Galectins in hematological malignancies – role, functions and potential therapeutic targets

COMMENTARY ON THE LAW

Galectins in hematological malignancies – role, functions and potential therapeutic targets

Kamil Wdowiak 1 , Wojciech Spychałowicz 1 , Marcin Fajkis 1 , Jerzy Wojnar 1

1. Katedra i Klinika Chorób Wewnętrznych i Chemioterapii Onkologicznej Śląskiego Uniwersytetu Medycznego w Katowicach

Published: 2016-02-14
DOI: 10.5604/17322693.1194808
GICID: 01.3001.0009.6788
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 95-103

 

Abstract

Galectins are a family of lectins characterized by an affinity for β – galactosides through the carbohydrate recognition domain (CRD). The extracellular and intracellular presence of Galectins has been described. Their activity and functions are mainly attributed to cell type. The tumor microenviroment is a complex milieu connected with immunosupression, angiogenesis and hypoxic compartments. The studies of interactions between Glycans – Lectins are highly advanced and promising. We are not able to explain the pathogenesis of many diseases only by protein – protein interactions, that is why in these studies is a chance to find a new therapeutic targets. Galectins play a fundametal functions in tumor growth and progression, angiogenesis, adhesion, tumor immune – escape. They are also active in inflammation, fibrosis, organogenesis and immunological functions. The most known Galectin is Gal-3. Depending on the localization Gal-3 may exhibit either pro – apoptotic or anti – apoptotic activity. This publication presents role of Galectins in hematological malignancies and shows potencial prognostoic value and new therapeutic possibilities.

References

  • 1. Abroun S., Otsuyama K., Shamsasenjan K., Islam A., Amin J., IqbalM.S., Gondo T., Asaoku H., Kawano M.M.: Galectin-1 supports thesurvival of CD45RA(-) primary myeloma cells in vitro. Br. J. Haematol.,2008; 142: 754-765
    Google Scholar
  • 2. Andréasson U., Dictor M., Jerkeman M., Berglund M., SundströmC., Linderoth J., Rosenquist R., Borrebaeck C.A., Ek S.: Identificationof molecular targets associated with transformed diffuse large Bcel lymphoma using highly purified tumor cells. Am. J. Hematol.,2009; 84: 803-808 3 Asgarian-Omran H., Forghani P., Hojjat-Farsangi M., Roohi A.,Sharifian R.A., Razavi S.M., Jeddi-Tehrani M., Rabbani H., ShokriF.: Expression profile of galectin-1 and galectin-3 molecules in differentsubtypes of chronic lymphocytic leukemia. Cancer Invest.,2010; 28: 717-725
    Google Scholar
  • 3. in diffuse large B-cell lymphomas. Am. J. Pathol., 2004; 164:893-902
    Google Scholar
  • 4. Balan V., Wang Y., Nangia-Makker P., Kho D., Bajaj M., Smith D.,Heilbrun L., Raz A., Heath E.: Galectin-3: a possible complementarymarker to the PSA blood test. Oncotarget, 2013; 4: 542-549
    Google Scholar
  • 5. Barondes S.H., Castronovo V., Cooper D.N., Cummings R.D., DrickamerK., Feizi T., Gitt M.A., Hirabayashi J., Hughes C., Kasai K., LefflerH., Liu F.T., Lotan R., Mercurio A.M., Monsigny M. i wsp.: Galectins:a family of animal beta-galactoside-binding lectins. Cell, 1994; 76:597-598
    Google Scholar
  • 6. Barrow H., Guo X., Wandall H.H., Pedersen J.W., Fu B., Zhao Q.,Chen C., Rhodes J.M., Yu L.G.: Serum galectin-2, -4, and -8 are greatlyincreased in colon and breast cancer patients and promote cancercell adhesion to blood vascular endothelium. Clin. Cancer Res., 2011;17: 7035-7046
    Google Scholar
  • 7. Barrow H., Rhodes J.M., Yu L.G.: Simultaneous determination ofserum galectin-3 and -4 levels detects metastases in colorectal cancerpatients. Cell. Oncol., 2013; 36: 9-13
    Google Scholar
  • 8. Brand C., Oliveira F.L., Ricon L., Fermino M.L., Boldrini L.C., HsuD.K., Liu F.T., Chammas R., Borojevic R., Farina M., El-Cheikh M.C.:The bone marrow compartment is modified in the absence of galectin- 3 Cell Tissue Res., 2011; 346: 427-437
    Google Scholar
  • 9. Cheng C.L., Hou H.A., Lee M.C., Liu C.Y., Jhuang J.Y., Lai YJ, LinC.W., Chen H.Y., Liu F.T., Chou W.C., Chen C.Y., Tang J.L., Yao M., HuangS.Y., Ko B.S. i wsp.: Higher bone marrow LGALS3 expression is anindependent unfavorable prognostic factor for overall survival inpatients with acute myeloid leukemia. Blood, 2013; 121: 3172-3180
    Google Scholar
  • 10. Cheng Y.L., Huang W.C., Chen C.L., Tsai C.C., Wang C.Y., ChiuW.H., Chen Y.L., Lin Y.S., Chang C.F., Lin C.F.: Increased galectin-3facilitates leukemia cell survival from apoptotic stimuli. Biochem.Biophys. Res. Commun., 2011; 412: 334-340
    Google Scholar
  • 11. Clark M.C., Pang M., Hsu D.K., Liu F.T., de Vos S., Gascoyne R.D.,Said J., Baum L.G.: Galectin-3 binds to CD45 on diffuse large B-celllymphoma cells to regulate susceptibility to cell death. Blood, 2012;120: 4635-4644
    Google Scholar
  • 12. Croci D.O., Morande P.E., Dergan-Dylon S., Borge M., ToscanoM.A., Stupirski J.C., Bezares R.F., Avalos J.S., Narbaitz M., GamberaleR., Rabinovich G.A., Giordano M.: Nurse-like cells control the activityof chronic lymphocytic leukemia B cells via galectin-1. Leukemia,2013; 27: 1413-1416
    Google Scholar
  • 13. Demers M., Biron-Pain K., Hébert J., Lamarre A., Magnaldo T.,St-Pierre Y.: Galectin-7 in lymphoma: elevated expression in humanlymphoid malignancies and decreased lymphoma disseminationby antisense strategies in experimental model. Cancer Res.,2007; 67: 2824-2829
    Google Scholar
  • 14. Dummer R., Nestle F.O., Niederer E., Ludwig E., Laine E., GrundmannH., Grob P., Burg G.: Genotypic, phenotypic and functionalanalysis of CD4+CD7+ and CD4+CD7- T lymphocyte subsets in Sézarysyndrome. Arch. Dermatol. Res., 1999; 291: 307-311
    Google Scholar
  • 15. Gao L., Yu S., Zhang X.: Hypothesis: Tim-3/galectin-9, a newpathway for leukemia stem cells survival by promoting expansionof myeloid-derived suppressor cells and differentiating into tumorassociatedmacrophages. Cell Biochem. Biophys., 2014; 70: 273-277
    Google Scholar
  • 16. Houzelstein D., Gonçalves I.R., Fadden A.J., Sidhu S.S., CooperD.N., Drickamer K., Leffler H., Poirier F.: Phylogenetic analysis ofthe vertebrate galectin family. Mol. Biol. Evol., 2004; 21: 1177-1187
    Google Scholar
  • 17. Hoyer K.K., Pang M., Gui D., Shintaku I.P., Kuwabara I., Liu F.T.,Said J.W., Baum L.G., Teitell M.A.: An anti-apoptotic role for galectin-
    Google Scholar
  • 18. Inohara H., Segawa T., Miyauchi A., Yoshii T., Nakahara S., RazA., Maeda M., Miyoshi E., Kinoshita N., Yoshida H., Furukawa M., TakenakaY., Takamura Y., Ito Y., Taniguchi N.: Cytoplasmic and serumgalectin-3 in diagnosis of thyroid malignancies. Biochem. Biophys.Res. Commun., 2008; 376: 605-610
    Google Scholar
  • 19. Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., OnturkS., Blanchard H., Ralph S.J.: Galectin-1 as a potent target for cancertherapy: role in the tumor microenvironment. Cancer MetastasisRev., 2012; 31: 763-778
    Google Scholar
  • 20. Iurisci I., Tinari N., Natoli C., Angelucci D., Cianchetti E., IacobelliS.: Concentrations of galectin-3 in the sera of normal controls andcancer patients. Clin. Cancer Res., 2000; 6: 1389-1393
    Google Scholar
  • 21. Juszczynski P., Ouyang J., Monti S., Rodig S.J., Takeyama K.,Abramson J., Chen W., Kutok J.L., Rabinovich G.A., Shipp M.A.: TheAP1-dependent secretion of galectin-1 by Reed Sternberg cells fostersimmune privilege in classical Hodgkin lymphoma. Proc. Natl.Acad. Sci. USA, 2007; 104: 13134-13139
    Google Scholar
  • 22. Kamper P., Ludvigsen M., Bendix K., Hamilton-Dutoit S., RabinovichG.A., Møller M.B., Nyengaard J.R., Honoré B., d’Amore F.: Proteomicanalysis identifies galectin-1 as a predictive biomarker forrelapsed/refractory disease in classical Hodgkin lymphoma. Blood,2011; 117: 6638-6649
    Google Scholar
  • 23. Kim H.J., Jeon H.K., Cho Y.J., Park Y.A., Choi J.J., Do I.G., Song S.Y.,Lee Y.Y., Choi C.H., Kim T.J., Bae D.S., Lee J.W., Kim B.G.: High galectin- 1 expression correlates with poor prognosis and is involved inepithelial ovarian cancer proliferation and invasion. Eur. J. Cancer,2012; 48: 1914-1921
    Google Scholar
  • 24. Kim H.J., Jeon H.K., Lee J.K., Sung C.O., Do I.G., Choi C.H., KimT.J., Kim B.G., Bae D.S., Lee J.W.: Clinical significance of galectin-7in epithelial ovarian cancer. Anticancer Res., 2013; 33: 1555-1561
    Google Scholar
  • 25. Kim S.J., Lee S.J., Sung H.J., Choi I.K., Choi C.W., Kim B.S., KimJ.S., Yu W., Hwang H.S., Kim I.S.: Increased serum 90K and Galectin-3expression are associated with advanced stage and a worse prognosisin diffuse large B-cell lymphomas. Acta Haematol., 2008; 120: 211-216
    Google Scholar
  • 26. Kobayashi T., Kuroda J., Ashihara E., Oomizu S., Terui Y., TaniyamaA., Adachi S., Takagi T., Yamamoto M., Sasaki N., Horiike S.,Hatake K., Yamauchi A., Hirashima M., Taniwaki M.: Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways.Leukemia, 2010; 24: 843-850
    Google Scholar
  • 27. Konstantinov K.N., Robbins B.A., Liu F.T.: Galectin-3,a β-galactoside-binding animal lectin, is a marker of anaplastic largecelllymphoma. Am. J. Pathol., 1996; 148: 25-30
    Google Scholar
  • 28. Koopmans S.M., Bot F.J., Schouten H.C., Janssen J., van MarionA.M.: The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am. J. Blood Res.,2012; 2: 119-127
    Google Scholar
  • 29. Kuroda J., Yamamoto M., Nagoshi H., Kobayashi T., Sasaki N.,Shimura Y., Horiike S., Kimura S., Yamauchi A., Hirashima M., TaniwakiM.: Targeting activating transcription factor 3 by Galectin-9 inducesapoptosis and overcomes various types of treatment resistancein chronic myelogenous leukemia. Mol. Cancer Res., 2010; 8: 994-1001
    Google Scholar
  • 30. Mirandola L., Yu Y., Chui K., Jenkins M.R., Cobos E., John C.M.,Chiriva-Internati M.: Galectin-3C inhibits tumor growth and increasesthe anticancer activity of bortezomib in a murine model ofhuman multiple myeloma. PLoS One, 2011; 6: e21811
    Google Scholar
  • 31. Ouyang J., Plütschow A., Pogge von Strandmann E., ReinersK.S., Ponader S., Rabinovich G.A., Neuberg D., Engert A., Shipp M.A.:Galectin-1 serum levels reflect tumor burden and adverse clinicalfeatures in classical Hodgkin lymphoma. Blood, 2013; 121: 3431-3433
    Google Scholar
  • 32. Rappl G., Abken H., Muche J.M., Sterry W., Tilgen W., André S.,Kaltner H., Ugurel S., Gabius H.J., Reinhold U.: CD4+CD7- leukemic Tcells from patients with Sézary syndrome are protected from galectin-1-triggered T cell death. Leukemia, 2002; 16: 840-845
    Google Scholar
  • 33. Rodig S.J., Ouyang J., Juszczynski P., Currie T., Law K., NeubergD.S., Rabinovich G.A., Shipp M.A., Kutok J.L.: AP1-dependent galectin- 1 expression delineates classical hodgkin and anaplastic largecell lymphomas from other lymphoid malignancies with sharedmolecular features. Clin. Cancer Res., 2008; 14: 3338-3344
    Google Scholar
  • 34. Saussez S., Glinoer D., Chantrain G., Pattou F., Carnaille B., AndréS., Gabius H.J., Laurent G.: Serum galectin-1 and galectin-3 levelsin benign and malignant nodular thyroid disease. Thyroid, 2008;18: 705-712
    Google Scholar
  • 35. Stillman B.N., Hsu D.K., Pang M., Brewer C.F., Johnson P., LiuF.T., Baum L.G.: Galectin-3 and galectin-1 bind distinct cell surfaceglycoprotein receptors to induce T cell death. J. Immunol., 2006;176: 778-789
    Google Scholar
  • 36. Streetly M.J., Maharaj L., Joel S., Schey S.A., Gribben J.G., CotterF.E.: GCS-100, a novel galectin-3 antagonist, modulates MCL-1,NOXA, and cell cycle to induce myeloma cell death. Blood, 2010;115: 3939-3948
    Google Scholar
  • 37. Suzuki O., Abe M.: Cell surface N-glycosylation and sialylationregulate galectin-3-induced apoptosis in human diffuse large B celllymphoma. Oncol. Rep., 2008; 19: 743-748
    Google Scholar
  • 38. Tsai C.M., Chiu Y.K., Hsu T.L., Lin I.Y., Hsieh S.L., Lin K.I.: Galectin- 1 promotes immunoglobulin production during plasma celldifferentiation. J. Immunol., 2008; 181: 4570-4579
    Google Scholar
  • 39. Wollina U., Graefe T., Feldrappe S., André S., Wasano K., KaltnerH., Zick Y., Gabius H.J.: Galectin fingerprinting by immuno- andlectin histochemistry in cutaneous lymphoma. J. Cancer Res. Clin.Oncol., 2002; 128: 103-110
    Google Scholar
  • 40. Wu T.F., Li C.F., Chien L.H., Shen K.H., Huang H.Y., Su C.C., LiaoA.C.: Galectin-1 dysregulation independently predicts disease specificsurvival in bladder urothelial carcinoma. J. Urol., 2015; 193:1002-1008
    Google Scholar
  • 41. Xie L., Ni W.K., Chen X.D., Xiao M.B., Chen B.Y., He S., Lu C.H., LiX.Y., Jiang F., Ni R.Z.: The expressions and clinical significances oftissue and serum galectin-3 in pancreatic carcinoma. J. Cancer Res.Clin. Oncol., 2012; 138: 1035-1043
    Google Scholar
  • 42. Yamamoto-Sugitani M., Kuroda J., Ashihara E., Nagoshi H., KobayashiT., Matsumoto Y., Sasaki N., Shimura Y., Kiyota M., NakayamaR., Akaji K., Taki T., Uoshima N., Kobayashi Y., Horiike S. i wsp.:Galectin-3 (Gal-3) induced by leukemia microenvironment promotesdrug resistance and bone marrow lodgment in chronic myelogenousleukemia. Proc. Natl. Acad. Sci. USA, 2011; 108: 17468-17473
    Google Scholar
  • 43. Yang R.Y., Hsu D.K., Liu F.T.: Expression of galectin-3 modulatesT-cell growth and apoptosis. Proc. Natl. Acad. Sci. USA, 1996;93: 6737-6742
    Google Scholar
  • 44. Zhou Q., Munger M.E., Veenstra R.G., Weigel B.J., Hirashima M.,Munn D.H., Murphy W.J., Azuma M., Anderson A.C., Kuchroo V.K.,Blazar B.R.: Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cellexhaustion phenotype in mice with disseminated acute myelogenousleukemia. Blood, 2011; 117: 4501-4510
    Google Scholar

Full text

Skip to content