Extraintestinal pathogenic E. coli infections: The spread of antibiotic resistance through the food products
Agnieszka Jama-Kmiecik 1 , Jolanta Sarowska 1 , Magdalena Frej-Mądrzak 1 , Irena Choroszy-Król 1Abstract
With the increasing demand for poultry meat and poultry products and the growing poultry industry around the world, food safety is an important challenge for public health. To assess the dissemination of extraintestinal pathogenic E. coli (ExPEC) strains, one should examine the level of genetic similarity between isolates from different hosts. In the proposed review paper, multiple levels of genotyping are proposed, in which typing of strains, plasmids, and genes are compared in order to obtain the more complete picture of this complex issue. The ExPEC group includes uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC). ExPEC presents an elaborated phylogenetic structure, a wide range of virulence factors (VF), and considerable plasticity of the genome. These strains cause not only uncomplicated UTIs, but also other dangerous illnesses such as bacteremia or sepsis. Mechanisms underlying ExPEC transmission dynamics and the selection of resistant to drugs clones are still poorly understood and require further investigations. Overuse and inappropriate use of antibiotics and chemotherapeutics has led to a global threat, which is the emergence and spread of microbial resistance. Food, depending on certain products and processing technology, provides an excellent substrate for the growth of microorganisms. Intensive trade and wide use of antibiotics in contemporary food production favor the emergence and spread of resistant bacteria. Currently, antibiotic use in vegetable and animal food production is significantly higher compared to the number of antibiotics used in medicine to treat infections, which is a huge threat. We need new strategies to prevent, quickly diagnose, and treat ExPEC infections, especially in the context of the recently observed clonal expansion of strains with increased antibiotic resistance.
References
- 1. Ahmed A.M., Shikamburo H., Shimamoto T.: Isolation and molecularcharacterization of multidrug-resistant strains of Escherichiacoli and Salmonella from retail chicken meat in Japan. J. Food Sci.,2009; 74: M405–M410 2 Allocati N., Masulli M., Alexeyev M.F., Di Ilio C.: Escherichia coliin Europe: An overview. Int. J. Environ. Res. Public Health, 2013;10: 6235–6254
Google Scholar - 2. integrons in Escherichia coli isolated from meat and meat productsof Norwegian origin. J. Antimicrob. Chemother., 2005; 56: 1019–1024
Google Scholar - 3. Araújo S., Silva I.A., Tacão M., Patinha C., Alves A., Henriques I.:Characterization of antibiotic resistant and pathogenic Escherichiacoli in irrigation water and vegetables in household farms. Int. J.Food Microbiol., 2017; 257: 192–200
Google Scholar - 4. Baquero F., Coque T.M., de la Cruz F.: Ecology and evolution as targets:The need for novel eco-evo drugs and strategies to fight antibioticresistance. Antimicrob. Agents Chemother., 2011; 55: 3649–3660
Google Scholar - 5. Ben Sallem R., Ben Slama K., Rojo-Bezares B., Porres-Osante N.,Jouini A., Klibi N., Boudabous A., Sáenz Y., Torres C.: IncI1 plasmidscarrying bla(CTX-M-1) or bla(CMY-2) genes in Escherichia coli fromhealthy humans and animals in Tunisia. Microb. Drug Resist., 2014;20: 495–500
Google Scholar - 6. Ben Sallem R., Ben Slama K., Sáenz Y., Rojo-Bezares B., EstepaV., Jouini A., Gharsa H., Klibi N., Boudabous A., Torres C.: Prevalenceand characterization of extended-spectrum beta-lactamase(ESBL)- and CMY-2-producing Escherichia coli isolates from healthyfood-producing animals in Tunisia. Foodborne Pathog. Dis.,2012; 9: 1137–1142
Google Scholar - 7. Bonnet R.: Growing group of extended-spectrum β-lactamases:The CTX-M enzymes. Antimicrob. Agents Chemother., 2004, 48: 1–14
Google Scholar - 8. Bonyadian M., Moshtaghi H., Akhavan Taheri M.: Molecular characterizationand antibiotic resistance of enterotoxigenic and entero-aggregative Escherichia coli isolated from raw milk and unpasteurizedcheeses. Vet. Res. Forum., 2014; 5: 29–34
Google Scholar - 9. Chong Y., Shimoda S., Shimono N.: Current epidemiology, geneticevolution and clinical impact of extended-spectrum β-lactamaseproducingEscherichia coli and Klebsiella pneumoniae. Infect. Genet.Evol., 2018; 61: 185–188
Google Scholar - 10. Djordjevic S.P., Stokes H.W., Roy Chowdhury P.: Mobile elements,zoonotic pathogens and commensal bacteria: Conduits for the deliveryof resistance genes into humans, production animals and soilmicrobiota. Front. Microbiol., 2013; 4: 86
Google Scholar - 11. European Food Safety Authority: Technical specifications onthe harmonised monitoring and reporting of antimicrobial resistancein Salmonella, Campylobacter and indicator Escherichia coli andEnterococcus spp. bacteria transmitted through food. EFSA J., 2012;10: 2742–2806
Google Scholar - 12. Ewers C., Antão E.M., Diehl I., Philipp H.C., Wieler L.H.: Intestineand environment of the chicken as reservoirs for extraintestinalpathogenic Escherichia coli strains with zoonotic potential. Appl.Environ. Microbiol., 2009; 75: 184–192
Google Scholar - 13. Ewers C., Li G., Wilking H., Kiessling S., Alt K., Antáo E.M., LaturnusC., Diehl I., Glodde S., Homeier T., Böhnke U., Steinrück H.,Philipp H.C., Wieler L.H.: Avian pathogenic, uropathogenic, and newbornmeningitis-causing Escherichia coli: How closely related arethey? Int. J. Med. Microbiol., 2007; 297: 163–176
Google Scholar - 14. Fair R.J., Tor Y.: Antibiotics and bacterial resistance in the 21stcentury. Perspect. Medicin. Chem., 2014; 6: 25–64
Google Scholar - 15. Fluit A.C., Schmitz F.J.: Resistance integrons and super-integrons.Clin. Microbiol. Infect., 2004; 10: 272–288
Google Scholar - 16. Geser N., Stephan R., Hächler H.: Occurrence and characteristicsof extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceaein food producing animals, minced meat and raw milk. BMCVet. Res., 2012; 8: 21
Google Scholar - 17. Giufrè M., Graziani C., Accogli M., Luzzi I., Busani L., CerquettiM., Escherichia coli Study Group: Escherichia coli of human and avianorigin: Detection of clonal groups associated with fluoroquinoloneand multidrug resistance in Italy. J. Antimicrob. Chemother., 2012;67: 860–867
Google Scholar - 18. Godziszewska J., Guzek D., Głąbski K., Wierzbicka A.: Mobileantibiotic resistance – The spread of genes determining the resistanceof bacteria through food products. Postępy Hig. Med. Dośw.,2016; 70: 803–810
Google Scholar - 19. Hiltunen T., Virta M., Laine A.L.: Antibiotic resistance in thewild: An eco-evolutionary perspective. Philos. Trans. R. Soc. Lond.B. Biol Sci., 2017; 372: 20160039
Google Scholar - 20. Johnson T.J., Jordan D., Kariyawasam S., Stell A.L., Bell N.P., WannemuehlerY.M., Alarcón C.F., Li G., Tivendale K.A., Logue C.M., NolanL.K.: Sequence analysis and characterization of a transferablehybrid plasmid encoding multidrug resistance and enabling zoonoticpotential for extraintestinal Escherichia coli. Infect. Immun.,2010; 78: 1931–1942
Google Scholar - 21. Johnson T.J., Logue C.M., Johnson J.R., Kuskowski M.A., SherwoodJ.S., Barnes H.J., DebRoy C., Wannemuehler Y.M., Obata-Yasuoka M.,Spanjaard L., Nolan L.K.: Associations between multidrug resistance,plasmid content, and virulence potential among extraintestinal pathogenicand commensal Escherichia coli from humans and poultry.Foodborne Pathog. Dis., 2012; 9: 37–46
Google Scholar - 22. Kapoor G., Saigal S., Elongavan A.: Action and resistance mechanismsof antibiotics: A guide for clinicians. J. Anaesthesiol. Clin.Pharmacol., 2017; 33: 300–305
Google Scholar - 23. Krishnan S., Chang A.C., Hodges J., Couraud P.O., Romero I.A.,Weksler B., Nicholson B.A., Nolan L.K., Prasadarao N.V.: SerotypeO18 avian pathogenic and neonatal meningitis Escherichia coli strainsemploy similar pathogenic strategies for the onset of meningitis.Virulence, 2015; 6: 777–786
Google Scholar - 24. Laroche E., Pawlak B., Berthe T., Skurnik D., Petit F.: Occurrenceof antibiotic resistance and class 1, 2 and 3 integrons in Escherichiacoli isolated from a densely populated estuary (Seine, France). FEMSMicrobiol. Ecol., 2009; 68: 118–130
Google Scholar - 25. Manges A.R.: Escherichia coli and urinary tract infections: Therole of poultry-meat. Clin. Microbiol. Infect., 2016; 22: 122–129
Google Scholar - 26. Manges A.R., Johnson J.R.: Food-borne origins of Escherichia colicausing extraintestinal infections. Clin. Infect. Dis., 2012; 55: 712–719
Google Scholar - 27. Manges A.R., Smith S.P., Lau B.J., Nuval C.J., Eisenberg J.N., DietrichP.S., Riley L.W. Retail meat consumption and the acquisition ofantimicrobial resistant Escherichia coli causing urinary tract infections:A case-control study. Foodborne Pathog. Dis., 2007; 4: 419–431
Google Scholar - 28. Markland S. M., Le Strange K.J., Sharma M., Kniel K.E.: Old friendsin new places: Exploring the role of extraintestinal E. coli in intestinaldisease and foodborne illness. Zoonoses Public Health., 2015;62: 491–496
Google Scholar - 29. Martínez-Martínez L.: Extended-spectrum β-lactamases andthe permeability barrier. Clin. Microbiol. Infect., 2008; 14: 82–89
Google Scholar - 30. Mazurek J., Pusz P., Bok E., Stosik M., Łuczkiewicz A., Baldy-ChudzikK.: Prevalence of fimbrial and type 1 integron genes amongEscherichia coli derived from treated sewage and the waters of thesewage receiver. http://www.eko-dok.pl/2013/47.pdf
Google Scholar - 31. Mellata M.: Human and avian extraintestinal pathogenic Escherichiacoli: infections, zoonotic risks, and antibiotic resistance trends.Foodborne Pathog. Dis., 2013; 10: 916–932
Google Scholar - 32. Mole B.: MRSA: Farming up trouble. Nature, 2013; 499: 398–400
Google Scholar - 33. Munita J.M., Arias C.A.: Mechanisms of antibiotic resistance.Microbiol. Spectr., 2016; 4: VMBF-0016-2015
Google Scholar - 34. Ojer-Usoz E., González D., Vitas A.I.: Clonal diversity of ESBL–producing Escherichia coli isolated from environmental, human andfood samples. Int. J. Environ. Res. Public Health, 2017; 14: 676
Google Scholar - 35. Oteo J., Bautista V., Lara N., Cuevas O., Arroyo M., Fernández S.,Lázaro E., de Abajo F.J., Campos J., Spanish ESBL-EARS-Net Study Group:Parallel increase in community use of fosfomycin and resistanceto fosfomycin in extended-spectrum β-lactamase (ESBL)-producingEscherichia coli. J. Antimicrob. Chemother., 2010; 65: 2459–2463
Google Scholar - 36. Oteo J., Diestra K., Juan C., Bautista V., Novais A., Pérez-VázquezM., Moyá B., Miró E., Coque T.M., Oliver A., Cantón R., Navarro F.,Campos J., Spanish Network in Infectious Pathology Project (REIPI):Extended-spectrum β-lactamase-producing Escherichia coli in Spainbelong to a large variety of multilocus sequence typing types,including ST10 complex/A, ST23 complex/A and ST131/B2. Int. J.Antimicrob Agents, 2009; 34: 173–176
Google Scholar - 37. Partridge S.R., Tsafnat G., Coiera E., Iredell J.R.: Gene cassettesand cassette arrays in mobile resistance integrons. FEMS Microbiol.Rev., 2009; 33: 757–784
Google Scholar - 38. Pitout J.D.: Extraintestinal pathogenic Escherichia coli: An updateon antimicrobial resistance, laboratory diagnosis and treatment.Expert. Rev. Anti. Infect. Ther., 2012; 10: 1165–1176
Google Scholar - 39. Pitout J.D., Laupland K.B.: Extended-spectrum β-lactamaseproducingEnterobacteriaceae: An emerging public-health concern.Lancet Infect. Dis., 2008; 8: 159–166
Google Scholar - 40. Poirel L., Naas T., Nordmann P.: Genetic support of extended–spectrum β-lactamases. Clin. Microbiol. Infect., 2008; 14: 75–81
Google Scholar - 41. Rodríguez I., Thomas K., Van Essen A., Schink A.K., Day M., ChattawayM.,Wu G, Mevius D., Helmuth R., Guerra B., SAFEFOODERA–ESBL consortium: Chromosomal location of bla CTX-M genes in clinicalisolates of Escherichia coli from Germany, The Netherlands and theUK. Int. J. Antimicrob. Agents, 2014; 43: 553–557
Google Scholar - 42. Sanjit Singh A., Lekshmi M., Prakasan S., Nayak B.B., KumarS.: Multiple antibiotic-resistant, extended spectrum-β-lactamase(ESBL)-producing Enterobacteria in fresh seafood. Microorganisms,2017; 5: 53
Google Scholar - 43. Seiffert S.N., Carattoli A., Schwendener S., Collaud A., EndimianiA., Perreten V.: Plasmids carrying blaCMY 2/4 in Escherichia coli frompoultry, poultry meat, and humans belong to a novel IncK subgroupdesignated IncK2. Front. Microbiol., 2017; 8: 407
Google Scholar - 44. Senok A.C., Botta G.A., Soge O.O.: Emergence and spread of antimicrobial-resistant pathogens in an era of globalization. Interdiscip.Perspect. Infect. Dis., 2012; 2012: 286703
Google Scholar - 45. Singer, R.S., Hofacre C.L.: Potential impacts of antibiotic use inpoultry production. Avian Dis., 2006, 50: 161–172
Google Scholar - 46. Skočková A., Bogdanovičová K., Koláčková I., Karpíšková R.: Antimicrobial-resistant and extended-spectrum β-lactamase-producingEscherichia coli in raw cow’s milk. J. Food Prot., 2015; 78: 72–77
Google Scholar - 47. Song S., Lee E.Y., Koh E.M., Ha H.S., Jeong H.J., Bae I.K., Jeong S.H.:Antibiotic resistance mechanisms of Escherichia coli isolates fromurinary specimens. Korean J. Lab. Med., 2009; 29: 17–24
Google Scholar - 48. Stromberg Z.R., Johnson J.R., Fairbrother J.M., Kilbourne J., VanGoor A., Curtiss R. Rd., Mellata M.: Evaluation of Escherichia coli isolatesfrom healthy chickens to determine their potential risk to poultryand human health. PLoS One, 2017; 12: e0180599
Google Scholar - 49. Sunde M.: Prevalence and characterization of class 1 and class
Google Scholar - 50. Szmolka A., Nagy B.: Multidrug resistant commensal Escherichia coliin animals and its impact for public health. Front. Microbiol., 2013; 4: 258
Google Scholar - 51. Thomas C.M., Nielsen K.M.: Mechanisms of, and barriers to, horizontalgene transfer between bacteria. Nat. Rev. Microbiol., 2005; 3: 711–721
Google Scholar - 52. Tivendale K.A., Logue C.M., Kariyawasam S., Jordan D., HusseinA., Li G., Wannemuehler Y., Nolan L.K.: Avian-pathogenic Escherichiacoli strains are similar to neonatal meningitis E. coli strains and areable to cause meningitis in the rat model of human disease. Infect.Immun., 2010; 78: 3412–3419
Google Scholar - 53. van Hoek A.H., Stalenhoef J.E., van Duijkeren E., Franz E.: Comparativevirulotyping of extended-spectrum cephalosporin-resistantE. coli isolated from broilers, humans on broiler farms and in the generalpopulation and UTI patients. Vet. Microbiol., 2016; 194: 55–61
Google Scholar - 54. Verraes C., Van Boxstael S., Van Meervenne E., Van Coillie E.,Butaye P., Catry B., de Schaetzen M.A., Van Huffel X., Imberechts H.,Dierick K., Daube G., Saegerman C., De Block J., Dewulf J., Herman L.:Antimicrobial resistance in the food chain: A review. Int. J. Environ.Res. Public Health, 2013; 10: 2643–2669
Google Scholar - 55. Vieira A.R., Collignon P., Aarestrup F.M., McEwen S.A., HendriksenR.S., Hald T., Wegener H.C.: Association between antimicrobialresistance in Escherichia coli isolates from food animals and bloodstream isolates from humans in Europe: An ecological study. FoodbornePathog. Dis., 2011; 8: 1295–1301
Google Scholar - 56. von Wintersdorff C.J., Penders J., van Niekerk J.M., Mills N.D.,Majumder S., van Alphen L.B., Savelkoul P.H., Wolffs P.F.: Disseminationof antimicrobial resistance in microbial ecosystems throughhorizontal gene transfer. Front. Microbiol., 2016; 7: 173
Google Scholar - 57. Wang N., Yang X., Jiao S., Zhang J., Ye B., Gao S.: Sulfonamide-resistant bacteria and their resistance genes in soils fertilizedwith manures from Jiangsu Province, Southeastern China. PLoSOne, 2014; 9: e112626
Google Scholar - 58. Wu T.L., Chia J.H., Su L.H., Chiu C.H., Kuo A.J., Ma L., Siu L.K.:CMY-2 β-lactamase-carrying community-acquired urinary tractEscherichia coli: Genetic correlation with Salmonella enterica serotypesCholeraesuis and Typhimurium. Int. J. Antimicrob. Agents,2007; 29: 410–416
Google Scholar - 59. Zhao W.H., Hu Z.Q.: Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev.Microbiol., 2013; 39: 79–101
Google Scholar