Genetical background of intelligence

COMMENTARY ON THE LAW

Genetical background of intelligence

Anna Junkiert-Czarnecka 1 , Olga Haus 2

1. Katedra i Zakład Genetyki Klinicznej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu
2. Katedra i Zakład Genetyki Klinicznej, Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy, Uniwersytet Mikołaja Kopernika w Toruniu; Katedra i Klinika Hematologii, Nowotworów Krwi i Transplantacji Szpiku, Uniwersytet Medyczny im. Piastów Śląskich, Wrocław

Published: 2016-06-13
DOI: 10.5604/17322693.1204943
GICID: 01.3001.0009.6839
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 590-598

 

Abstract

Intelligence as an ability to reason, think abstractly and adapt effectively to the environment is a subject of research in the field of psychology, neurobiology, and in the last twenty years genetics as well. Genetical testing of twins carried out from XX century indicated heritebility of intelligence, therefore confirmed an influence of genetic factor on cognitive processes. Studies on genetic background of intelligence focus on dopaminergic (DRD2, DRD4, COMT, SLC6A3, DAT1, CCKAR) and adrenergic system (ADRB2, CHRM2) genes as well as, neutrofins (BDNF) and oxidative stress genes (LTF, PRNP). Positive effect of investigated gene polymorphism was indicated by variation c.957C>T DRD2 gene (if in polymorphic site is thymine), polymorphism c.472G>A COMT gene (presence of adenine) and also gene ADRB2 c.46A->G (guanine), CHRM2 (thymine in place c.1890A>T) and BDNF (guanine in place c.472G>A) Obtained results indicate that intelligence is a feature dependent not only on genetic but also an environmental factor.

References

  • 1. Addington A.M., Gornick M., Duckworth J., Sporn A., Gogtay N.,Bobb A., Greenstein D., Lenane M., Gochman P., Baker N., BalkissoonR., Vakkalanka R.K., Weinberger D.R., Rapoport J.L., Straub R.E.:GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67),is associated with childhood-onset schizophrenia and cortical graymatter volume loss. Mol. Psychiatry, 2005; 10: 581-588
    Google Scholar
  • 2. Akaboshi S., Hogema B.M., Novelletto A., Malaspina P., SalomonsG.S., Maropoulos G.D., Jakobs C., Grompe M., Gibson K.M.: Mutationalspectrum of the succinate semialdehyde dehydrogenase (ALDH5A1)gene and functional analysis of 27 novel disease-causing mutationsin patients with SSADH deficiency. Hum. Mutat., 2003; 22: 442-450
    Google Scholar
  • 3. Akyol O., Herken H., Uz E., Fadillioglu E., Unal S., Sogut S., OzyurtH., Savas H.A.: The indices of endogenous oxidative and antioxidativeprocesses in plasma from schizophrenic patients. The possible roleof oxidant/antioxidant imbalance. Prog. Neuropsychopharmacol.Biol. Psychiatry, 2002; 26: 995-1005
    Google Scholar
  • 4. Altink M.E., Rommelse N.N., Slaats-Willemse D.I., Vasquez A.A.,Franke B., Buschgens C.J., Fliers E.A., Faraone SV., Sergeant J.A.,Oosterlaan J., Buitelaar J.K.: The dopamine receptor D4 7-repeatallele influences neurocognitive functioning, but this effect is moderatedby age and ADHD status: an exploratory study. World J. Biol.Psychiatry, 2012; 13: 293-305
    Google Scholar
  • 5. Bacchelli E., Blasi F., Biondolillo M., Lamb J.A., Bonora E., BarnbyG., Parr J., Beyer K.S., Klauck S.M., Poustka A., Bailey A.J., MonacoA.P., Maestrini E., International Molecular Genetic Study of AutismConsortium (IMGSAC): Screening of nine candidate genes for autism on chromosome 2q reveals rare nonsynonymous variants in thecAMP-GEFII gene. Mol. Psychiatry, 2003; 8: 916-924
    Google Scholar
  • 6. Barnett J.H., Scoriels L., Munafo M.R.: Meta-analysis of the cognitiveeffects of the catechol-o-methyltransferase gene Val158/108Metpolymorphism. Biol Psychiatry, 2008; 64: 137-144
    Google Scholar
  • 7. Bartres-Faz D., Junque C., Serra-Grabulosa J.M., Lopez-AlomarA., Moya A., Bargallo N., Mercader J.M., Moral P., Clemente I.C.: DopamineDRD2 TaqI polymorphism associates with caudate nucleusvolume and cognitive performance in memory impaired subjects.Neuroreport, 2002; 13: 1121-1125
    Google Scholar
  • 8. Benjamin J., Li L., Patterson C., Greenberg B.D., Murphy D.L.,Hamer D.H.: Population and familial association between the D4dopamine receptor gene and measures of novelty seeking. Nat. Genet.,1996; 12: 81-84
    Google Scholar
  • 9. Benson M.A., Newey S.E., Martin-Rendon E., Hawkes R., BlakeD.J.: Dysbindin, a novel coiled-coil-containing protein that interactswith the dystrobrevins in muscle and brain. J. Biol. Chem.,2001; 276: 24232-24241
    Google Scholar
  • 10. Blake J.D., Nawrotzki R., Loh N.Y., Górecki D., Davies K.E.:β-dystrobrevin, a member of the dystrophin-related protein family.Proc. Natl. Acad. Sci. USA, 1998; 95: 241-246
    Google Scholar
  • 11. Bochdanovits Z., Gosso F.M., van den Berg L., Rizzu P., PoldermanT.J., Pardo L.M., Houlihan L.M., Luciano M., Starr J.M., HarrisS.E., Deary I.J., de Geus E.J., Boomsma D.I. Heutink P., Posthuma D.:A functional polymorphism under positive evolutionary selection inADRB2 is associated with human intelligence with opposite effectsin the young and the elderly. Behav. Genet., 2009; 39: 15-23
    Google Scholar
  • 12. Bolton J.L., Marioni R.E., Deary I.J., Harris S.E., Stewart M.C.,Murray G.D., Fowkes F.G., Price J.F.: Association between polymorphismof the dopamine receptor D2 and catechol-o-methyl transferasegenes and cognitive function. Behav. Genet., 2010; 40: 630-638
    Google Scholar
  • 13. Bouchard T.J., Lykken DT., McGue M., Segal N.L., Tellegen A.:Sources of human psychological differences: the Minnesota studyof twins reared apart. Science, 1990; 250; 223-228
    Google Scholar
  • 14. Brzeziński J., Hornowska E.: Skala inteligencji Wechslera WAIS–R. PWN, Warszawa 1998
    Google Scholar
  • 15. Burdick K.E., Lencz T., Funke B., Finn C.T, Szeszko P.R., Kane J.M.,Kucherlapati R., Malhotra A.K.: Genetic variation in DTNBP1 influencesgeneral cognitive ability. Hum. Mol. Genet., 2006; 15: 1563-1568
    Google Scholar
  • 16. Caulfield M.P.: Muscarinic receptors: characterization, couplingand function. Pharmacol. Ther., 1993; 58: 319-379
    Google Scholar
  • 17. Chang S.C., Pauls D.L., Lange C., Sasanfar R., Santangelo S.L.:Common genetic variation in the GAD1 gene and the entire familyof DLX homeobox genes and autism spectrum disorders. Am. J. Med.Genet. Part B, 2011; 156: 233-239
    Google Scholar
  • 18. Cloninger C.R.: Temperament and personality. Curr. Opin. Neurobiol.,1994; 4: 266-273
    Google Scholar
  • 19. Comings D.E., Wu S., Rostamkhani M., McGue M., Lacono W.G.,Cheng L.S., MacMurray J.P.: Role of the cholinergic muscarinic 2receptor (CHRM2) gene in cognition. Mol. Psychiatry, 2003; 8: 10-11
    Google Scholar
  • 20. Cooper J.A., Sagar H.J.: Encoding deficits in untreated Parkinson’sdisease. Cortex, 1993; 29: 251-265
    Google Scholar
  • 21. De Frias C.M., Annerbrink K., Westberg L., Eriksson E., AdolfssonR., Nilsson L.G.: COMT gene polymorphism is associated withdeclarative memory in adulthood and old age. Behav. Genet., 2004;34: 533-539
    Google Scholar
  • 22. De Rango F., Leone O., Dato S., Novelletto A., Bruni A.C., BerardelliM., Mari V., Feraco E., Passarino G., De Benedictis G.: Cognitivefunctioning and survival in the elderly: the SSADH C538T polymorphism.Ann. Hum. Genet., 2008; 72: 630-635
    Google Scholar
  • 23. Dick D.M., Aliev F., Kramer J., Wang J.C., Hinrichs A., BertelsenS., Kuperman S., Schuckit M., Nurnberger J., Edenberg H.J., PorjeszB., Begleiter H., Hesselbrock V., Goate A., Bierut L.: Association ofCHRM2 with IQ: Cognitive evidence for a gene influencing intelligence.Behav. Genet. 2007; 37: 265-272
    Google Scholar
  • 24. DickinsonD.B., Elvevag B.: Genes, cognition and brain througha COMT lens. Neuroscience, 2009; 164: 72-87
    Google Scholar
  • 25. Dickman D.K., Davis G.W.: The schizophrenia susceptibility genedysbindin controls synaptic homeostasis. Science, 2009; 326: 1127-1130
    Google Scholar
  • 26. Donohoe G., Walters J., Morris D.W., Quinn E.M., Judge R., NortonN., Giegling I., Hartmann A.M., Moller H.J., Muglia P., WilliamsH., Moskvina V., Peel R., O’Donoghue T., Owen M.J., O’Donovan M.C.,Gill M., Rujescu D., Corvin A.: Influence of NOS1 on verbal intelligenceand working memory in both patients with schizophrenia andhealthy control subjects. Arch. Gen. Psychiatry, 2009; 66: 1045-1054
    Google Scholar
  • 27. Duan J., Wainwright M.S., Comeron J.M., Saitou N., Sanders A.R.,Gelernter J., Gejman P.V.: Synonymous mutations in the human dopaminereceptor D2 (DRD2) affect mRNA stability and synthesis of thereceptor. Hum. Mol. Genet., 2003; 12: 205-216
    Google Scholar
  • 28. Ebstein R.P., Novick O., Umansky R., Priel B., Osher Y., BlaineD., Bennett E.R., Nemanov L., Katz M., Belmaker R.H.: Dopamine D4receptor (D4DR) exon III polymorphism associated with the humanpersonality trait of novelty seeking. Nat. Genet., 1996; 12: 78-80
    Google Scholar
  • 29. Egan M.F., Goldberg T.E., Kolachana B.S., Callicott J.H., MazzantiC.M., Straub R.E., Goldman D., Weinberger D.R.: Effect of COMTVal108/158 Met genotype on frontal lobe function and risk for schizophrenia.Proc. Natl. Acad. Sci. USA, 2001; 98: 6917-6922
    Google Scholar
  • 30. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S.,Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., Lu B., WeinbergerD.R.: The BDNF Val66Met polymorphism affects activity-dependentsecretion of BDNF and human memory and hippocampalfunction. Cell, 2003; 112: 257-269
    Google Scholar
  • 31. Ernsberger U.: Role of neurotrophin signalling in the differentiationof neurons from dorsal root ganglia and sympathetic ganglia.Cell Tissue Res., 2009; 336: 349-384
    Google Scholar
  • 32. Genro J.P., Roman T., Zeni C.P., Grevet E.H., Schmitz M., de AbreuP.B., Bau C.H., Rohde L.A., Hutz M.H.: No association between dopaminergicpolymorphisms and intelligence variability in attention–deficit/hyperactivity disorder. Mol. Psychiatry, 2006; 11: 1066-1067
    Google Scholar
  • 33. Gibson K.M.: γ-hydroxybutyric aciduria: a biochemist’s educationfrom a heritable disorder of GABA metabolism. J. Inherit. Metab.Dis. 2005; 28: 247-265
    Google Scholar
  • 34. Gosso M.F., de Geus E.J.C., van Belzen M.J., Polderman T.J.C.,Heutink P., Boomsma D.I., Posthuma D.: The SNAP-25 gene is associatedwith cognitive ability: evidence from family-based study intwo independent Dutch cohorts. Mol. Psychiatry, 2006; 11: 878-886
    Google Scholar
  • 35. Gosso M.F., van Belzen M., de Geus E.J.C., Polderman J.C., HeutinkP., Boomsma D.I., Posthuma D.: Association between the CHRM2gene and intelligence in a sample of 304 Dutch families. Genes BrainBehav. 2006; 5: 577-584
    Google Scholar
  • 36. Halliwell B.: Biochemistry of oxidative stress. Biochem. Soc.Trans., 2007; 35: 1147-1150
    Google Scholar
  • 37. Haque F.N., Gottesman I.I., Wong A.H.: Not really identical: epigeneticdifferences in monozygotic twins and implications for twinstudies in psychiatry. Am. J. Med. Genet. C Semin. Med. Genet., 2009;151C: 136-141
    Google Scholar
  • 38. Horikawa H.P., Saisu H., Ishizuka T., Sekine Y., Tsugita A., OdaniS., Abe T.: A complex of rab3A, SNAP-25, VAMP/synaptobrevin-2 andsyntaxins in brain presynaptic terminals. FEBS Lett., 1993; 330: 236-240
    Google Scholar
  • 39. Hyde T.M., Lipska B.K., Ali T., Mathew S.V., Law A.J., Metitiri O.E.,Straub R.E., Ye T., Colantuoni C., Herman M.M., Bigelow L.B., WeinbergerD.R., Kleinman J.E.: Expression of GABA signaling moleculesKCC2, NKCC1, and GAD1 in cortical development and schizophrenia.J. Neurosci., 2011; 31: 11088-11095
    Google Scholar
  • 40. James S.J., Cutler P., Melnyk S., Jernigan S., Janak L., Gaylor D.W.,Neubrander J.A.: Metabolic biomarkers of increased oxidative stressand impaired methylation capacity in children with autism. Am. J.Clin. Nutr., 2004; 80: 1611-1617
    Google Scholar
  • 41. Jenner P.: Oxidative stress in Parkinson’s disease. Ann. Neurol.,2003; 53: S26-S38
    Google Scholar
  • 42. Johnson W., Bouchard T.J., McGue M., Segal N.L., Tellegen A.,Keyes M., Gottesman I.I.: Genetic and environmental influences onthe verbal-perceptual-image rotation (VPR) model of the structureof mental abilities in the Minnesota study of twins reared apart.Intelligence, 2007; 35: 542-562
    Google Scholar
  • 43. Kachiwala S.J., Harris S.E., Wright A.F., Hayward C., Starr J.M.,Whalley L., Deary I.J.: Genetic influences on oxidative stress and theirassociation with normal cognitive ageing. Neurosci. Lett., 2005;386: 116-120
    Google Scholar
  • 44. Kaplan D.R., Miller F.D.: Neurotrophin signal transduction in thenervous system. Curr. Opin. Neurobiol., 2000; 10: 381-391
    Google Scholar
  • 45. Karamoysoyli E., Burnand R.C., Tomlinson D.R., Gardiner N.J.:Neuritin mediates nerve growth factor-induced axonal regenerationand is deficient in experimental diabetic neuropathy. Diabetes,2008; 57: 181-189
    Google Scholar
  • 46. Kebir O., Grizenko N., Sengupta S., Joober R.: Verbal but notperformance IQ is highly correlated to externalizing behavior inboys with ADHD carrying both DRD4 and DAT1 risk genotypes. Prog.Neuropsychopharmacol. Biol. Psychiatry, 2009; 33: 939-944
    Google Scholar
  • 47. Lachman H.M., Papolos D.F., Saito T., Yu Y.M., Szumlanski C.L.,Weinshilboum R.M.: Human catechol-o-methyltransferase pharmacogenetics:description of a functional polymorphism and itspotential application to psychiatric disorders. Pharmacogenetics,1996; 6: 243-250
    Google Scholar
  • 48. Lee S.Y., Soltesz I.: Cholecystokinin: a multi-functional molecularswitch of neuronal circuits. Dev. Neurobiol., 2011; 71: 73-91
    Google Scholar
  • 49. Leverenz J.B., Quinn J.F., Zabetian C., Zhang J., Montine K.S.,Montine T.J.: Cognitive impairment and dementia in patients withParkinson disease. Curr. Top. Med. Chem., 2009; 9: 903-912
    Google Scholar
  • 50. Lewis DA.: GABAergic local circuit neurons and prefrontal corticaldysfunction in schizophrenia. Brain Res. Brain Rev., 2000; 31:270-276
    Google Scholar
  • 51. Li W., Zhang Q., Oiso N., Novak E.K., Gautam R., O’Brien E.P., TinsleyC.L., Blake D.J., Spritz R.A., Copeland N.G., Jenkins N.A., AmatoD., Roe B.A., Starcevic M., Dell’Angelica E.C., Elliott R.W., Mishra V.,Kingsmore S.F., Paylor R.E., Swank R.T.: Hermansky-Pudlak syndrometype 7 (HPS-7) results from mutant dysbindin, a member of thebiogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat.Genet., 2003; 35: 84-89
    Google Scholar
  • 52. Liggett S.B.: Pharmacogenetics of β-1 and β-2 adrenergic receptors.Pharmacology, 2000; 61: 167-173
    Google Scholar
  • 53. Lim M.S., Nam S.H., Kim S.J., Kang S.Y., Lee Y.S., Kang K.S.: Signalingpathways of the early differentiation of neural stem cells by neurotrophin-3.Biochem. Biophys. Res. Commun., 2007; 357: 903-909
    Google Scholar
  • 54. Lind P.A., Luciano M., Horan M.A., Marioni R.E., Wright M.J.,Bates T.C., Rabbitt P., Harris S.E., Davidson Y., Deary I.J., Gibbons L.,Pickles A., Ollier W., Pendleton N., Price J.F., Payton A., Martin N.G.:No association between cholinergic muscarinic receptor 2 (CHRM2)genetic variation and cognitive abilities in three independent samples.Behav. Genet., 2009; 39: 513-523
    Google Scholar
  • 55. Luciano M., Wright M.J., Duffy D.L., Wainwright M.A., Zhu G.,Evans D.M., Geffen G.M., Montgomery G.W., Martin N.G.: Genome–wide scan of IQ finds significant linkage to a quantitative trait locuson 2q. Behav. Genet., 2006; 36: 45-55
    Google Scholar
  • 56. Madras B.K., Miller G.M., Fischman A.J.: The dopamine transporterand attention-deficit/hyperactivity disorder. Biol. Psychiatry,2005; 57: 1397-1409
    Google Scholar
  • 57. Matsumoto T., Rauskolb S., Polack M., Klose J., Kolbeck R., KorteM., Barde Y.A.: Biosynthesis and processing of endogenous BDNF:CNS neurons store and secrete BDNF, not pro-BDNF. Nat. Neurosci.,2008; 11: 131-133
    Google Scholar
  • 58. McAllister T.W., Flashman L.A., Harker Rhodes C., Tyler A.L.,Moore J.H., Saykin A.J., McDonald B.C., Tosteson T.D., Tsongalis G.J.:Single nucleotide polymorphisms in ANKK1 and the dopamine D2receptor gene affect cognitive outcome shortly after traumatic braininjury: a replication and extension study. Brain. Inj., 2008; 22: 705-714
    Google Scholar
  • 59. Michel M.C., Teitsma C.A.: Polymorphisms in human muscarinicreceptor subtype genes. Handb. Exp. Pharmacol., 2012; 208: 49-59
    Google Scholar
  • 60. Mill J., Caspi A., Williams B.S., Craig I., Taylor A., Polo-TomasM., Berridge C.W., Poulton R., Moffitt T.E.: Prediction of heterogeneityin intelligence and adult prognosis by genetic polymorphismsin the dopamine system among children with attention-deficit/hyperactivity disorder: evidence from 2 birth cohorts. Arch. Gen.Psychiatry, 2006; 63: 462-469
    Google Scholar
  • 61. Moises H.W., Frieboes R.M., Spelzhaus P., Yang L., Kohnke M.,Herden-Kirchhoff O., Vetter P., Neppert J., Gottesman I.I.: No associationbetween dopamine D2 receptor gene (DRD2) and humanintelligence. J. Neural Transm., 2001; 108: 115-121
    Google Scholar
  • 62. Naeve G.S., Ramakrishnan M., Kramer R., Hevroni D., Citri Y.,Theill L.E.: Neuritin, a gene induced by neural activity and neurotrophinsthat promotes neuritogenesis. Proc. Natl. Acad. Sci. USA,1997; 94: 2648-2653
    Google Scholar
  • 63. Nęcka E.: Inteligencja. Geneza-Struktura-Funkcje. Gdańskie WydawnictwoPsychologiczne, Gdańsk 2003
    Google Scholar
  • 64. O’Hara R., Miller E., Liao C.P., Way N., Lin X., Hallmayer J.: COMTgenotype, gender and cognition in community-dwelling, olderadults. Neurosci. Lett., 2006; 409: 205-209
    Google Scholar
  • 65. Ollinger K.: Inhibition of cathepsin D prevents free-radical-inducedapoptosis in rat cardiomyocytes. Arch. Biochem. Biophys.,2000; 373: 346-351
    Google Scholar
  • 66. Osen-Sand A., Catsicas M., Staple J.K., Jones K.A., Ayala G.,Knowles J., Grenningloh G., Catsicas S.: Inhibition of axonal growthby SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature,1993; 364: 445-448
    Google Scholar
  • 67. Ott M., Gogvadze V., Orrenius S., Zhivotovsky B.: Mitochondria,oxidative stress and cell death. Apoptosis, 2007; 12: 913-922
    Google Scholar
  • 68. Oyler G.A., Higgins G.A., Hart R.A., Battenberg E., Billingsley M.,Bloom F.E., Wilson M.C.: The identification of a novel synaptosomal–associated protein, SNAP-25, differentially expressed by neuronalsubpopulations. J. Cell. Biol., 1989; 109: 3039-3052
    Google Scholar
  • 69. Pang P.T., Lu B.: Regulation of late-phase LTP and long-term memoryin normal and aging hippocampus: role of secreted proteinstPA and BDNF. Ageing Res. Rev., 2004; 3: 407-430
    Google Scholar
  • 70. Papassotiropoulos A., Bagli M., Feder O., Jessen F., Maier W., RaoM.L., Ludwig M., Schwab S.G., Heun R.: Genetic polymorphism of cathepsinD is strongly associated with the risk for developing sporadicAlzheimer’s disease. Neurosci. Lett., 1999; 262: 171-174
    Google Scholar
  • 71. Papassotiropoulos A., Bagli M., Kurz A., Kornhuber J., Forstl H.,Maier W., Pauls J., Lautenschlager N., Heun R.: A genetic variationof cathepsin D is a major risk factor for Alzheimer’s disease. Ann.Neurol., 2000; 47: 399-403
    Google Scholar
  • 72. Payton A., Holland F., Diggle P., Rabbitt P., Horan M., DavidsonY., Gibbons L., Worthington J., Ollier W.E., Pendleton N.: Cathepsin Dexon 2 polymorphism associated with general intelligence in a healthyolder population. Mol. Psychiatry, 2003; 8: 14-18
    Google Scholar
  • 73. Pearl P.L., Gibson K.M., Acosta M.T., Vezina L.G., Theodore W.H.,Rogawski M.A., Novotny E.J., Gropman A., Conry J.A., Berry G.T.,Tuchman M.: Clinical spectrum of succinic semialdehyde dehydrogenasedeficiency. Neurology, 2003; 60: 1413-1417
    Google Scholar
  • 74. Petrill S.A., Plomin R., McClearn G.E., Smith D.L., Vignetti S.,Chorney M.J., Chorney K., Thompson L.A., Detterman D.K., BenbowC., Lubinski D., Daniels J., Owen M., McGuffin P.: No association betweengeneral cognitive ability and the A1 allele of the dopaminereceptor gene. Behav. Genet., 1997; 27: 29-31
    Google Scholar
  • 75. Plomin R., McClearn G.E., Smith D.L., Skuder P., Vignetti S.,Chorney M.J., Chorney K., Kasarda S., Thompson L.A., DettermanD.K., Petrill S.A., Daniels J., Owen M.J., McGuffin P.: Allelic associationbetween 100 DNA markers and high versus low IQ. Intelligence.,1995; 21: 31-48
    Google Scholar
  • 76. Plomin R., Turic D.M., Hill L., Turic D.E., Stephens M., WilliamsJ., Owen M.J., O’Donovan M.C.: A functional polymorphism in thesuccinate-semialdehyde dehydrogenase (aldehyde dehydrogenase 5 family, member A1) gene is associated with cognitive ability. Mol.Psychiatry, 2004; 9: 582-586
    Google Scholar
  • 77. Posthuma D., de Geus E.J., Boomsma D.I.: Perceptual speed andIQ are associated through common genetic factors. Behav. Genet.,2001; 31: 593-602
    Google Scholar
  • 78. Pruunsild P., Kazantseva A., Aid T., Palm K., Timmusk T.: Dissectingthe human BDNF locus: bidirectional transcription, complexsplicing and multiple promoters. Genomics, 2007; 90: 397-406
    Google Scholar
  • 79. Rabionet R., Jaworski J.M., Ashley-Koch A.E., Martin E.R., SutcliffeJ.S., Haines J.L., Delong G.R., Abramson R.K., Wright H.H., CuccaroM.L., Gilbert J.R., Periack-Vance M.A.: Analysis of the autismchromosome 2 linkage region: GAD1 and other candidate genes.Neurosci. Lett., 2004; 372: 209-214
    Google Scholar
  • 80. Reis J., Cohen L.G., Pearl P.L., Fritsch B., Jung N.H., Dustin I.,Theodore W.H.: GABAB-ergic motor cortex dysfunction in SSADHdeficiency. Neurology, 2012; 79: 47-54
    Google Scholar
  • 81. Roberts L.R., Adjei P.N., Gores G.J.: Cathepsins as effector proteasesin hepatocyte apoptosis. Cell Biochem. Biophys., 1999; 30: 71-88
    Google Scholar
  • 82. Schwab S.G., Knapp M., Mondabon S., Hallmayer J., Borrmann–Hassenbach M., Albus M., Lerer B., Rietschel M., Trixler M., MaierW., Wildenauer D.B.: Support for association of schizophrenia withgenetic variation in the 6p22.3 gene, dysbindin, in sib-pair familieswith linkage and in an additional sample of triad families. Am. J.Hum. Genet., 2003; 72: 185-190
    Google Scholar
  • 83. Shimokata H., Ando F., Niino N., Miyasaka K., Funakoshi A.:Cholecystokinin A receptor gene promoter polymorphism and intelligence.Ann. Epidemiol., 2005; 15: 196-201
    Google Scholar
  • 84. Snyder E.M., Hulsebus M.L., Turner S.T., Joyner M.J., JohnsonB.D.: Genotype related differences in β2 adrenergic receptor densityand cardiac function. Med. Sci. Sports. Exerc., 2006; 38: 882-886
    Google Scholar
  • 85. Soderqvist S., Bergman Nutley S., Peyrard-Janvid M., MatssonH., Humphreys K., Kere J., Klingberg T.: Dopamine, working memoryand training induced plasticity: implications for developmentalresearch. Dev. Psychol., 2012; 48: 836-843
    Google Scholar
  • 86. Soderqvist S., McNab F., Peyrard-Janvid M., Matsson H., HumphreysK., Kere J., Klingberg T.: The SNAP25 gene is linked to workingmemory capacity and maturation of the posterior cingulate cortexduring childhood. Biol. Psychiatry, 2010; 68: 1120-1125
    Google Scholar
  • 87. Straub R.E., Lipska B.K., Egan M.F., Goldberg TE., Callicott J.H.,Mayhew M.B., Vakkalanka R.K., Kolachana B.S., Kleinman J.E., WeinbergerD.R.: Allelic variation in GAD1 (GAD67) is associated withschizophrenia and influences cortical function and gene expression.Mol. Psychiatry, 2007; 12: 854-869
    Google Scholar
  • 88. Tachikawa H., Harada S., Kawanishi Y, Okubo T., Shiraishi H.:Novel polymorphisms of the human cholecystokinin-A receptorgene: an association analysis with schizophrenia. Am. J. Med. Genet.,2000; 96: 141-145
    Google Scholar
  • 89. Talbot K., Eidem W.L., Tinsley C.L., Benson M.A., Thompson E.W.,Smith R.J., Hahn C.G., Siegel S.J., Trojanowski J.Q., Gur R.E., BlakeD.J., Arnold S.E.: Dysbindin-1 is reduced in intrinsic, glutamatergicterminals of the hippocampal formation in schizophrenia. J. Clin.Invest., 2004; 113: 1353-1363
    Google Scholar
  • 90. Tsai S.J., Hong C.J., Yu Y.W., Chen T.J.: Association study of a brain-derivedneurotrophic factor (BDNF) Val66Met polymorphism andpersonality trait and intelligence in healthy young females. Neuropsychobiology,2004; 49: 13-16
    Google Scholar
  • 91. Tsai S.J., Yu Y.W., Lin C.H., Chen T.J., Chen S.P., Hong C.J.: DopamineD2 receptor and N-methyl-D-aspartate receptor 2B subunit geneticvariants and intelligence. Neuropsychobiology, 2002; 45: 128-130
    Google Scholar
  • 92. Tyynela J., Sohar I., Sleat D.E., Gin R.M., Donnelly R.J., BaumannnM., Haltia M., Lobel P.: A mutation in the ovine cathepsin D genecauses a congenital lysosomal storage disease with profound neurodegeneration.EMBO J., 2000; 19: 2786-2792
    Google Scholar
  • 93. Wang J., Si Y.M., Liu Z.L., Yu L.: Cholecystokinin, cholecystokinin–A receptor and cholecystokinin-B receptor gene polymorphisms inParkinson’s disease. Pharmacogenetics, 2003; 13: 365-369
    Google Scholar
  • 94. Weickert C.S., Straub R.E., McClintock B.W., Matsumoto M., HashimotoR., Hyde T.M., Herman M.M., Weinberger D.R., KleinmanJ.E.: Human dysbindin (DTNBP1) gene expression in normal brainand in schizophrenic prefrontal cortex and midbrain. Arch. Gen.Psychiatry, 2004; 61: 544-555
    Google Scholar
  • 95. Xu H., Kellendonk C.B., Simpson E.H., Keilp J.G., Bruder G.E.,Polan H.J., Kandel E.R., Gilliam T.C.: DRD2 C957T polymorphism interactswith the COMT Val158Met polymorphism in human workingmemory ability. Schizophr. Res., 2007; 90: 104-107
    Google Scholar
  • 96. Zhang J.P., Burdick K.E., Lencz T., Malhotra A.K.: Meta-analysisof genetic variation in DTNBP1 and general cognitive ability. Biol.Psychiatry, 2010; 68: 1126-1133
    Google Scholar

Full text

Skip to content