk in inflammatory disease.Autoimmunity, 2006; 39: 683-690
    Google Scholar
  • 21. Freyssinet J.M.: Cellular microparticles: what are they bad orgood for? J. Thromb. Haemost., 2003; 1: 1655-1662
    Google Scholar
  • 22. Furie B., Zwicker J., Zarocca T., Kos C., Bauer B., Furei B.C.: Tissuefactor-bearing microparticles and cancer-associated thrombosis.Hematol. Rep., 2005; 8: 5-8
    Google Scholar
  • 23. Héloire F., Weill B., Weber S., Batteux F.: Aggregates of endothelialmicroparticles and platelets circulate in peripheral blood.Variations during stable coronary disease and acute myocardialinfarction. Thromb. Res., 2003; 110: 173-180
    Google Scholar
  • 24. Hoffman M., Monroe D.M.3rd: A cell-based model of hemostasis.Thromb. Haemost., 2001; 85: 958-965
    Google Scholar
  • 25. Horstman L.L., Jy W., Jimenez J.J., Ahn Y.S.: Endothelial microparticlesas markers of endothelial dysfunction. Front. Biosci., 2004;9: 1118-1135
    Google Scholar
  • 26. Jimenez J.J., Jy W., Mauro L.M., Soderland C., Horstman L.L.,Ahn Y.S.: Endothelial cells release phenotypically and quantitativelydistinct microparticles in activation and apoptosis. Thromb.Res., 2003; 109: 175-180
    Google Scholar
  • 27. Jy W., Jimenez J.J., Mauro L.M., Horstman L.L., Cheng P., Ahn E.R.,Bidot C.J., Ahn Y.S: Endothelial microparticles induce formation ofplatelets aggregates via a von Willebrand factor/ristocetin dependentpathway, rendering them resistant to dissociation. J. Thromb.Haemost., 2005; 3: 1301-1308
    Google Scholar
  • 28. Klaska I., Nowak J.Z.: Rola układu dopełniacza w fizjologii i patologii.Postępy Hig. Med. Dośw., 2007; 61: 167-177
    Google Scholar
  • 29. Lacroix R., Sabatier F., Mialhe A., Basire A., Pannell R., BorghiH., Robert S., Lamy E., Plawinski L., Camoin-Jau L., Gurewich V., Angles-CanoE., Dignat-George F.: Activation of plasminogen into plasminat the surface of endothelial microparticles: a mechanism thatmodulates angiogenic properties of endothelial progenitor cells invitro. Blood, 2007; 110: 2432-2439
    Google Scholar
  • 30. Lechner D., Kollars M., Gleiss A., Kyrle A., Weltermann A.: Chemotherapy-inducedthrombin generation via procoagulant endothelialmicroparticles is independent of tissue factor activity. J. Thromb.Haemost., 2007; 5: 2445-2452
    Google Scholar
  • 31. Lechner D., Weltermann A.: Chemotherapy-induced thrombosis:a role for microparticles and tissue factor? Semin. Thromb.Hemost., 2008; 34: 199-203
    Google Scholar
  • 32. Leroyer A.S., Anfosso F., Lacroix R., Sabatier F., Simoncini S.,Njock S.M., Jourde N., Brunet P., Camoin-Jau L., Sampol J., Dignat–George F.: Endothelial-derived microparticles. Biological conveyorsat the crossroad of inflammation, thrombosis and angiogenesis.Thromb. Haemost., 2010; 104: 456-463
    Google Scholar
  • 33. Lynch S.F., Ludlam C.A.: Plasma microparticles and vascular disorders.Br. J. Haematol., 2007; 137: 36-48
    Google Scholar
  • 34. Mezentsev A., Merks R.M., O’Riordan E., Chen J., Mendelev N.,Goligorsky M.S., Brodsky S.V.: Endothelial microparticles affect angiogenesisin vitro: role of oxidative stress. Am. J. Physiol. Heart Circ.Physiol., 2005, 289: H1106-H1114
    Google Scholar
  • 35. Morel O., Jesel L., Freyssinet J.M., Toti F.: Cellular mechanismsunderlying the formation of circulating microparticles. Arterioscler.Thromb. Vasc. Biol., 2011; 31: 15-26
    Google Scholar
  • 36. Morel O., Toti F., Morel N., Freyssinet J.M.: Microparticles inendothelial cell and vascular homeostasis: are they really noxious?Haematologica, 2009; 94: 313-317
    Google Scholar
  • 37. Nauta A.J., Trouw L.A., Daha M.R., Tijsma O., Nieuwland R.,Schwaeble W.J., Gingras A.R., Mantovani A., Hack E.C., Roos A.: Directbinding of C1q to apoptotic cells and cell blebs induces complementactivation. Eur. J. Immunol., 2002; 32: 1726-1736
    Google Scholar
  • 38. Nomura S., Ozaki Y., Ikeda Y.: Function and role of microparticlesin various clinical settings. Thromb. Res., 2008; 123: 8-23
    Google Scholar
  • 39. Obońska K., Grąbczewska Z., Fisz J.: Ocena czynności śródbłonkanaczyniowego – gdzie jesteśmy, dokąd zmierzamy? Folia Cardiol.Excerpta, 2010; 5: 292-297
    Google Scholar
  • 40. Peterson D.B., Sander T., Kaul S., Wakim B.T., Halligan B., TwiggerS., Pritchard K.A.Jr., Oldham K.T., Ou J.S.: Comparative proteomicanalysis of PAI-1 and TNF-alpha-derived endothelial microparticles.Proteomics, 2008; 8: 2430-2446
    Google Scholar
  • 41. Piccin A., Murphy W.G., Smith O.P.: Circulating microparticles: pathophysiologyand clinical implications. Blood Rev., 2007; 21: 157-171
    Google Scholar
  • 42. Radziwon P., Kłoczko J., Kiss B.: Współczesna teoria aktywacji ikontroli krzepnięcia krwi. Przew. Lek., 2004; 11: 50-56
    Google Scholar
  • 43. Rak J.: Microparticles in cancer. Semin. Throm. Hemost., 2010;36: 888-906
    Google Scholar
  • 44. Sapet C., Simoncini S., Loriod B., Puthier D., Sampol J., NguyenC., Dignat-George F., Anfosso F.: Thrombin-induced endothelial microparticlegeneration: identification of a novel pathway involvingROCK-II activation by caspase-2. Blood, 2006; 108: 1868-1876
    Google Scholar
  • 45. Shai E., Varon D.: Development, cell differentiation, angiogenesis- microparticles and their roles in angiogenesis. Arterioscler.Thromb. Vasc. Biol., 2011; 31: 10-14
    Google Scholar
  • 46. Sierko E., Wojtukiewicz M.Z.: Platelets and angiogenesis in malignancy.Semin. Thromb. Hemost., 2004; 30: 95-108
    Google Scholar
  • 47. Simak J., Gelderman M.P.: Cell membrane microparticles in bloodand blood products: potentially pathogenic agents and diagnosticmarkers. Transfus. Med. Rev., 2006; 20: 1-26
    Google Scholar
  • 48. Simoncini S., Njock M., Robert S., Camoin-Jau L., Sampol J., HarléJ.R., Nguyen C., Dignat-George F., Anfosso F., TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced bythrombin in vitro: a potential mechanism linking inflammation andcoagulation. Circ Res., 2009; 104: 943-951
    Google Scholar
  • 49. Taraboletti G., D’Ascenzo S., Borsotti P., Giavazzi R., Pavan A.,Dolo V.: Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components byendothelial cells. Am. J. Pathol., 2002; 160: 673-680
    Google Scholar
  • 50. Tesse A., Martinez M.C., Meziani F., Hugel B., Panaro M.A., MitoloV., Freyssinet J.M., Andriantsitohaina R.: Origin and biologicalsignificance of shed-membrane microparticles. Endocr. Metab. ImmuneDrug Targets, 2006; 6: 287-294
    Google Scholar
  • 51. Wnuczko K., Szczepański M.: Śródbłonek – charakterystyka ifunkcje. Pol. Merk. Lek., 2007; 133, 60-66
    Google Scholar
  • 52. Wojtukiewicz M.Z.: Zakrzepy a nowotwory. W: Zakrzepy i zatory.Łopaciuk W. (red.). Wydawnictwo Lekarskie PZWL, Warszawa2002; 105-124
    Google Scholar
  • 53. Wojtukiewicz M.Z., Sierko S.: Podstawy angiogenezy w nowotworach.Nowotwory. J. Oncol., 2008; 58 (Suppl. 4): 13-16
    Google Scholar
  • 54. Wojtukiewicz M.Z., Sierko E., Rak J.: Contribution of the hemostaticsystem to angiogenesis in cancer. Semin. Thromb. Hemost.,2004; 30: 5-20
    Google Scholar
  • 55. Zielonka T.: Angiogeneza. Mechanizmy powstawania naczyńkrwionośnych. Alerg. Astma Immunol., 2003; 8: 169-174
    Google Scholar

Full text

Skip to content