From precursor to reprogrammed cells: evolution of cardiomyoplasty

COMMENTARY ON THE LAW

From precursor to reprogrammed cells: evolution of cardiomyoplasty

Stanisław Szala 1 , Sybilla Matuszczak 1 , Justyna Czapla 1 , Ewa Wiśniewska 2

1. Centrum Badań Translacyjnych i Biologii Molekularnej Nowotworów, Centrum Onkologii-Instytut im. Marii Skłodowskiej-Curie, Oddział w Gliwicach
2. Katedra i Oddział Kliniczny Kardiochirurgii i Transplantologii Śląskiego Centrum Chorób Serca w Zabrzu

Published: 2014-02-04
DOI: 10.5604/17322693.1088354
GICID: 01.3001.0003.1190
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 153-161

 

Abstract

Myocardial infarction is underoxygenation-driven limited necrosis of heart tissues which results in elimination of ca. 0.5 to 1 billion spontaneously contracting cardiomyocytes (CM). Since the ability of human heart to regenerate is limited, efforts have been undertaken to increase the number of cardiomyocytes in post-infarction myocardium. Theoretically, such proposals might involve transplantation of 1) skeletal myoblasts and cardiomyocytes, or 2) progenitor/stem cells, theoretically capable of differentiating into cardiomyocytes, or 3) pluripotent cells such as embryonal stem cells (ESC) and induced pluripotent stem cells (iPSC) differentiating into cardiomyocytes. The efforts to increase CM could also involve 4) in situ reprogramming of fibroblasts into active cardiomyocyte-like cells, or 5) stimulating in situ proliferation of cardiomyocytes using pharmacological agents. Only three proposals merit closer scrutiny (2, 4 and 5). However, preclinical and clinical data have demonstrated weak ability of progenitor cells to differentiate (proposal 2). Nevertheless, transplanted cell-induced paracrine effects accompanying such therapy do improve functioning of the damaged heart muscle. The proposals that would permit the number of CM to be increased include in situ reprogramming of fibroblasts into active cardiomyocytes (proposal 4), as well as in situ stimulation of quiescent cardiomyocytes’ proliferation (proposal 5). It appears that an optimized therapeutic solution (increasing left ventricular ejection fraction and decreasing the post-infarct scar) might combine agents stimulating paracrine effects and reprogramming of fibroblasts.

References

  • 1. Andersen D.C., Andersen P., Schneider M., Jensen H.B., Sheikh S.P.:Murine „cardiospheres” are not a source of stem cells with cardiomyogenicpotential. Stem Cells, 2009; 27: 1571-1581
    Google Scholar
  • 2. Balsam L.B., Wagers A.J., Christensen J.L., Kofidis T., WeissmanI.L., Robbins R.C.: Haematopoietic stem cells adopt mature haematopoieticfates in ischaemic myocardium. Nature, 2004; 428: 668-673
    Google Scholar
  • 3. Bearzi C., Rota M., Hosoda T., Tillmanns J., Nascimbene A., De AngelisA., Yasuzawa-Amano S., Trofimova I., Siggins R.W., Lecapitaine N.,Cascapera S., Beltrami A.P., D’Alessandro D.A., Zias E., Quaini F. i wsp.: Humancardiac stem cells. Proc. Natl. Acad. Sci. USA, 2007; 104: 14068-14073
    Google Scholar
  • 4. Bernstein H.S., Srivastava D.: Stem cell therapy for cardiac disease.Pediatr. Res., 2012; 71: 491-499
    Google Scholar
  • 5. Bersell K., Arab S., Haring B., Kühn B.: Neuregulin1/ErbB4 signalinginduces cardiomyocyte proliferation and repair of heart injury.Cell, 2009; 138: 257-270
    Google Scholar
  • 6. Bollini S., Smart N., Riley P.R.: Resident cardiac progenitor cells:at the heart of regeneration. J. Mol. Cell Cardiol., 2011; 50: 296-303
    Google Scholar
  • 7. Chen J.X., Krane M., Deutsch M.A., Wang L., Rav-Acha M., GregoireS., Engels M.C., Rajarajan K., Karra R., Abel E.D., Wu J.C., Milan D., WuS.M.: Inefficient reprogramming of fibroblasts into cardiomyocytesusing Gata4, Mef2c, and Tbx5. Circ. Res., 2012; 111: 50-55
    Google Scholar
  • 8. Chen T.S., Lai R.C., Lee M.M., Choo A.B., Lee C.N., Lim S.K.: Mesenchymalstem cell secretes microparticles enriched in pre-microRNAs.Nucleic Acids Res., 2010; 38: 215-224
    Google Scholar
  • 9. Chong J.J.: Cell therapy for left ventricular dysfunction: an overviewfor cardiac clinicians. Heart Lung Circ., 2012; 21: 532-542
    Google Scholar
  • 10. Davis D.R., Zhang Y., Smith R.R., Cheng K., Terrovitis J., MalliarasK., Li T.S., White A., Makkar R., Marbán E.: Validation of the cardiospheremethod to culture cardiac progenitor cells from myocardialtissue. PLoS One, 2009; 4: e7195
    Google Scholar
  • 11. de Carvalho A.C., Carvalho A.B.: Turning scar into muscle. WorldJ. Cardiol., 2012; 4: 267-270
    Google Scholar
  • 12. Efe J.A., Hilcove S., Kim J., Zhou H., Ouyang K., Wang G., ChenJ., Ding S.: Conversion of mouse fibroblasts into cardiomyocytesusing a direct reprogramming strategy. Nat. Cell Biol., 2011; 13:215-222
    Google Scholar
  • 13. Elnakish M.T., Hassan F., Dakhlallah D., Marsh C.B., Alhaider I.A.,Khan M.: Mesenchymal stem cells for cardiac regeneration: translationto bedside reality. Stem Cells Int., 2012; 2012: 646038
    Google Scholar
  • 14. Engel F.B., Hsieh P.C., Lee R.T., Keating M.T.: FGF1/p38 MAPkinase inhibitor therapy induces cardiomyocyte mitosis, reducesscarring, and rescues function after myocardial infarction. Proc.Natl. Acad. Sci. USA, 2006; 103: 15546-15551
    Google Scholar
  • 15. Fazel S., Cimini M., Chen L., Li S., Angoulvant D., FedakP., Verma S., Weisel R.D., Keating A., Li R.K.: Cardioprotectivec-kit+ cells are from the bone marrow and regulate the myocardialbalance of angiogenic cytokines. J. Clin. Invest., 2006;116: 1865-1877
    Google Scholar
  • 16. Frasik W., Stachura J.: Choroby serca. W: Patologia: znaczy słowoo chorobie, red.: J. Stachura, W. Domagała. Polska AkademiaUmiejętności, Kraków 2005, 481-521
    Google Scholar
  • 17. Freund C., Mummery C.L.: Prospects for pluripotent stem cellderivedcardiomyocytes in cardiac cell therapy and as disease models.J. Cell Biochem., 2009; 107: 592-599
    Google Scholar
  • 18. Gnecchi M., He H., Noiseux N., Liang O.D., Zhang L., Morello F.,Mu H., Melo L.G., Pratt R.E., Ingwall J.S., Dzau V.J.: Evidence supportingparacrine hypothesis for Akt-modified mesenchymal stem cellmediatedcardiac protection and functional improvement. FASEB J.,2006; 20: 661-669
    Google Scholar
  • 19. Ieda M., Fu J.D., Delgado-Olguin P., Vedantham V., Hayashi Y.,Bruneau B.G., Srivastava D.: Direct reprogramming of fibroblastsinto functional cardiomyocytes by defined factors. Cell, 2010; 142:375-386
    Google Scholar
  • 20. Inagawa K., Ieda M.: Direct reprogramming of mouse fibroblastsinto cardiac myocytes. J. Cardiovasc. Transl. Res., 2013; 6: 37-45
    Google Scholar
  • 21. Inagawa K., Miyamoto K., Yamakawa H., Muraoka N., SadahiroT., Umei T., Wada R., Katsumata Y., Kaneda R., Nakade K., KuriharaC., Obata Y., Miyake K., Fukuda K., Ieda M.: Induction of cardiomyocyte-likecells in infarct hearts by gene transfer of Gata4, Mef2c, andTbx5. Circ. Res., 2012; 111: 1147-1156
    Google Scholar
  • 22. Iso Y., Spees J.L., Serrano C., Bakondi B., Pochampally R., SongY.H., Sobel B.E., Delafontaine P., Prockop D.J.: Multipotent humanstromal cells improve cardiac function after myocardial infarctionin mice without long-term engraftment. Biochem. Biophys. Res.Commun., 2007; 354: 700-706
    Google Scholar
  • 23. Jadczyk T., Wojakowski W.: Komórki macierzyste serca. Kardiol.Pol., 2010; 68: 1163-1167
    Google Scholar
  • 24. Jayawardena T.M., Egemnazarov B., Finch E.A., Zhang L., PayneJ.A., Pandya K., Zhang Z., Rosenberg P., Mirotsou M., Dzau V.J.: MicroRNA-mediatedin vitro and in vivo direct reprogramming of cardiacfibroblasts to cardiomyocytes. Circ. Res., 2012; 110: 1465-1473
    Google Scholar
  • 25. Kikuchi K., Poss K.D.: Cardiac regenerative capacity and mechanisms.Annu. Rev. Cell Dev. Biol., 2012; 28: 719-741
    Google Scholar
  • 26. Laflamme M.A., Murry C.E.: Heart regeneration. Nature, 2011;473: 326-335
    Google Scholar
  • 27. Lai R.C., Chen T.S., Lim S.K.: Mesenchymal stem cell exosome:a novel stem cell-based therapy for cardiovascular disease. Regen.Med., 2011; 6: 481-492
    Google Scholar
  • 28. Lai R.C., Yeo R.W., Tan K.H., Lim S.K.: Exosomes for drug delivery- a novel application for the mesenchymal stem cell. Biotechnol.Adv., 2013; 31: 543-551
    Google Scholar
  • 29. Leiker M., Suzuki G., Iyer V.S., Canty J.M. Jr, Lee T.: Assessmentof a nuclear affinity labeling method for tracking implanted mesenchymalstem cells. Cell Transplant., 2008; 17: 911-922
    Google Scholar
  • 30. Léobon B., Garcin I., Menasche P., Vilquin J.T., Audinat E.,Charpak S.: Myoblasts transplanted into rat infarcted myocardiumare functionally isolated from their host. Proc. Natl. Acad. Sci. USA,2003; 100: 7808-7811
    Google Scholar
  • 31. Li T.S., Cheng K., Lee S.T., Matsushita S., Davis D., Malliaras K.,Zhang Y., Matsushita N., Smith R.R., Marbán E.: Cardiospheres recapitulatea niche-like microenvironment rich in stemness and cellmatrixinteractions, rationalizing their enhanced functional potencyfor myocardial repair. Stem Cells, 2010; 28: 2088-2098
    Google Scholar
  • 32. Mathison M., Gersch R., Nasser A., Lilo S., Korman M., FourmanM., Hackett N., Shroyer K., Yang J., Ma Y., Crystal R.G., Rosengart T.K.:In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenicpreconditioning of the infarcted myocardium with vascularendothelial growth factor. J. Am. Heart Assoc., 2012; 1: e005652
    Google Scholar
  • 33. Ménard C., Hagège A.A., Agbulut O., Barro M., Morichetti M.C.,Brasselet C., Bel A., Messas E., Bissery A., Bruneval P., Desnos M.,Pucéat M., Menasché P.: Transplantation of cardiac-committedmouse embryonic stem cells to infarcted sheep myocardium: a preclinicalstudy. Lancet, 2005; 366: 1005-1012
    Google Scholar
  • 34. Menasche P.: Cardiac cell therapy: lessons from clinical trials.J. Mol. Cell Cardiol., 2011; 50: 258-265
    Google Scholar
  • 35. Mirotsou M., Jayawardena T.M., Schmeckpeper J., GnecchiM., Dzau V.J.: Paracrine mechanisms of stem cell reparative andregenerative actions in the heart. J. Mol. Cell Cardiol., 2011; 50:280-289
    Google Scholar
  • 36. Mummery C.L., Davis R.P., Krieger J.E.: Challenges in using stemcells for cardiac repair. Sci. Transl. Med., 2010; 2: 27ps17
    Google Scholar
  • 37. Murry C.E., Keller G.: Differentiation of embryonic stem cellsto clinically relevant populations: lessons from embryonic development.Cell, 2008; 132: 661-680
    Google Scholar
  • 38. Murry C.E., Soonpaa M.H., Reinecke H., Nakajima H., NakajimaH.O., Rubart M., Pasumarthi K.B., Virag J.I., Bartelmez S.H., PoppaV., Bradford G., Dowell J.D., Williams D.A., Field L.J.: Haematopoieticstem cells do not transdifferentiate into cardiac myocytes in myocardialinfarcts. Nature, 2004; 428: 664-668
    Google Scholar
  • 39. Nelson T.J., Martinez-Fernandez A., Terzic A.: Induced pluripotentstem cells: developmental biology to regenerative medicine.Nat. Rev. Cardiol., 2010; 7: 700-710
    Google Scholar
  • 40. Noiseux N., Gnecchi M., Lopez-Ilasaca M., Zhang L., Solomon S.D.,Deb A., Dzau V.J., Pratt R.E.: Mesenchymal stem cells overexpressingAkt dramatically repair infarcted myocardium and improve cardiacfunction despite infrequent cellular fusion or differentiation. Mol.Ther., 2006;14: 840-850
    Google Scholar
  • 41. Orlic D., Kajstura J., Chimenti S., Jakoniuk I., Anderson S.M., LiB., Pickel J., McKay R., Nadal-Ginard B., Bodine D.M., Leri A., AnversaP.: Bone marrow cells regenerate infarcted myocardium. Nature,2001; 410: 701-705
    Google Scholar
  • 42. Porrello E.R., Mahmoud A.I., Simpson E., Hill J.A., RichardsonJ.A., Olson E.N., Sadek H.A.: Transient regenerative potential of theneonatal mouse heart. Science, 2011; 331: 1078-1080
    Google Scholar
  • 43. Protze S., Khattak S., Poulet C., Lindemann D., Tanaka E.M., RavensU.: A new approach to transcription factor screening for reprogrammingof fibroblasts to cardiomyocyte-like cells. J. Mol. CellCardiol., 2012; 53: 323-332
    Google Scholar
  • 44. Przybycień K., Kornacewicz Jach Z., Machaliński B.: Komórkimacierzyste w klinicznych badaniach kardiologicznych. Kardiol.Pol., 2011; 69: 601-609
    Google Scholar
  • 45. Qian L., Huang Y., Spencer C.I., Foley A., Vedantham V., Liu L.,Conway S.J., Fu J.D., Srivastava D.: In vivo reprogramming of murinecardiac fibroblasts into induced cardiomyocytes. Nature, 2012; 485:593-598
    Google Scholar
  • 46. Ranganath S.H., Levy O., Inamdar M.S., Karp J.M.: Harnessingthe mesenchymal stem cell secretome for the treatment of cardiovasculardisease. Cell Stem Cell, 2012; 10: 244-258
    Google Scholar
  • 47. Rose R.A., Jiang H., Wang X., Helke S., Tsoporis J.N., Gong N., KeatingS.C., Parker T.G., Backx P.H., Keating A.: Bone marrow-derivedmesenchymal stromal cells express cardiac-specific markers, retainthe stromal phenotype, and do not become functional cardiomyocytesin vitro. Stem Cells, 2008; 26: 2884-2892
    Google Scholar
  • 48. Rossini A., Frati C., Lagrasta C., Graiani G., Scopece A., Cavalli S.,Musso E., Baccarin M., Di Segni M., Fagnoni F., Germani A., Quaini E.,Mayr M., Xu Q., Barbuti A. i wsp.: Human cardiac and bone marrowstromal cells exhibit distinctive properties related to their origin.Cardiovasc. Res., 2011; 89: 650-660
    Google Scholar
  • 49. Song K., Nam Y.J., Luo X., Qi X., Tan W., Huang G.N., Acharya A.,Smith C.L., Tallquist M.D., Neilson E.G., Hill J.A., Bassel-Duby R., OlsonE.N.: Heart repair by reprogramming non-myocytes with cardiactranscription factors. Nature, 2012; 485: 599-604
    Google Scholar
  • 50. Srivastava D., Ieda M.: Critical factors for cardiac reprogramming.Circ. Res., 2012; 111: 5-8
    Google Scholar
  • 51. Takahashi K., Yamanaka S.: Induction of pluripotent stem cellsfrom mouse embryonic and adult fibroblast cultures by defined factors.Cell, 2006; 126: 663-676
    Google Scholar
  • 52. Tallini Y.N., Greene K.S., Craven M., Spealman A., Breitbach M.,Smith J., Fisher P.J., Steffey M., Hesse M., Doran R.M., Woods A., SinghB., Yen A., Fleischmann B.K., Kotlikoff M.I.: c-kit expression identifiescardiovascular precursors in the neonatal heart. Proc. Natl. Acad.Sci. USA, 2009; 106: 1808-1813
    Google Scholar
  • 53. Tang J., Wang J., Guo L., Kong X., Yang J., Zheng F., Zhang L.,Huang Y.: Mesenchymal stem cells modified with stromal cell-derivedfactor 1 α improve cardiac remodeling via paracrine activationof hepatocyte growth factor in a rat model of myocardial infarction.Mol. Cells, 2010; 29: 9-19
    Google Scholar
  • 54. Tang X.L., Rokosh G., Sanganalmath S.K., Yuan F., Sato H., Mu J.,Dai S., Li C., Chen N., Peng Y., Dawn B., Hunt G., Leri A., Kajstura J.,Tiwari S., Shirk G., Anversa P., Bolli R.: Intracoronary administrationof cardiac progenitor cells alleviates left ventricular dysfunction inrats with a 30-day-old infarction. Circulation, 2010; 121: 293-305
    Google Scholar
  • 55. Yoshida Y., Yamanaka S.: Labor pains of new technology: directcardiac reprogramming. Circ. Res., 2012; 111: 3-4
    Google Scholar
  • 56. Zaruba M.M., Soonpaa M., Reuter S., Field L.J.: Cardiomyogenicpotential of C-kit+-expressing cells derived from neonatal and adultmouse hearts. Circulation, 2010; 121: 1992-2000
    Google Scholar

Full text

Skip to content