From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

COMMENTARY ON THE LAW

From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis

Zuzanna Rzepka 1 , Ewa Buszman 1 , Artur Beberok 1 , Dorota Wrześniok 1

1. Śląski Uniwersytet Medyczny w Katowicach, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Katedra i Zakład Chemii i Analizy Leków

Published: 2016-06-30
DOI: 10.5604/17322693.1208033
GICID: 01.3001.0009.6848
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 695-708

 

Abstract

Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes – dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones). Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells.

References

  • 1. Abdel-Malek Z.A., Kadekaro A.L.: Human cutaneous pigmentation:a collaborative act in the skin, directed by paracrine, autocrine,and endocrine factors and the environment. W: From melanocytesto melanoma. The progression to malignancy, red.: V.J. Hearing, S.P.Leong. Humana Press Inc, Totowa NJ, 2006: 81-100
    Google Scholar
  • 2. Abdel-Malek Z.A., Swope V.B.: Epidermal melanocytes: Regulationof their survival, proliferation, and function in human skin. W:Melanoma development: Molecular biology, genetics and clinicalapplication, red.: A. Bosserhoff. Springer-Verlag, Wien, 2011: 7-33
    Google Scholar
  • 3. Ancans J., Tobin D.J., Hoogduijn M.J., Smit N.P., Wakamatsu K.,Thody A.J.: Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelaninratio and melanosome maturation in melanocytesand melanoma cells. Exp. Cell Res., 2001; 268: 26-35
    Google Scholar
  • 4. Beberok A., Buszman E., Wrześniok D., Otręba M., Trzcionka J.: Interactionbetween ciprofloxacin and melanin: the effect on proliferationand melanization in melanocytes. Eur. J. Pharmacol., 2011; 669: 32-37
    Google Scholar
  • 5. Beberok A., Otręba M., Wrześniok D., Buszman E.: Cytotoxic effectof lomefloxacin in culture of human epidermal melanocytes.Pharmacol. Rep., 2013; 65: 689-699
    Google Scholar
  • 6. Beberok A., Wrześniok D., Otręba M., Buszman E.: Impact of sparfloxacinon melanogenesis and antioxidant defense system in normalhuman melanocytes HEMa-LP – an in vitro study. Pharmacol.Rep., 2015; 67: 38-43
    Google Scholar
  • 7. Beberok A., Wrześniok D., Otręba M., Miliński M., Rok J., BuszmanE.: Effect of norfloxacin and moxifloxacin on melanin synthesis andantioxidant enzymes activity in normal human melanocytes. Mol.Cell. Biochem., 2015; 401: 107-114
    Google Scholar
  • 8. Bin B.H., Bhin J., Yang S.H., Shin M., Nam Y.J., Choi D.H., Shin D.W.,Lee A.Y., Hwang D., Cho E.G., Lee T.R.: Membrane-associated transporterprotein (MATP) regulates melanosomal pH and influencestyrosinase activity. PLoS One, 2015; 10: e0129273
    Google Scholar
  • 9. Bonaventure J., Domingues M.J., Larue L.: Cellular and molecularmechanisms controlling the migration of melanocytes and melanomacells. Pigment Cell Melanoma Res., 2013; 26: 316-325
    Google Scholar
  • 10. Brenner M., Hearing V.J.: The protective role of melanin againstUV damage in human skin. Photochem. Photobiol., 2008; 84: 539-549
    Google Scholar
  • 11. Brown D.A.: Skin pigmentation enhancers. J. Photochem. Photobiol.B, 2001; 63: 148-161
    Google Scholar
  • 12. Busca R., Ballotti R.: Cyclic AMP a key messenger in the regulationof skin pigmentation. Pigment Cell Res., 2000; 13: 60-69
    Google Scholar
  • 13. Buszman E., Wrześniok D., Otręba M., Beberok A.: The impactof ketoprofen on viability and melanization process in normal melanocytesHEMn-DP. Curr. Issues Pharm. Med. Sci., 2012; 25: 376-380
    Google Scholar
  • 14. Chou S.Y., Chou C.K., Kuang T.M., Hsu W.M.: Incidence and severityof iris pigmentation on latanoprost-treated glaucoma eyes.Eye, 2005; 19: 784-787
    Google Scholar
  • 15. Chu H.L., Wang B.S., Chang L.C., Chang L.W., Duh P.D.: Effectsof captopril on melanin formation in B16 cells. J. Food Drug Anal.,2012; 20: 668-673
    Google Scholar
  • 16. Cichorek M., Wachulska M., Stasiewicz A., Tymińska A.: Skinmelanocytes: biology and development. Postępy Dermatol. Alergol.,2013; 30: 30-41
    Google Scholar
  • 17. Colombo S., Berlin I., Delmas V., Larue L.: Classical and nonclassicalmelanocytes in vertebrates. W: Melanins and melanosomes:Biosynthesis, biogenesis, physiological, and pathological functions,red.: J. Borovanský, P.A. Riley. Wiley-VCH Verlag GmbH & Co. KGaA,Weinheim 2011, 21-52
    Google Scholar
  • 18. Costin G.E., Hearing V.J.: Human skin pigmentation: melanocytesmodulate skin color in response to stress. FASEB J., 2007; 21: 976-994
    Google Scholar
  • 19. Cui R., Widlund H.R., Feige E., Lin J.Y., Wilensky D.L., Igras V.E.,D’Orazio J., Fung C.Y., Schanbacher C.F., Granter S.R., Fisher D.E.: Central role of p53 in the suntan response and pathologic hyperpigmentation.Cell, 2007; 128: 853-864
    Google Scholar
  • 20. Davis E.C., Callender V.D.: Postinflammatory hyperpigmentation:a review of the epidemiology, clinical features, and treatmentoptions in skin of color. J. Clin. Aesthet. Dermatol., 2010; 3: 20-31
    Google Scholar
  • 21. Delijewski M., Beberok A., Otręba M., Wrześniok D., Rok J., BuszmanE.: Effect of nicotine on melanogenesis and antioxidant statusin HEMn-LP melanocytes. Environ. Res., 2014; 134: 309-314
    Google Scholar
  • 22. Delijewski M., Wrześniok D., Otręba M., Beberok A., Rok J., BuszmanE.: Nicotine impact on melanogenesis and antioxidant defensesystem in HEMn-DP melanocytes. Mol. Cell. Biochem., 2014; 395:109-116
    Google Scholar
  • 23. d’Ischia M., Wakamatsu K., Cicoira F., Di Mauro E., Garcia-BorronJ.C., Commo S., Galván I., Ghanem G., Kenzo K., Meredith P., PezzellaA., Santato C., Sarna T., Simon J.D., Zecca L., Zucca F.A., NapolitanoA., Ito S.: Melanins and melanogenesis: from pigment cells to humanhealth and technological applications. Pigment Cell MelanomaRes., 2015; 28: 520-544
    Google Scholar
  • 24. d’Ischia M., Wakamatsu K., Napolitano A., Briganti S., Garcia–Borron J.C., Kovacs D., Meredith P., Pezzella A., Picardo M., Sarna T.,Simon J.D., Ito S.: Melanins and melanogenesis: methods, standards,protocols. Pigment Cell Melanoma Res., 2013; 26: 616-633
    Google Scholar
  • 25. Dubey S., Roulin A.: Evolutionary and biomedical consequencesof internal melanins. Pigment Cell Melanoma Res., 2014; 27: 327-338
    Google Scholar
  • 26. Fuller B.B., Spaulding D.T., Smith D.R.: Regulation of the catalyticactivity of preexisting tyrosinase in black and Caucasian humanmelanocyte cell cultures. Exp. Cell Res., 2001; 262: 197-208
    Google Scholar
  • 27. Gillbro J.M., Olsson M.J.: The melanogenesis and mechanismsof skin-lightening agents – existing and new approaches. Int. J. Cosmet.Sci., 2011; 33: 210-221
    Google Scholar
  • 28. Hakozaki T., Minwalla L., Zhuang J., Chhoa M., Matsubara A.,Miyamoto K., Greatens A., Hillebrand G.G., Bissett D.L., Boissy R.E.:The effect of niacinamide on reducing cutaneous pigmentation andsuppression of melanosome transfer. Br. J. Dermatol., 2002; 147: 20-31
    Google Scholar
  • 29. Hong L., Simon J.D.: Current understanding of the binding sites,capacity, affinity and biological significance of metals in melanin. J.Phys. Chem. B, 2007; 111: 7938-7947
    Google Scholar
  • 30. Hu D.N., Simon J.D., Sarna T.: Role of ocular melanin in ophthalmicphysiology and pathology. Photochem. Photobiol., 2008; 84: 639-644
    Google Scholar
  • 31. Ito S., Suzuki N., Takebayashi S., Commo S., Wakamatsu K.: NeutralpH and copper ions promote eumelanogenesis after the dopachromestage. Pigment Cell Melanoma Res., 2013; 26: 817-825
    Google Scholar
  • 32. Ito S., Wakamatsu K.: Chemistry of mixed melanogenesis – pivotalroles of dopaquinone. Photochem. Photobiol., 2008; 84: 582-592
    Google Scholar
  • 33. Jamal S., Schneider R.J.: UV-induction of keratinocyte endothelin-1downregulates E-cadherin in melanocytes and melanoma cells.J. Clin. Invest., 2002; 110: 443-452
    Google Scholar
  • 34. Jian D., Jiang D., Su J., Chen W., Hu X., Kuang Y., Xie H., Li J., ChenX.: Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediatingup-regulation of tyrosinase and MITF in mouse B16 melanomacells. Steroids, 2011; 76: 1297-1304
    Google Scholar
  • 35. Kim D.S., Park S.H., Kwon S.B., Joo Y.H., Youn S.W., Sohn U.D.,Park K.C.: Temperature regulates melanin synthesis in melanocytes.Arch. Pharm. Res., 2003; 26: 840-845
    Google Scholar
  • 36. Kim K.: Effect of ginseng and ginsenosides on melanogenesis andtheir mechanism of action. J. Ginseng Res., 2015; 39: 1-6
    Google Scholar
  • 37. Kim S.H., Choi Y.J., Moon K.M., Lee H.J., Woo Y., Chung K.W.,Jung Y., Kim S., Chun P., Byun Y., Ha Y.M., Moon H.R., Chung H.Y.:The inhibitory effect of a synthetic compound, (Z)-5-(2,4-dihydroxybenzylidene)thiazolidine-2,4-dione (MHY498), on nitric oxide-inducedmelanogenesis. Bioorg. Med. Chem. Lett., 2013; 23: 4332-4335
    Google Scholar
  • 38. Kondo T., Hearing V.J.: Update on the regulation of mammalianmelanocyte function and skin pigmentation. Expert Rev. Dermatol.,2011; 6: 97-108
    Google Scholar
  • 39. Larsson B.S.: Interaction between chemicals and melanin. PigmentCell Res., 1993; 6: 127-133
    Google Scholar
  • 40. Lehraiki A., Abbe P., Cerezo M., Rouaud F., Regazzetti C., Chignon-SicardB., Passeron T., Bertolotto C., Ballotti R., Rocchi S.: Inhibitionof melanogenesis by the antidiabetic metformin. J. Invest.Dermatol., 2014; 134: 2589-2597
    Google Scholar
  • 41. Marles L.K., Peters E.M., Tobin D.J., Hibberts N.A., SchallreuterK.U.: Tyrosine hydroxylase isoenzyme I is present in human melanosomes:a possible novel function in pigmentation. Exp. Dermatol.,2003; 12: 61-70
    Google Scholar
  • 42. Meredith P., Sarna T.: The physical and chemical properties ofeumelanin. Pigment Cell Res., 2006; 19: 572-594
    Google Scholar
  • 43. Nasti T.H., Timares L.: MC1R, eumelanin and pheomelanin: theirrole in determining the susceptibility to skin cancer. Photochem.Photobiol., 2015; 91: 188-200
    Google Scholar
  • 44. Ni-Komatsu L., Orlow S.J.: Chemical genetic screening identifiestricyclic compounds that decrease cellular melanin content. J.Invest. Dermatol., 2008; 128: 1236-1247
    Google Scholar
  • 45. Ni-Komatsu L., Tong C., Chen G., Brindzei N., Orlow S.J.: Identificationof quinolines that inhibit melanogenesis by altering tyrosinasefamily trafficking. Mol. Pharmacol., 2008; 74: 1576-1586
    Google Scholar
  • 46. Ortonne J.P., Bissett D.L.: Latest insights into skin hyperpigmentation.J. Investig. Dermatol. Symp. Proc., 2008; 13: 10-14
    Google Scholar
  • 47. Otręba M., Beberok A., Wrześniok D., Rok J., Buszman E.: Effect ofthioridazine on antioxidant status of HEMn-DP melanocytes. NaunynSchmiedebergs Arch. Pharmacol., 2015; 388: 1097-1104
    Google Scholar
  • 48. Otręba M., Buszman E., Miliński M., Wrześniok D.: Hipomelanozyprzekazywane z pokolenia na pokolenie. Postępy Hig. Med. Dośw.,2014; 68: 1081-1090
    Google Scholar
  • 49. Otręba M., Miliński M., Buszman E., Wrześniok D., Beberok A.: Hipomelanocytozydziedziczne: rola genów PAX3, SOX10, MITF, SNAI2,KIT, EDN3 i EDNRB. Postępy Hig. Med. Dośw., 2013; 67: 1109-1118
    Google Scholar
  • 50. Otręba M., Rok J., Buszman E., Wrześniok D.: Regulacja melanogenezy:rola cAMP i MITF. Postępy Hig. Med. Dośw., 2012; 66: 33-40
    Google Scholar
  • 51. Otręba M., Wrześniok D., Beberok A., Rok J., Buszman E.: Melanogenesisand antioxidant defense system in normal human melanocytescultured in the presence of chlorpromazine. Toxicol. InVitro, 2015; 29: 221-227
    Google Scholar
  • 52. Palumbo A., d’Ischia M., Misuraca G., De Martino L., Prota G.:A new dopachrome-rearranging enzyme from the ejected ink of thecuttlefish Sepia officinalis. Biochem. J., 1994; 299: 839-844
    Google Scholar
  • 53. Park H.Y., Kosmadaki M., Yaar M., Gilchrest B.A.: Cellular mechanismsregulating human melanogenesis. Cell. Mol. Life Sci., 2009;66: 1493-1506
    Google Scholar
  • 54. Plonka P.M., Passeron T., Brenner M., Tobin D.J., Shibahara S.,Thomas A., Slominski A., Kadekaro A.L., Hershkovitz D., Peters E.,Nordlund J.J., Abdel-Malek Z., Takeda K., Paus R., Ortonne J.P., HearingV.J., Schallreuter K.U.: What are melanocytes really doing allday long…? Exp. Dermatol., 2009; 18: 799-819
    Google Scholar
  • 55. Rok J., Buszman E., Beberok A., Delijewski M., Otręba M., Wrze-śniok D.: Modulation of melanogenesis and antioxidant status ofmelanocytes in response to phototoxic action of doxycycline. Photochem.Photobiol., 2015; 91: 1429-1434
    Google Scholar
  • 56. Rok J., Buszman E., Delijewski M., Otręba M., Beberok A., Wrze-śniok D.: Effect of tetracycline and UV radiation on melanizationand antioxidant status of melanocytes. J. Photochem. Photobiol. B,2015; 148: 168-173
    Google Scholar
  • 57. Rok J., Otręba M., Buszman E., Wrześniok D.: Melanina – z melanocytu do keratynocytu, czyli jak przebiega transport melaninyw skórze. Ann. Acad. Med. Siles., 2012; 66: 60-66
    Google Scholar
  • 58. Sasaki M., Horikoshi T., Uchiwa H., Miyachi Y.: Up-regulationof tyrosinase gene by nitric oxide in human melanocytes. PigmentCell Res., 2000; 13: 248-252
    Google Scholar
  • 59. Schallreuter K.U., Kothari S., Chavan B., Spencer J.D.: Regulationof melanogenesis – controversies and new concepts. Exp. Dermatol.,2008; 17: 395-404
    Google Scholar
  • 60. Seiberg M.: Age-induced hair greying – the multiple effects ofoxidative stress. Int. J. Cosmet. Sci., 2013; 35: 532-538
    Google Scholar
  • 61. Simon J.D., Peles D., Wakamatsu K., Ito S.: Current challenges inunderstanding melanogenesis: bridging chemistry, biological control,morphology, and function. Pigment Cell Melanoma Res., 2009;22: 563-579
    Google Scholar
  • 62. Slominski A., Tobin D.J., Shibahara S., Wortsman J.: Melanin pigmentationin mammalian skin and its hormonal regulation. Physiol.Rev., 2004; 84: 1155-1228
    Google Scholar
  • 63. Slominski A., Wortsman J., Plonka P.M., Schallreuter K.U., PausR., Tobin D.J.: Hair follicle pigmentation. J. Invest. Dermatol., 2005;124: 13-21
    Google Scholar
  • 64. Slominski A., Zmijewski M.A., Pawelek J.: L-tyrosine and L-dihydroxyphenylalanineas hormone-like regulators of melanocytefunctions. Pigment Cell Melanoma Res., 2012; 25: 14-27
    Google Scholar
  • 65. Solano F.: Melanins: skin pigments and much more – types,structural models, biological functions, and formation routes. NewJ. Sci., 2014; 2014: 498276
    Google Scholar
  • 66. Solano F., Jimenez-Cervantes C., Martinez-Liarte J.H., Garcia–Borron J.C., Jara J.R., Lozano J.A.: Molecular mechanism for catalysisby a new zinc-enzyme, dopachrome tautomerase. Biochem. J.,1996; 313: 447-453
    Google Scholar
  • 67. Spencer J.D., Chavan B., Marles L.K., Kauser S., Rokos H., SchallreuterK.U.: A novel mechanism in control of human pigmentationby β-melanocyte-stimulating hormone and 7-tetrahydrobiopterin.J. Endocrinol., 2005; 187: 293-302
    Google Scholar
  • 68. Spencer J.D., Schallreuter K.U.: Regulation of pigmentationin human epidermal melanocytes by  functional high-affinityβ-melanocyte-stimulating hormone/melanocortin-4 receptor signaling.Endocrinology, 2009; 150: 1250-1258
    Google Scholar
  • 69. Stępień K.: Udział melanocytów w ochronie przed stresem fotooksydacyjnym.Postępy Biochem., 2010; 56: 290-297
    Google Scholar
  • 70. Tada A., Pereira E., Beitner-Johnson D., Kavanagh R., Abdel-MalekZ.A.: Mitogen- and ultraviolet-B-induced signaling pathways innormal human melanocytes. J. Invest. Dermatol., 2002; 118: 316-322
    Google Scholar
  • 71. Tam I., Stępień K.: Melanocyty – immunokompetentne komórkibarwnikowe. Postępy Dermatol. Alergol., 2007; 24: 188-193
    Google Scholar
  • 72. Vachtenheim J., Borovanský J.: „Transcription physiology” ofpigment formation in melanocytes: central role of MITF. Exp. Dermatol.,2010; 19: 617-627
    Google Scholar
  • 73. Videira I.F., Moura D.F., Magina S.: Mechanisms regulating melanogenesis.An. Bras. Dermatol., 2013; 88: 76-83
    Google Scholar
  • 74. Watt B., van Niel G., Raposo G., Marks M.S.: PMEL: a pigmentcell-specific model for functional amyloid formation. Pigment CellMelanoma Res., 2013; 26: 300-315
    Google Scholar
  • 75. Wei B., Zhang Y.P., Yan H.Z., Xu Y., Du T.M.: Cilostazol promotesproduction of melanin by activating the microphthalmia-associatedtranscription factor (MITF). Biochem. Biophys. Res. Commun.,2014; 443: 617-621
    Google Scholar
  • 76. Woolery-Lloyd H., Kammer J.N.: Treatment of hyperpigmentation.Semin. Cutan. Med. Surg., 2011; 30: 171-175
    Google Scholar
  • 77. Wrześniok D., Beberok A., Otręba M., Buszman E.: Effect of streptomycinon melanogenesis and antioxidant status in melanocytes.Mol. Cell. Biochem., 2013; 383: 77-84
    Google Scholar
  • 78. Wrześniok D., Beberok A., Otręba M., Buszman E.: Gentamicinaffects melanogenesis in normal human melanocytes. Cutan. Ocul.Toxicol., 2015; 34: 107-111
    Google Scholar
  • 79. Wrześniok D., Beberok A., Otręba M., Buszman E.: Modulationof melanogenesis and antioxidant defense system in melanocytesby amikacin. Toxicol. In Vitro, 2013; 27: 1102-1108
    Google Scholar
  • 80. Wrześniok D., Beberok A., Otręba M., Buszman E.: Netilmicin–induced modulation of melanogenesis in HEMa-LP melanocytes.Acta Pol. Pharm., 2013; 70: 803-808
    Google Scholar
  • 81. Wrześniok D., Oprzondek M., Hechmann A., Beberok A., OtrębaM., Buszman E.: Effect of paracetamol on melanization proces inhuman epidermal melanocytes. Acta Pol. Pharm., 2016; 4: (w druku)
    Google Scholar
  • 82. Wrześniok D., Otręba M., Beberok A., Buszman E.: Impact ofkanamycin on melanogenesis and antioxidant enzymes activity inmelanocytes – an in vitro study. J. Cell. Biochem., 2013; 114: 2746-2752
    Google Scholar
  • 83. Yoshida M., Takahashi Y., Inoue S.: Histamine induces melanogenesisand morphologic changes by protein kinase A activation viaH2 receptors in human normal melanocytes. J. Invest. Dermatol.,2000; 114: 334-342
    Google Scholar
  • 84. Zdybel M., Pilawa B., Buszman E., Wrześniok D.: Zastosowaniespektroskopii EPR do badania melanin oraz kompleksów melaninz jonami metali i substancjami leczniczymi. Farm. Przegl. Nauk.,2009; 6: 42-46
    Google Scholar
  • 85. Zhang X., Yan G., Ji J., Wu J., Sun X., Shen J., Jiang H., Wang H.:PDE5 inhibitor promotes melanin synthesis through the PKG pathwayin B16 melanoma cells. J. Cell. Biochem., 2012; 113: 2738-2743
    Google Scholar
  • 86. Zhu W., Gao J.: The use of botanical extracts as topical skin-lighteningagents for the improvement of skin pigmentation disorders.J. Investig. Dermatol. Symp. Proc., 2008; 13: 20-24
    Google Scholar

Full text

Skip to content