Extracellular matrix as a microbial virulence factor in the development of human diseases

COMMENTARY ON THE LAW

Extracellular matrix as a microbial virulence factor in the development of human diseases

Magdalena Moryl 1

1. Zakład Immunobiologii Bakterii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2015-12-31
GICID: 01.3001.0009.6618
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1485-1498

 

Abstract

Extracellular polymers which build a biofilm matrix possess a complicated structure, where the polysaccharide fraction, composed of homo- or heteropolysaccharides, is the largest. Other important components are proteins, eDNA, glycoproteins and lipids. The matrix has a protective function against the surrounding environment, plays a role in biofilm formation and maturation processes, stabilizes the biofilm structure, and also is a source of nutrients and water for the cells. It is noteworthy that the biofilm matrix is a virulence factor and plays an important role in the pathogenesis of many human diseases.Pseudomonas aeruginosa growing in the lungs of patients with cystic fibrosis produces three major exopolysaccharides (Pel, Psl and alginate) and synthesizes numerous proteins such as lectins and enzymes, e.g. PasP, chitinase, aminopeptidase, and protease IV, which facilitate the tissue colonization.Extracellular polymers play a significant role in the course of caries, which is associated with the development of multi-species biofilm on the teeth surface. The structure of the matrix surrounding that biofilm is complicated – different for each patient. The components of the matrix are constantly changing depending on the environmental conditions, e.g. the presence of sucrose affects the synthesis of mutan and dextran.Infections associated with biofilm formation on implants pose significant medical and economic problems. The main components of the matrices are saccharides (e.g., PIA, EC-TA), as well as surface and extracellular proteins.Studies on the matrix structure and the factors regulating its synthesis are necessary to develop techniques for biofilm eradication and better control of biofilm-related infections.

References

  • 1. Absalon C., Ymele-Leki P., Watnick P.I.: The bacterial biofilmmatrix as a platform for protein delivery. MBio., 2012; 3: e00127-12
    Google Scholar
  • 2. Aires C.P., Tenuta L.M., Carbonero E.R., Sassaki G.L., Iacomini M.,Cury J.A.: Structural characterization of exopolysaccharides frombiofilm of a cariogenic streptococci. Carbohydr. Polym., 2011; 84:1215-1220
    Google Scholar
  • 3. Baranowska A., Rodziewicz A.: Molekularne interakcje w biofilmachbakteryjnych. Kosmos, 2008; 57: 29-38
    Google Scholar
  • 4. Begun J., Gaiani J.M., Rohde H., Mack D., Calderwood S.B., AusubelF.M., Sifri C.D.: Staphylococcal biofilm exopolysaccharide protectsagainst Caenorhabditis elegans immune defenses. PLoS Pathog.,2007; 3: e57
    Google Scholar
  • 5. Boles B.R., Thoendel M., Singh P.K.: Rhamnolipids mediate detachmentof Pseudomonas aeruginosa from biofilms. Mol. Microbiol.,2005; 57: 1210-1223
    Google Scholar
  • 6. Borlee B.R., Goldman A.D., Murakami K., Samudrala R., WozniakD.J., Parsek M.R.: Pseudomonas aeruginosa uses a cyclic-di-GMP-regulatedadhesin to reinforce the biofim extracellular matrix. Mol.Microbiol., 2010; 75: 827-842
    Google Scholar
  • 7. Bowen W.H., Koo H.: Biology of Streptococcus mutans-derived glucosyltransferases:role in extracellular matrix formation of cariogenicbiofilms. Caries Res., 2011; 45: 69-86
    Google Scholar
  • 8. Branda S.S., Vik A., Friedman L., Kolter R.: Biofilms: the matrixrevisited. Trends Microbiol., 2005; 13: 20-26
    Google Scholar
  • 9. Chiang W.C., Nilsson M., Jensen P.Ø., Høiby N., Nielsen T.E., GivskovM., Tolker-Nielsen T.: Extracellular DNA shields against aminoglycosidesin Pseudomonas aeruginosa biofilms. Antimicrob. AgentsChemother., 2013; 57: 2352-2361
    Google Scholar
  • 10. Cuzzi B., Herasimenka Y., Silipo A., Lanzetta R., Liut G., RizzoR., Cescutti P.: Versatility of the Burkholderia cepacia complex forthe biosynthesis of exopolysaccharides: a comparative structuralinvestigation. PLoS One, 2014; 9: e94372
    Google Scholar
  • 11. Czaczyk K., Myszka K.: Biosynthesis of extracellular polymericsubstances (EPS) and its role in microbial biofilm formation. Pol. J.Environ. Stud., 2007; 16: 799-806
    Google Scholar
  • 12. Extracellular polysaccharides & caries.http://www.ncl.ac.uk/dental/oralbiol/oralenv/tutorials/polysaccharides/eps.htm(15.06.2014)
    Google Scholar
  • 13. Fleming H.C., Neu T., Wozniak D.J.: The EPS matrix: the „houseof biofilm cells”. J. Bacteriol., 2007; 189: 7945-7947
    Google Scholar
  • 14. Francolini I., Donelli G.: Prevention and control of biofilm-basedmedical device-related infections. FEMS Immunol. Med. Microbiol.,2010; 59: 227-238
    Google Scholar
  • 15. Franklin M.J., Nivens D.E., Weadge J.T., Howell P.L.: Biosynthesisof the Pseudomonas aeruginosa extracellular polysaccharides, alginate,Pel, and Psl. Front. Microbiol., 2011; 2: 167
    Google Scholar
  • 16. Frederiksen B., Pressler T., Hansen A., Koch C., Høiby N.: Effectof aerosolized rhDNase (Pulmozyme) on pulmonary colonizationin patients with cystic fibrosis. Acta Paediatr., 2006; 95: 1070-1074
    Google Scholar
  • 17. Geoghegan J.A., Corrigan R.M., Gruszka D.T., Speziale P., O’GaraJ.P., Potts J.R., Foster T.J.: Role of surface protein SasG in biofilm formationby Staphylococcus aureus. J. Bacteriol., 2010; 192: 5663-5673
    Google Scholar
  • 18. Ghafoor A., Hay I.D., Rehm B.H.: The role of exopolysaccharidesin Pseudomonas aeruginosa biofilm formation and architecture. Appl.Environ. Microbiol. 2011; 77: 5238-5246
    Google Scholar
  • 19. Gjermansen M., Nilsson M., Yang L., Tolker-Nielsen T.: Characterizationof starvation-induced dispersion in Pseudomonas putida biofilms:genetic elements and molecular mechanisms. Mol. Microbiol.,2010; 75: 815-826
    Google Scholar
  • 20. Glonti T., Chanishvili N., Taylor P.W.: Bacteriophage-derivedenzyme that depolymerizes the alginic acid capsule associated withcystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol.,2010; 108: 695-702
    Google Scholar
  • 21. Górska S., Grycko P., Rybka J., Gamian A.: Egzopolisacharydybakterii kwasu mlekowego – biosynteza i struktura. Postępy Hig.Med. Dośw. 2007; 61: 805-818
    Google Scholar
  • 22. Guiton P.S., Hung C.S., Kline K.A., Roth R., Kau A.L., Hayes E.,Heuser J., Dodson K.W., Caparon M.G., Hultgren S.J.: Contribution ofautolysin and sortase A during Enterococcus faecalis DNA-dependentbiofilm development. Infect. Immun., 2009; 77: 3626-3638
    Google Scholar
  • 23. Hayacibara M.F., Koo H., Vacca-Smith A.M., Kopec L.K., ScottAnneK., Cury J.A., Bowen W.H.: The influence of mutanase and dextranaseon the production and structure of glucans synthesizedby streptococcal glucosyltransferases. Carbohydr. Res., 2004; 339:2127-2137
    Google Scholar
  • 24. Huseby M.J., Kruse A.C., Digre J., Kohler P.L., Vocke J.A., Mann E.E.,Bayles K.W., Bohach G.A., Schlievert P.M., Ohlendorf D.H., Earhart C.A.:Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcalbiofilms. Proc. Natl. Acad. Sci. USA, 2010; 107: 14407-14412
    Google Scholar
  • 25. Izano E.A., Amarante M.A., Kher W.B., Kaplan J.B.: Differentialroles of poly-N-acetylglucosamine surface polysaccharide and extracellularDNA in Staphylococcus aureus and Staphylococcus epidermidisbiofilms. Appl. Environ. Microbiol., 2008; 74: 470-476
    Google Scholar
  • 26. Izano E.A., Wang H., Ragunath C., Ramasubbu N., Kaplan J.B.:Detachment and killing of Aggregatibacter actinomycetemcomitansbiofilms by dispersin B and SDS. J. Dent. Res., 2007; 86: 618-622
    Google Scholar
  • 27. Jabbouri S., Sadovskaya I.: Characteristics of the biofilm matrixand its role as a possible target for the detection and eradicationof Staphylococcus epidermidis associated with medical implant infections.FEMS Immunol. Med. Microbiol., 2010; 59: 280-291
    Google Scholar
  • 28. Jung J.H., Choi N.Y., Lee S.Y.: Biofilm formation and exopolysaccharide(EPS) production by Cronobacter sakazakii depending on environmentalconditions. Food Microbiol., 2013; 34:70-80
    Google Scholar
  • 29. Kaplan J.B., LoVetri K., Cardona S.T., Madhyastha S., SadovskayaI., Jabbouri S., Izano E.A.: Recombinant human DNase I decreasesbiofilm and increases antimicrobial susceptibility in staphylococci.J. Antibiot., 2012; 65: 73-77
    Google Scholar
  • 30. Karatan E., Watnick P.: Signals, regulatory networks, and materialsthat build and break bacterial biofilms. Microbiol. Mol. Biol.Rev., 2009; 73: 310-347
    Google Scholar
  • 31. Koo H., Falsetta M.L., Klein M.I.: The exopolysaccharide matrix:a virulence determinant of cariogenic biofilm. J. Dent. Res., 2013;92: 1065-1073
    Google Scholar
  • 32. Krzyściak W., Jurczak A., Kościelniak D., Bystrowska B., SkalniakA.: The virulence of Streptococcus mutans and the ability to form biofilms.Eur. J. Clin. Microbiol. Infect. Dis., 2014; 33: 499-515
    Google Scholar
  • 33. Lembre P., Lorentz C., di Martino P.: Exopolysaccharides of thebiofilm matrix: a complex biophysical world. W: The complex worldof polysaccharides, red.: D.N. Karunaratne. InTech, 2012, 371-392
    Google Scholar
  • 34. Li B., Dobruchowska J.M., Hoogenkamp M.A., Gerwig G.J.: Structuralinvestigation of an extracellular polysaccharide produced by thecariogenic bacterium Streptococcus mutans strain UA159. Carbohydr.Polym., 2012; 90: 675-682
    Google Scholar
  • 35. Longhi C., Scoarughi G.L., Poggiali F., Cellini A., CarpentieriA., Seganti L., Pucci P., Amoresano A., Cocconcelli P.S., Artini M.,Costerton J.W., Selan L.: Protease treatment affects both invasionability and biofilm formation in Listeria monocytogenes. Microb. Pathog.,2008; 45: 45-52
    Google Scholar
  • 36. Lu X., Skurnik D., Pozzi C., Roux D., Cywes-Bentley C., RitchieJ.M., Munera D., Gening M.L., Tsvetkov Y.E., Nifantiev N.E., WaldorM.K., Pier G.B.: A poly-N-acetylglucosamine-Shiga toxin broad-spectrumconjugate vaccine for Shiga toxin-producing Escherichia coli.MBio, 2014; 5: e00974-14
    Google Scholar
  • 37. Ma L., Conover M., Lu H., Parsek M.R., Bayles K., Wozniak D.J.:Assembly and development of the Pseudomonas aeruginosa biofilmmatrix. PLoS Pathog., 2009; 5: e1000354
    Google Scholar
  • 38. Mack D., Davies A.P., Harris L.G., Jeeves R., Pascoe B., KnoblochJ.K., Rohde H., Wilkinson T.S.: Staphylococcus epidermidis in biomaterialassociated infections. W: Biomaterials associated infection:immunological aspects and antimicrobial strategies, red. T.F. Moriarty,S.A. Zaat, H.J. Busscher, Springer Science + Buisness Media,New York 2013, 25-56
    Google Scholar
  • 39. Mann E.E., Wozniak D.J.: Pseudomonas biofilm matrix compositionand niche biology. FEMS Microbiol. Rev., 2012; 36: 893-916
    Google Scholar
  • 40. Marvasi M., Visscher P.T., Casillas Martinez L.: Exopolymericsubstances (EPS) from Bacillus subtilis: polymers and genes encodingtheir synthesis. FEMS Microbiol. Lett., 2010; 313: 1-9
    Google Scholar
  • 41. Messiaen A.S., Nelis H., Coenye T.: Investigating the role of matrixcomponents in protection of Burkholderia cepacia complex biofilmsagainst tobramycin. J. Cyst. Fibros., 2014; 13: 56-62
    Google Scholar
  • 42. Moryl M., Kaleta A., Strzelecki K., Różalska S., Różalski A.: Effectof nutrient and stress factors on polysaccharides synthesis in Proteusmirabilis biofilm. Acta Biochim. Pol., 2014; 61: 133-139
    Google Scholar
  • 43. Nwodo U.U., Green E., Okoh A.I.: Bacterial exopolysaccharides:functionality and prospects. Int. J. Mol. Sci., 2012; 13: 14002-14015
    Google Scholar
  • 44. Oduwole K.O., Glynn A.A., Molony D.C., Murray D., Rowe S.,Holland L.M., McCormack D.J., O’Gara J.P.: Anti-biofilm activity ofsub-inhibitory povidone-iodine concentrations against Staphylococcusepidermidis and Staphylococcus aureus. J. Orthop. Res., 2010;28: 1252-1256
    Google Scholar
  • 45. Paes Leme A.F., Bellato C.M., Bedi G., Cury A.A., Koo H., CuryJ.A.: Effects of sucrose on the extracellular matrix of plaque-likebiofilm formed in vivo, studied by proteomic analysis. Caries Res.,2008; 42: 435-443
    Google Scholar
  • 46. Paes Leme A.F., Koo H., Bellato C.M., Bedi G., Cury J.A.: The roleof sucrose in cariogenic dental biofilm formation – new insight. J.Dent. Res., 2006; 85: 878-887
    Google Scholar
  • 47. Pamp S.J., Tolker-Nielsen T.: Multiple roles of biosurfactants instructural biofilm development by Pseudomonas aeruginosa. J. Bacteriol.,2007; 189: 2531-2539
    Google Scholar
  • 48. Petry S., Furlan S., Crepeau M.J., Cerning J., Desmazeaud M.: Factorsaffecting exocellular polysaccharide production by Lactobacillusdelbrueckii subsp. bulgaricus grown in a chemically defined medium.Appl. Environ. Microbiol., 2000; 66: 3427-3431
    Google Scholar
  • 49. Pleszczyńska M, Wiater A., Szczodrak J.: Mutanase from Paenibacillussp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutansbiofilm. Biotechnol. Lett., 2010; 32: 1699-1704
    Google Scholar
  • 50. Razack S.A., Velayutham V., Thangavelu V.: Influence of variousparameters on exopolysaccharide production from Bacillus subtilis.Int. J. Chem. Tech. Res., 2013; 5: 2221-2228
    Google Scholar
  • 51. Ribeiro C.C., Tabchoury C.P., Del Bel Cury A.A., Tenuta L.M., RosalenP.L., Cury J.A.: Effect of starch on the cariogenic potential ofsucrose. Br. J. Nutr., 2005; 94: 44-50
    Google Scholar
  • 52. Roche F.M., Meehan M., Foster T.J.: The Staphylococcus aureussurface protein SasG and its homologues promote bacterial adherenceto human desquamated nasal epithelial cells. Microbiology,2003; 149: 2759-2767
    Google Scholar
  • 53. Różalski A., Kwil I., Torzewska A., Baranowska M., Stączek P.: Bakteriez rodzaju Proteus – cechy i czynniki chorobotwórczości. PostępyHig. Med. Dośw., 2007; 61: 204-219
    Google Scholar
  • 54. Ryder C., Byrd M., Wozniak D.J.: Role of polysaccharides in Pseudomonasaeruginosa biofilm development. Curr. Opin. Microbiol., 2007;10: 644-648
    Google Scholar
  • 55. Sadovskaya I., Vinogradov E, Li J., Jabbouri S.: Structural elucidationof the extracellular and cell-wall teichoic acids of Staphylococcusepidermidis RP62A, a reference biofilm-positive strain. Carbohydr.Res., 2004; 339: 1467-1473
    Google Scholar
  • 56. Schooling S.R.; Beveridge T.J.: Membrane vesicles: an overlookedcomponent of the matrices of biofilms. J. Bacteriol., 2006,188: 5945-5957
    Google Scholar
  • 57. Seneviratne C.J., Zhang C.F., Samaranayake L.P.: Dental plaquebiofilm in oral health and disease. Chin. J. Dent. Res., 2011; 14: 87-94
    Google Scholar
  • 58. Sharma G., Rao S., Bansal A., Dang S., Gupta S., Gabrani R.: Pseudomonasaeruginosa biofilm: potential therapeutic targets. Biologicals,2014; 42: 1-7
    Google Scholar
  • 59. Stapper A.P., Narasimhan G., Ohman D.E., Barakat J., HentzerM., Molin S., Kharazmi A., Høiby N., Mathee K.: Alginate productionaffects Pseudomonas aeruginosa biofilm development and architecture,but is not essential for biofilm formation. J. Med. Microbiol.,2004; 53: 679-690
    Google Scholar
  • 60. Starkey M., Gray K., Chang S., Parsek M.: A sticky business: theextracellular polymeric substance matrix of bacterial biofilms. W:Microbial Biofilms, red. M. Ghannoum, G.A. O’Toole. ASM Press,Washington DC, 2004, 174-192
    Google Scholar
  • 61. Steinberger R.E., Holden P.A.: Extracellular DNA in single- andmultiple-species unsaturated biofilms. Appl. Environ. Microbiol.,2005; 71: 5404-5410
    Google Scholar
  • 62. Sugimoto S., Iwamoto T., Takada K., Okuda K., Tajima A., Iwase T.,Mizunoe Y.: Staphylococcus epidermidis Esp degrades specific proteinsassociated with Staphylococcus aureus biofilm formation and hostpathogeninteraction. J. Bacteriol., 2013; 195: 1645-1655
    Google Scholar
  • 63. Sutherland I.W.: Biofilm exopolysaccharides: a strong and stickyframework. Microbiology, 2001; 147: 3-9
    Google Scholar
  • 64. Swartjes J.J., Das T., Sharifi S., Subbiahdoss G., Sharma P.K., Krom B.P., Busscher H.J, van der Mei H.C.: A functional DNase I coatingto prevent adhesion of bacteria and the formation of biofilm. Adv.Funct. Mater., 2013; 23: 2843-2849
    Google Scholar
  • 65. Takenaka S., Ohshima H., Ohsumi T., Okiji T.: Current and futurestrategies for the control of mature oral biofilms – shift froma bacteria – targeting to a matrix – targeting approach. J. Oral Biosc.,2012; 54: 173-179
    Google Scholar
  • 66. Thompson R., Creavin A., O’Connell M., O’Connor B., ClarkeP.: Optimization of the enzyme-linked lectin assay for enhancedglycoprotein and glycoconjugate analysis. Anal. Biochem., 2011;413: 114-122
    Google Scholar
  • 67. Toyofuku M.; Roschitzki B.; Riedel K.; Eberl L.: Identification ofproteins associated with the Pseudomonas aeruginosa biofilm extracellularmatrix. J. Proteome Res., 2012; 11: 4906-4915
    Google Scholar
  • 68. Valle J., Latasa C., Gil C., Toledo-Arana A., Solano C., PenadésJ.R., Lasa I.: Bap, a biofilm matrix protein of Staphylococcus aureusprevents cellular internalization through binding to GP96 host receptor.PLoS Pathog. 2012; 8: e1002843
    Google Scholar
  • 69. Vergara-Irigaray M., Maira-Litrán T., Merino N., Pier G.B., PenadésJ.R., Lasa I.: Wall teichoic acids are dispensable for anchoring thePNAG exopolysaccharide to the Staphylococcus aureus cell surface.Microbiology, 2008; 154: 865-877
    Google Scholar
  • 70. Vu B., Chen M., Crawford R.J., Ivanova E.P.: Bacterial extracellularpolysaccharides involved in biofilm formation. Molecules,2009;14: 2535-2554
    Google Scholar
  • 71. Walker T.S., Tomlin K.L., Worthen G.S., Poch K.R., Lieber J.G.,Saavedra M.T., Fessler M.B., Malcolm K.C., Vasil M.L., Nick J.A.: EnhancedPseudomonas aeruginosa biofilm development mediated byhuman neutrophils. Infect. Immun., 2005; 73: 3693-3701
    Google Scholar
  • 72. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., Mattick J.S.: ExtracellularDNA required for bacterial biofilm formation. Science,2002; 295: 1487
    Google Scholar
  • 73. Wiater A., Szczodrak J., Rogalski J.: Hydrolysis of mutan andprevention of its formation in streptococcal films by fungal α-Dglucanases.Process Biochem., 2004; 39: 1481-1489
    Google Scholar
  • 74. Xiao J., Klein M.I., Falsetta M.L., Lu B., Delahunty C.M., Yates J.R.3rd, Heydorn A., Koo H.: The exopolysaccharide matrix modulatesthe interaction between 3D architecture and virulence of a mixedspeciesoral biofilm. PLoS Pathog., 2012; 8: e1002623
    Google Scholar
  • 75. Yakandawala N., Gawande P.V., LoVetri K., Cardona S.T., RomeoT., Nitz M., Madhyastha S.: Characterization of the poly-β-1,6-Nacetylglucosaminepolysaccharide component of Burkholderia biofilms.Appl. Environ. Microbiol., 2011; 77: 8303-8309
    Google Scholar
  • 76. Yang L., Liu Y., Wu H., Song Z., Høiby N., Molin S., Givskov M.:Combating biofilms. FEMS Immunol. Med. Microbiol., 2012; 65: 146-157
    Google Scholar

Full text

Skip to content