Genetic factors in pathogenesis, course and treatment of inflammatory bowel diseases

COMMENTARY ON THE LAW

Genetic factors in pathogenesis, course and treatment of inflammatory bowel diseases

Hubert Zatorski 1 , Maciej Sałaga 1 , Marta Zielińska 1 , Jakub Fichna 1

1. Zakład Biochemii, Wydział Lekarski, Uniwersytet Medyczny w Łodzi

Published: 2015-03-17
DOI: 10.5604/17322693.1145172
GICID: 01.3001.0009.6508
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 335-344

 

Abstract

Inflammatory bowel diseases (IBD) are a group of chronic gastrointestinal disorders with alternating relapses and remissions. Two main types within IBD can be distinguished: Crohn’s disease and ulcerative colitis. Considering the epidemiological, immunological and genetic data, it was concluded that IBD possess multifactorial etiology, where genetic and environmental factors form the immunological background for the disease. In this review we discuss the most important genes and their protein products in IBD etiology and their impact on IBD pharmacotherapy.

References

  • 1. Amre D.K., Mack D.R., Morgan K., Krupoves A., Costea I., LambretteP., Grimard G., Dong J., Feguery H., Bucionis V., DeslandresC., Levy E., Seidman E.G.: Autophagy gene ATG16L1 but not IRGMis associated with Crohn’s disease in Canadian children. Inflamm.Bowel Dis., 2009; 15: 501-507
    Google Scholar
  • 2. Barreiro M., Nunez C., Dominguez-Munoz J.E., Lorenzo A., BarreiroF., Potel J., Pena A.S.: Association of NOD2/CARD15 mutationswith previous surgical procedures in Crohn’s disease. Rev. Esp. Enferm.Dig., 2005; 97: 547-553
    Google Scholar
  • 3. Barreiro-de Acosta M., Pena A.S.: Clinical applications of NOD2/CARD15 mutations in Crohn’s disease. Acta Gastroenterol. Latinoam.,2007; 37: 49-54
    Google Scholar
  • 4. Barrett J.C., Hansoul S., Nicolae D.L. Cho J.H., Duerr R.H., RiouxJ.D., Brant S.R., Silverberg M.S., Taylor K.D., Barmada M.M., Bitton A.,Dassopoulos T., Datta L.W., Green T., Griffiths A.M. i wsp.: Genomewideassociation defines more than 30 distinct susceptibility loci forCrohn’s disease. Nat. Genet., 2008; 40: 955-962
    Google Scholar
  • 5. Bekpen C., Marques-Bonet T., Alkan C., Antonacci F., LeograndeM.B., Ventura M., Kidd J.M., Siswara P., Howard J.C., Eichler E.E.:Death and resurrection of the human IRGM gene. PLoS Genet., 2009;5: e1000403
    Google Scholar
  • 6. Brand S., Staudinger T., Schnitzler F., Pfennig S., Hofbauer K.,Dambacher J., Seiderer J., Tillack C., Konrad A., Crispin A., Goke B.,Lohse P., Ochsenkuhn T.: The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in thesusceptibility and phenotype of Crohn’s disease. Inflamm. BowelDis., 2005; 11: 645-652
    Google Scholar
  • 7. Brest P., Lapaquette P., Souidi M., Lebrigand K., Cesaro A., VouretCraviariV., Mari B., Barbry P., Mosnier J.F., Hebuterne X., HarelBellanA., Mograbi B., Darfeuille-Michaud A., Hofman P.: A synonymousvariant in IRGM alters a binding site for miR-196 and causesderegulation of IRGM-dependent xenophagy in Crohn’s disease. Nat.Genet., 2011; 43: 242-245
    Google Scholar
  • 8. Cadwell K., Liu J.Y., Brown S.L., Miyoshi H., Loh J., Lennerz J.K.,Kishi C., Kc W., Carrero J.A., Hunt S., Stone C.D., Brunt E.M., XavierR.J., Sleckman B.P., Li E., Mizushima N., Stappenbeck T.S., Virgin H.W.4th: A key role for autophagy and the autophagy gene Atg16l1 inmouse and human intestinal Paneth cells. Nature, 2008; 456: 259-263
    Google Scholar
  • 9. Cario E.: Toll-like receptors in inflammatory bowel diseases: a decadelater. Inflamm. Bowel Dis., 2010; 16: 1583-1597
    Google Scholar
  • 10. Cario E., Rosenberg I.M., Brandwein S.L., Beck P.L., ReineckerH.C., Podolsky D.K.: Lipopolysaccharide activates distinct signalingpathways in intestinal epithelial cell lines expressing Toll-like receptors.J. Immunol., 2000; 164: 966-972
    Google Scholar
  • 11. Chan I., Liu L., Hamada T., Sethuraman G., McGrath J.A.: The molecularbasis of lipoid proteinosis: mutations in extracellular matrixprotein 1. Exp. Dermatol., 2007; 16: 881-890
    Google Scholar
  • 12. Cheng J.F., Ning Y.J., Zhang W., Lu Z.H., Lin L.: T300A polymorphismof ATG16L1 and susceptibility to inflammatory bowel diseases:a meta-analysis. World J. Gastroenterol., 2010; 16: 1258-1266
    Google Scholar
  • 13. Cruikshank W.W., Kornfeld H., Center D.M.: Interleukin-16. J.Leukoc. Biol., 2000; 67: 757-766
    Google Scholar
  • 14. Cuffari C.: The genetics of inflammatory bowel disease: diagnosticand therapeutic implications. World J. Pediatr., 2010; 6: 203-209
    Google Scholar
  • 15. Dey I., Lejeune M., Chadee K.: Prostaglandin E2 receptor distributionand function in the gastrointestinal tract. Br. J. Pharmacol.,2006; 149: 611-623
    Google Scholar
  • 16. Duerr R.H., Taylor K.D., Brant S.R., Rioux J.D., Silverberg M.S.,Daly M.J., Steinhart A.H., Abraham C., Regueiro M., Griffiths A., DassopoulosT., Bitton A., Yang H., Targan S., Datta L.W. i wsp.: A genomewideassociation study identifies IL23R as an inflammatory boweldisease gene. Science, 2006; 314: 1461-1463
    Google Scholar
  • 17. El-Tawil A.M.: Jews and inflammatory bowel disease. J. Gastrointestin.Liver Dis., 2009; 18: 137-138
    Google Scholar
  • 18. Fisher S.A., Tremelling M., Anderson C.A., Gwilliam R., BumpsteadS., Prescott N.J., Nimmo E.R., Massey D., Berzuini C., JohnsonC., Barrett J.C., Cummings F.R., Drummond H., Lees C.W., Onnie C.M.I wsp.: Genetic determinants of ulcerative colitis include the ECM1locus and five loci implicated in Crohn’s disease. Nat. Genet., 2008;40: 710-712
    Google Scholar
  • 19. Franchimont D., Vermeire S., El Housni H., Pierik M., Van SteenK., Gustot T., Quertinmont E., Abramowicz M., Van Gossum A.,Deviere J., Rutgeerts P.: Deficient host-bacteria interactions in inflammatorybowel disease? The toll-like receptor (TLR)-4 Asp299glypolymorphism is associated with Crohn’s disease and ulcerativecolitis. Gut, 2004; 53: 987-992
    Google Scholar
  • 20. Fujita N., Itoh T., Omori H., Fukuda M., Noda T., Yoshimori T.:The Atg16L complex specifies the site of LC3 lipidation for membranebiogenesis in autophagy. Mol. Biol. Cell., 2008; 19: 2092-2100
    Google Scholar
  • 21. Fujiya M., Inaba Y., Musch M.W., Hu S., Kohgo Y., Chang E.B.:Cytokine regulation of OCTN2 expression and activity in small andlarge intestine. Inflamm. Bowel Dis., 2011; 17: 907-916
    Google Scholar
  • 22. Gardet A., Benita Y., Li C., Sands B.E., Ballester I., Stevens C.,Korzenik J.R., Rioux J.D., Daly M.J., Xavier R.J., Podolsky D.K.: LRRK2is involved in the IFN-γ response and host response to pathogens.J. Immunol., 2010; 185: 5577-5585
    Google Scholar
  • 23. Glas J., Seiderer J., Bues S., Stallhofer J., Fries C., Olszak T., TsekeriE., Wetzke M., Beigel F., Steib C., Friedrich M., Göke B., Diegelmann J.,Czamara D., Brand S.: IRGM variants and susceptibility to inflammatorybowel disease in the German population. PLoS One, 2013; 8: e54338
    Google Scholar
  • 24. Glas J., Seiderer J., Czamara D., Pasciuto G., Diegelmann J., WetzkeM., Olszak T., Wolf C., Müller-Myhsok B., Balschun T., AchkarJ.P., Kamboh M.I., Franke A., Duerr R.H., Brand S.: PTGER4 expression-modulatingpolymorphisms in the 5p13.1 region predisposeto Crohn’s disease and affect NF-κB and XBP1 binding sites. PLoSOne, 2012; 7: e52873
    Google Scholar
  • 25. Glas J., Seiderer J., Wetzke M., Konrad A., Török H.P., SchmechelS., Tonenchi L., Grassl C., Dambacher J., Pfennig S., Maier K., GrigaT., Klein W., Epplen J.T., Schiemann U. i wsp.: rs1004819 is the maindisease-associated IL23R variant in German Crohn’s disease patients:combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoSOne, 2007; 2: e819
    Google Scholar
  • 26. Glas J., Torok H.P., Unterhuber H., Radlmayr M., Folwaczny C.:The -295T-to-C promoter polymorphism of the IL-16 gene is associatedwith Crohn’s disease. Clin. Immunol., 2003; 106: 197-200
    Google Scholar
  • 27. Halfvarson J., Bodin L., Tysk C., Lindberg E., Jarnerot G.: Inflammatorybowel disease in a Swedish twin cohort: a long-term followupof concordance and clinical characteristics. Gastroenterology,2003; 124: 1767-1773
    Google Scholar
  • 28. Halme L., Paavola-Sakki P., Turunen U., Lappalainen M., FarkkilaM., Kontula K.: Family and twin studies in inflammatory boweldisease. World J. Gastroenterol., 2006; 12: 3668-3672
    Google Scholar
  • 29. Hampe J., Schreiber S., Shaw S.H., Lau K.F., Bridger S., MacphersonA.J., Cardon L.R., Sakul H., Harris T.J., Buckler A., Hall J., StokkersP., van Deventer S.J., Nürnberg P., Mirza M.M. i wsp.: A genomewideanalysis provides evidence for novel linkages in inflammatorybowel disease in a large European cohort. Am. J. Hum. Genet.,1999; 64: 808-816
    Google Scholar
  • 30. Hart A.L., Al-Hassi H.O., Rigby R.J., Bell S.J., Emmanuel A.V.,Knight S.C., Kamm M.A., Stagg A.J.: Characteristics of intestinal dendriticcells in inflammatory bowel diseases. Gastroenterology, 2005;129: 50-65
    Google Scholar
  • 31. Hausmann M., Kiessling S., Mestermann S., Webb G., Spottl T.,Andus T., Scholmerich J., Herfarth H., Ray K., Falk W., Rogler G.: Tolllikereceptors 2 and 4 are up-regulated during intestinal inflammation.Gastroenterology, 2002; 122: 1987-2000
    Google Scholar
  • 32. Kabi A., Nickerson K.P., Homer C.R., McDonald C.: Digesting thegenetics of inflammatory bowel disease: insights from studies of autophagyrisk genes. Inflamm. Bowel Dis., 2012; 18: 782-792
    Google Scholar
  • 33. Keates A.C., Castagliuolo I., Cruickshank W.W., Qiu B., ArseneauK.O., Brazer W., Kelly C.P.: Interleukin 16 is up-regulated in Crohn’sdisease and participates in TNBS colitis in mice. Gastroenterology,2000; 119: 972-982
    Google Scholar
  • 34. Kett L.R., Dauer W.T.: Leucine-rich repeat kinase 2 for beginners:six key questions. Cold Spring Harb. Perspect. Med., 2012; 2: a009407
    Google Scholar
  • 35. Laberge S., Ernst P., Ghaffar O., Cruikshank W.W., Kornfeld H.,Center D.M., Hamid Q.: Increased expression of interleukin-16 inbronchial mucosa of subjects with atopic asthma. Am. J. Respir. CellMol. Biol., 1997; 17: 193-202
    Google Scholar
  • 36. Langholz E.: Current trends in inflammatory bowel disease: thenatural history. Ther. Adv. Gastroenterol., 2010; 3: 77-86
    Google Scholar
  • 37. Latiano A., Annese V.: Genetics and ulcerative colitis: what arethe clinical implications? Curr. Drug Targets, 2011; 12: 1383-1389
    Google Scholar
  • 38. Latiano A., Palmieri O., Cucchiara S., Castro M., D’Inca R., GuarisoG., Dallapiccola B., Valvano M.R., Latiano T., Andriulli A., Annese V.:Polymorphism of the IRGM gene might predispose to fistulizing behaviorin Crohn’s disease. Am. J. Gastroenterol., 2009; 104: 110-116
    Google Scholar
  • 39. Lees C.W., Barrett J.C., Parkes M., Satsangi J.: New IBD genetics:common pathways with other diseases. Gut, 2011; 60: 1739-1753
    Google Scholar
  • 40. Lovato P., Brender C., Agnholt J., Kelsen J., Kaltoft K., SvejgaardA., Eriksen K.W., Woetmann A., Odum N.: Constitutive STAT3 activationin intestinal T cells from patients with Crohn’s disease. J. Biol.Chem., 2003; 278: 16777-16781
    Google Scholar
  • 41. Mathy N.L., Bannert N., Norley S.G., Kurth R.: Cutting edge:CD4 is not required for the functional activity of IL-16. J. Immunol.,2000; 164: 4429-4432
    Google Scholar
  • 42. Matsuda A., Suzuki Y., Honda G., Muramatsu S., Matsuzaki O.,Nagano Y., Doi T., Shimotohno K., Harada T., Nishida E., Hayashi H.,Sugano S.: Large-scale identification and characterization of humangenes that activate NF-κB and MAPK signaling pathways. Oncogene,2003; 22: 3307-3318
    Google Scholar
  • 43. McGovern D., Powrie F.: The IL23 axis plays a key role in thepathogenesis of IBD. Gut, 2007; 56: 1333-1336
    Google Scholar
  • 44. Murphy S.F., Kwon J.H., Boone D.L.: Novel players in inflammatorybowel disease pathogenesis. Curr. Gastroenterol. Rep., 2012; 14: 146-152
    Google Scholar
  • 45. Okazaki T., Wang M.H., Rawsthorne P., Sargent M., Datta L.W.,Shugart Y.Y., Bernstein C.N., Brant S.R.: Contributions of IBD5, IL23R,ATG16L1, and NOD2 to Crohn’s disease risk in a population-basedcase-control study: evidence of gene-gene interactions. Inflamm.Bowel Dis., 2008; 14: 1528-1541
    Google Scholar
  • 46. Palomino-Morales R.J., Oliver J., Gomez-Garcia M., Lopez-NevotM.A., Rodrigo L., Nieto A., Alizadeh B.Z., Martin J.: Association ofATG16L1 and IRGM genes polymorphisms with inflammatory boweldisease: a meta-analysis approach. Genes Immun., 2009; 10: 356-364
    Google Scholar
  • 47. Podolsky D.K., Gerken G., Eyking A., Cario E.: Colitis-associatedvariant of TLR2 causes impaired mucosal repair because of TFF3deficiency. Gastroenterology, 2009; 137: 209-220
    Google Scholar
  • 48. Rumio C., Besusso D., Palazzo M., Selleri S., Sfondrini L., DubiniF., Menard S., Balsari A.: Degranulation of paneth cells via toll-likereceptor 9. Am. J. Pathol., 2004; 165: 373-381
    Google Scholar
  • 49. Seegert D., Rosenstiel P., Pfahler H., Pfefferkorn P., Nikolaus S.,Schreiber S.: Increased expression of IL-16 in inflammatory boweldisease. Gut, 2001; 48: 326-332
    Google Scholar
  • 50. Shih D.Q., Targan S.R., McGovern D.: Recent advances in IBDpathogenesis: genetics and immunobiology. Curr. Gastroenterol.Rep., 2008; 10: 568-575
    Google Scholar
  • 51. Silverberg M.S.: OCTNs: will the real IBD5 gene please stand up?World J. Gastroenterol., 2006; 12: 3678-3681
    Google Scholar
  • 52. Singh S.B., Davis A.S., Taylor G.A., Deretic V.: Human IRGM inducesautophagy to eliminate intracellular mycobacteria. Science,2006; 313: 1438-1441
    Google Scholar
  • 53. Sonne S., Shekhawat P.S., Matern D., Ganapathy V., IgnatowiczL.: Carnitine deficiency in OCTN2-/- newborn mice leads to a severegut and immune phenotype with widespread atrophy, apoptosis anda pro-inflammatory response. PLoS One, 2012; 7: e47729
    Google Scholar
  • 54. Stoll M., Corneliussen B., Costello C.M., Waetzig G.H., MellgardB., Koch W.A., Rosenstiel P., Albrecht M., Croucher P.J., Seegert.D,Nikolaus S., Hampe J., Lengauer T., Pierrou S., Foelsch U.R., MathewC.G., Lagerstrom-Fermer M., Schreiber S.: Genetic variation in DLG5is associated with inflammatory bowel disease. Nat. Genet., 2004;36: 476-480
    Google Scholar
  • 55. Strober W., Watanabe T.: NOD2, an intracellular innate immunesensor involved in host defense and Crohn’s disease. Mucosal Immunol.,2011; 4: 484-495
    Google Scholar
  • 56. Sugimoto K.: Role of STAT3 in inflammatory bowel disease.World J. Gastroenterol., 2008; 14: 5110-5114
    Google Scholar
  • 57. Takafuji V.A., Evans A., Lynch K.R., Roche J.K.: PGE2 receptors andsynthesis in human gastric mucosa: perturbation in cancer. ProstaglandinsLeukot. Essent. Fatty Acids, 2002; 66: 71-81
    Google Scholar
  • 58. Taylor K.D., Targan S.R., Mei L., Ippoliti A.F., McGovern D.,Mengesha E., King L., Rotter J.I.: IL23R haplotypes provide a largepopulation attributable risk for Crohn’s disease. Inflamm. Bowel.Dis., 2008; 14: 1185-1191
    Google Scholar
  • 59. Tong Y., Yamaguchi H., Giaime E., Boyle S., Kopan R., KelleherR.J., III, Shen J.: Loss of leucine-rich repeat kinase 2 causes impairmentof protein degradation pathways, accumulation of α-synuclein,and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA,2010; 107: 9879-9884
    Google Scholar
  • 60. Tsianos E.V., Katsanos K.H., Tsianos V.E.: Role of genetics in thediagnosis and prognosis of Crohn›s disease. World J. Gastroenterol.,2012; 18: 105-118
    Google Scholar
  • 61. Urcelay E., Mendoza J.L., Martinez A., Fernandez L., Taxonera C.,Diaz-Rubio M., de la Concha E.G.: IBD5 polymorphisms in inflammatorybowel disease: association with response to infliximab. WorldJ. Gastroenterol., 2005; 11: 1187-1192
    Google Scholar
  • 62. Vaz F.M., Scholte H.R., Ruiter J., Hussaarts-Odijk L.M., PereiraR.R., Schweitzer S., de Klerk J.B., Waterham H.R., Wanders R.J.: Identificationof two novel mutations in OCTN2 of three patients with systemiccarnitine deficiency. Hum. Genet., 1999; 105: 157-161
    Google Scholar
  • 63. Vermeire S.: Genetic susceptibility and application of genetictesting in clinical management of inflammatory bowel disease. Aliment.Pharmacol. Ther., 2006; 24, Suppl. 3: 2-10
    Google Scholar
  • 64. Wehkamp J., Harder J., Weichenthal M., Schwab M., Schaffeler E.,Schlee M., Herrlinger K.R., Stallmach A., Noack F., Fritz P., SchroderJ.M., Bevins C.L., Fellermann K., Stange E.F.: NOD2 (CARD15) mutationsin Crohn’s disease are associated with diminished mucosalα-defensin expression. Gut, 2004; 53: 1658-1664
    Google Scholar
  • 65. Weiss B., Lebowitz O., Fidder H.H., Maza I., Levine A., ShaoulR., Reif S., Bujanover Y., Karban A.: Response to medical treatmentin patients with Crohn›s disease: the role of NOD2/CRAD15,disease phenotype, and age of diagnosis. Dig. Dis. Sci., 2010; 55:1674-1680
    Google Scholar
  • 66. Wu X., Prasad P.D., Leibach F.H., Ganapathy V.: cDNA sequence,transport function, and genomic organization of human OCTN2,a new member of the organic cation transporter family. Biochem.Biophys. Res. Commun., 1998; 246: 589-595
    Google Scholar
  • 67. Zhou L., Ivanov I.I., Spolski R., Min R., Shenderov K., Egawa T.,Levy D.E., Leonard W.J., Littman D.R.: IL-6 programs TH-17 cell differentiationby promoting sequential engagement of the IL-21 andIL-23 pathways. Nat. Immunol., 2007; 8: 967-974
    Google Scholar

Full text

Skip to content