Glucuronidation of antitumour therapeutics – detoxification, mechanism of resistance or prodrug formation?
Anna Mróz 1 , Zofia Mazerska 1Abstract
The physiological role of phase I and II of xenobiotic biotransformations is their detoxification and better excretion outside the organism. UDP-glucuronosyltransferases (UGTs) being the enzymes of phase II metabolism catalyse the conjugation of glucuronic acid to the lipophilic substrate by its specific nucleophilic group. UGT isoenzymes of various substrate specificities and different expression profiles in selected tissues belong to the large UGT superfamily. Usually, glucuronidation is the detoxification process, but sometimes (morphine, tamoxifen) glucuronides express biological activity higher than or comparable to the native compound. The level of UGT gene expression is individual for patients, because of their genetic status as well as epigenetic conditions. Also, xenobiotics are able to modulate UGT level and gene expression by the interaction with nuclear receptors. Moreover, one can find a lower level of UGT in the tumour compared to normal tissue, which results in the protection against deactivation of the drug and in the promotion of its selective activity in tumor tissue. On the other hand, UGT activity is considered as the possible cause of resistance to chemotherapy. Metabolism by hepatic and intestinal UGT isoenzymes is responsible for the “first-pass effect”, whereas acquired resistance consists in the induction of UGT gene expression by the chemotherapeutic or its metabolite. Moreover, UGT induction can be associated with the induction of membrane transporters, particularly proteins of the ABC family, responsible for drug excretion outside the cell. The above resistance effects can be fortified by the overexpression of selected UGT isoenzymes sometimes observed in specific types of tumours. It is also considered that many advanced tumours are characterized by a higher level of β-glucuronidase. This enzyme has a chance to be the molecular target of directed antitumour therapy, as it catalyses β-glucuronide hydrolysis, leading to active aglycones.
References
- 1. Akaba K., Kimura T., Sasaki A., Tanabe S., Ikegami T., HashimotoM., Umeda H., Yoshida H., Umetsu K., Chiba H., Yuasa I., HayasakaK.: Neonatal hyperbilirubinemia and mutation of the bilirubin uridinediphosphate-glucuronosyltransferase gene: a common missensemutation among Japanese, Koreans and Chinese. Biochem.Mol. Biol. Int., 1998; 46: 21-26
Google Scholar - 2. Albin N., Massaad L., Toussaint C., Mathieu M.C., Morizet J., PariseO., Gouyette A., Chabot G.G.: Main drug-metabolizing enzymesystems in human breast tumors and peritumoral tissues. CancerRes., 1993; 53: 3541-3546
Google Scholar - 3. Araki K., Fujita K., Ando Y., Nagashima F., Yamamoto W., EndoH., Miya T., Kodama K., Narabayashi M., Sasaki Y.: Pharmacogeneticimpact of polymorphisms in the coding region of the UGT1A1gene on SN-38 glucuronidation in Japanese patients with cancer.Cancer Sci., 2006; 97: 1255-1259
Google Scholar - 4. Atsumi R., Suzuki W., Hakusui H.: Identification of the metabolitesof irinotecan, a new derivative of camptothecin, in rat bile andits biliary excretion. Xenobiotica, 1991; 21: 1159-1169
Google Scholar - 5. Basseville A., Preisser L., de Carné Trécesson S., Boisdron-CelleM., Gamelin E., Coqueret O., Morel A.: Irinotecan induces steroidand xenobiotic receptor (SXR) signaling to detoxification pathwayin colon cancer cells. Mol. Cancer, 2011; 10: 80
Google Scholar - 6. Bock K.W.: Functions and transcriptional regulation of adult humanhepatic UDP-glucuronosyl-transferases (UGTs): mechanismsresponsible for interindividual variation of UGT levels. Biochem.Pharmacol, 2010; 80: 771-777
Google Scholar - 7. Bosch T.M., Deenen M., Pruntel R., Smits P.H., Schellens J.H.,Beijnen J.H., Meijerman I.: Screening for poymorphisms in thePXR gene in a Dutch population. Eur. J. Clin. Pharmacol., 2006;62: 395-399
Google Scholar - 8. Bosslet K., Czech J., Hoffmann D.: A novel one-step tumor-selectiveprodrug activation system. Tumor Target, 1995, 1: 45-50
Google Scholar - 9. Bosslet K., Straub R., Blumrich M., Czech J., Gerken M., SperkerB., Kroemer H.K., Gesson J.P., Koch M., Monneret C.: Elucidation ofthe mechanism enabling tumor selective prodrug monotherapy.Cancer Res., 1998; 58: 1195-1201
Google Scholar - 10. Bouché O., Raoul J.L., Bonnetain F., Giovannini M., Etienne P.L.,Lledo G., Arsène D., Paitel J.F., Guérin-Meyer V., Mitry E., BuecherB., Kaminsky M.C., Seitz J.F., Rougier P., Bedenne L., Milan C.: Randomizedmulticenter phase II trial of a biweekly regimen of fluorouraciland leucovorin (LV5FU2), LV5FU2 plus cisplatin, or LV5FU2plus irinotecan in patients with previously untreated metastaticgastric cancer: a Federation Francophone de Cancerologie DigestiveGroup Study-FFCD 9803. J. Clin. Oncol., 2004; 22: 4319-4328
Google Scholar - 11. Brüsselbach S.: Extracellular β-glucuronidase for gene-directedenzyme-prodrug therapy. Methods Mol. Med., 2004; 90: 303-330
Google Scholar - 12. Carlini L.E., Meropol N.J., Bever J., Andria M.L., Hill T., Gold P.,Rogatko A., Wang H., Blanchard R.L.: UGT1A7 and UGT1A9 polymorphismspredict response and toxicity in colorectal patients treatedwith capecitabine/irinotecan. Clin. Cancer Res., 2005; 11: 1226-1236
Google Scholar - 13. Carver L.A., LaPres J.J., Jain S., Dunham E.E., Bradfield C.A.:Characterization of the Ah receptor-associated protein, ARA9. J.Biol. Chem., 1998; 273: 33580-33587
Google Scholar - 14. Connors T.A., Whisson M.E.: Cure of mice bearing advancedplasma cell tumours with aniline mustard: the relationship betweenglucuronidase activity and tumour sensitivity. Nature, 1966;210: 866-867
Google Scholar - 15. Court M.H., Zhang X., Ding X., Yee K.K., Hesse L.M., Finel M.:Quantitative distribution of mRNAs encoding the 19 human UDP–glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues.Xenobiotica, 2012; 42: 266-277
Google Scholar - 16. Cummings J., Boyd G., Ethell B.T., Macpherson J.S., BurchellB., Smyth J.F., Jodrell D.I.: Enhanced clearance of topoisomeraseI inhibitors from human colon cancer cells by glucuronidation.Biochem. Pharmacol., 2002; 63: 607-613
Google Scholar - 17. Cummings J., Ethell B. T., Jardine L., Boyd G., Macpherson J.S.,Burchell B., Smyth J.F., Jodrell D.I.: Glucuronidation as a mechanismof intrinsic drug resistance in human colon cancer: reversalof resistance by food additives. Cancer Res., 2003; 63: 8443-8450
Google Scholar - 18. Cummings J., Zelcer N., Allen J.D., Yao D., Boyd G., MaliepaardM., Friedberg T.H., Smyth J.F., Jodrell D.I.: Glucuronidation asa mechanism of intrinsic drug resistance in colon cancer cells:contribution of drug transport proteins. Biochem. Pharmacol.,2004; 67: 31-39
Google Scholar - 19. Cunningham D., Maroun J., Vanhoefer U., Van Cutsem E.: Optimizingthe use of irinotecan in colorectal cancer. Oncologist, 2001;6, Suppl. 4: 17-23
Google Scholar - 20. Dai Y., Chen S., Wang L., Pei X.Y., Kramer L.B., Dent P., GrantS.: Bortezomib interacts synergistically with belinostat in humanacute myeloid leukaemia and acute lymphoblastic leukaemia cellsin association with perturbations in NF-κB and Bim. Br. J. Haematol.,2011; 153: 222-235
Google Scholar - 21. de Almagro M.C., Selga E., Thibaut R., Porte C., Noé V., CiudadC.J.: UDP-glucuronosyltransferase 1A6 overexpression in breastcancer cells resistant to methotrexate. Biochem. Pharmacol.,2011; 81: 60-70
Google Scholar - 22. de Graaf M., Nevalainen T.J., Scheeren H.W., Pinedo H.M., HaismaH.J., Boven E.: A methylester of the glucuronide prodrug DOX–GA3 for improvement of tumor-selective chemotherapy. Biochem.Pharmacol., 2004; 68: 2273-2281
Google Scholar - 23. de Jong F.A., de Jonge M.J., Verweij J., Mathijssen R.H.: Roleof pharmacogenetics in irinotecan therapy. Cancer Lett., 2006;234: 90-106
Google Scholar - 24. de Wildt S.N., Kearns G.L., Leeder J.S., van den Anker J.N.:Glucuronidation in humans. Pharmacogenetic and developmentalaspects. Clin. Pharmacokinet., 1999; 36: 439-452
Google Scholar - 25. Debinski H.S., Lee C.S., Dhillon A.P., Mackenzie P., Rhode J., DesmondP.V.: UDP-glucuronosyltransferase in Gilbert’s syndrome.Pathology, 1996; 28: 238-241
Google Scholar - 26. Dubowchik G.M., Walker M.A.: Receptor-mediated and enzyme-dependenttargeting of cytotoxic anticancer drugs. Pharmacol.Ther., 1999; 83: 67-123
Google Scholar - 27. Dutton G.J.: Glucuronidation of drugs and other compounds.CRC Press: Boca Raton, FL, 1980
Google Scholar - 28. Efferth T., Volm M.: Pharmacogenetics for individualized cancerchemotherapy. Pharmacol. Ther., 2005; 107: 155-176
Google Scholar - 29. Fedejko-Kap B., Bratton S. M., Finel M., Radominska-Pandya A.,Mazerska Z.: Role of human UDP-glucuronosyltransferases in thebiotransformation of the triazoloacridinone and imidazoacridinoneantitumor agents C-1305 and C-1311: highly selective substratesfor UGT1A10. Drug Metab. Dispos., 2012; 40: 1736-1743
Google Scholar - 30. Feigelson H.S., Henderson B.E.: Estrogens and breast cancer.Carcinogenesis, 1996; 17: 2279-2284
Google Scholar - 31. Gagné J.F., Montminy V., Belanger P., Journault K., Gaucher G.,Guillemette C.: Common human UGT1A polymorphisms and thealtered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin(SN-38). Mol. Pharmacol., 2002; 62: 608-617
Google Scholar - 32. Gagnon J.F., Bernard O., Villeneuve L., Têtu B., GuillemetteC.: Irinotecan inactivation is modulated by epigenetic silencingof UGT1A1 in colon cancer. Clin. Cancer Res., 2006; 12: 1850-1858
Google Scholar - 33. Gestl S.A., Green M.D., Shearer D.A., Frauenhoffer E., TephlyT.R., Weisz J.: Expression of UGT2B7, a UDP-glucuronosyltransferaseimplicated in the metabolism of 4-hydroxyestrone and all-transretinoic acid, in normal human breast parenchyma and in invasiveand in situ breast cancers. Am. J. Pathol., 2002; 160: 1467-1479
Google Scholar - 34. Giovanella B.C., Hinz H.R., Kozielski A.J., Stehlin J.S. Jr., SilberR., Potmesil M.: Complete growth inhibition of human cancerxenografts in nude mice by treatment with 20-(S)-camptothecin.Cancer Res., 1991; 51: 3052-3055
Google Scholar - 35. Guillemette C., Lévesque E., Harvey M., Bellemare J., MenardV.: UGT genomic diversity: beyond gene duplication. Drug Metab.Rev., 2010; 42: 22-42
Google Scholar - 36. Haisma H.J., Boven E., van Muijen M., de Jong J., van der VijghW.J., Pinedo H.M.: A monoclonal antibody-β-glucuronidase conjugateas activator of the prodrug epirubicin-glucuronide for specifictreatment of cancer. Br. J. Cancer, 1992; 66: 474-478
Google Scholar - 37. Hande K., Anthony L., Hamilton R., Bennett R., SweetmanB., Branch R.: Identification of etoposide glucuronide as a majormetabolite of etoposide in the rat and rabbit. Cancer Res., 1988;48: 1829-1834
Google Scholar - 38. Hande K.R., Wedlund P.J., Noone R.M., Wilkinson G.R., GrecoF.A., Wolff S.N.: Pharmacokinetics of high-dose etoposide (VP-16-213) administrated to cancer patients. Cancer Res., 1984; 44:379-382
Google Scholar - 39. Hanioka N., Ozawa S., Jinno H., Ando M., Saito Y., Sawada J.:Human liver UDP-glucuronosyltransferase isoforms involved inthe glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica,2001; 31: 687-699
Google Scholar - 39. Hanioka N., Ozawa S., Jinno H., Ando M., Saito Y., Sawada J.:Human liver UDP-glucuronosyltransferase isoforms involved inthe glucuronidation of 7-ethyl-10-hydroxycamptothecin. Xenobiotica,2001; 31: 687-699
Google Scholar - 40. Houba P.H., Boven E.,.van der Meulen-Muileman I.H., LeendersR.G., Scheeren J.W., Pinedo H.M., Haisma H.J.: A novel doxorubicin–glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy:distribution and efficacy in experimental human ovariancancer. Br. J. Cancer, 2001; 84: 550-557
Google Scholar - 40. Houba P.H., Boven E.,.van der Meulen-Muileman I.H., LeendersR.G., Scheeren J.W., Pinedo H.M., Haisma H.J.: A novel doxorubicin–glucuronide prodrug DOX-GA3 for tumour-selective chemotherapy:distribution and efficacy in experimental human ovariancancer. Br. J. Cancer, 2001; 84: 550-557
Google Scholar - 41. Hsiang Y.H., Liu L.F., Wall M.E., Wani M.C., Nicholas A.W., ManikumarG., Kirschenbaum S., Silber R., Potmesil M.: DNA topoisomeraseI-mediated DNA cleavage and cytotoxicity of camptothecinanalogues. Cancer Res., 1989; 49: 4385-4389
Google Scholar - 41. Hsiang Y.H., Liu L.F., Wall M.E., Wani M.C., Nicholas A.W., ManikumarG., Kirschenbaum S., Silber R., Potmesil M.: DNA topoisomeraseI-mediated DNA cleavage and cytotoxicity of camptothecinanalogues. Cancer Res., 1989; 49: 4385-4389
Google Scholar - 42. Hu D.G., Rogers A., Mackenzie P.I.: Epirubicin upregulates UDPglucuronosyltransferase 2B7 expression in liver cancer cells via thep53 pathway. Mol. Pharmacol., 2014; 85: 887-897
Google Scholar - 42. Hu D.G., Rogers A., Mackenzie P.I.: Epirubicin upregulates UDPglucuronosyltransferase 2B7 expression in liver cancer cells via thep53 pathway. Mol. Pharmacol., 2014; 85: 887-897
Google Scholar - 43. Innocenti F., Iyer L., Ramírez J., Green M.D., Ratain M.J.: Epirubicinglucuronidation is catalyzed by human UDP-glucuronosyltransferase2B7. Drug Metab. Dispos., 2001; 29: 686-692
Google Scholar - 43. Innocenti F., Iyer L., Ramírez J., Green M.D., Ratain M.J.: Epirubicinglucuronidation is catalyzed by human UDP-glucuronosyltransferase2B7. Drug Metab. Dispos., 2001; 29: 686-692
Google Scholar - 44. Innocenti F., Vokes E.E., Ratain M.J.: Irinogenetics: what is theright star?. J. Clin. Oncol., 2006; 24: 2221-2224
Google Scholar - 44. Innocenti F., Vokes E.E., Ratain M.J.: Irinogenetics: what is theright star?. J. Clin. Oncol., 2006; 24: 2221-2224
Google Scholar - 45. Iyer L., King C.D., Whitington P.F., Green M.D., Roy S.K., TephlyT.R., Coffman B.L., Ratain M.J.: Genetic predisposition to themetabolism of irinotecan (CPT-11). Role of uridine diphosphateglucuronosyltransferase isoform 1A1 in the glucuronidation ofits active metabolite (SN-38) in human liver microsomes. J. Clin.Invest., 1998; 101: 847-854
Google Scholar - 45. Iyer L., King C.D., Whitington P.F., Green M.D., Roy S.K., TephlyT.R., Coffman B.L., Ratain M.J.: Genetic predisposition to themetabolism of irinotecan (CPT-11). Role of uridine diphosphateglucuronosyltransferase isoform 1A1 in the glucuronidation ofits active metabolite (SN-38) in human liver microsomes. J. Clin.Invest., 1998; 101: 847-854
Google Scholar - 46. Jordan V.C.: Third annual William L. McGuire Memorial Lecture.„Studies on the estrogen receptor in breast cancer“ – 20 years asa target for the treatment and prevention of cancer. Breast CancerRes. Treat., 1995; 36: 267-285
Google Scholar - 46. Jordan V.C.: Third annual William L. McGuire Memorial Lecture.„Studies on the estrogen receptor in breast cancer“ – 20 years asa target for the treatment and prevention of cancer. Breast CancerRes. Treat., 1995; 36: 267-285
Google Scholar - 47. Juan T.Y., Roffler S.R., Hou H.S., Huang S.M., Chen K.C., Leu Y.L.,Prijovich Z.M., Yu C.P., Wu C.C., Sun G.H., Cha T.L.: Antiangiogenesistargeting tumor microenvironment synergizes glucuronideprodrug antitumor activity. Clin. Cancer Res., 2009; 15: 4600-4611
Google Scholar - 47. Juan T.Y., Roffler S.R., Hou H.S., Huang S.M., Chen K.C., Leu Y.L.,Prijovich Z.M., Yu C.P., Wu C.C., Sun G.H., Cha T.L.: Antiangiogenesistargeting tumor microenvironment synergizes glucuronideprodrug antitumor activity. Clin. Cancer Res., 2009; 15: 4600-4611
Google Scholar - 48. Katzenellenbogen B.S., Norman M.J., Eckert R.L., Peltz S.W.,Mangel W.F.: Bioactivities, estrogen receptor interactions, and plasminogenactivator-inducing activities of tamoxifen and hydroxy–tamoxifen isomers in MCF-7 human breast cancer cells. CancerRes., 1984; 44: 112-119
Google Scholar - 48. Katzenellenbogen B.S., Norman M.J., Eckert R.L., Peltz S.W.,Mangel W.F.: Bioactivities, estrogen receptor interactions, and plasminogenactivator-inducing activities of tamoxifen and hydroxy–tamoxifen isomers in MCF-7 human breast cancer cells. CancerRes., 1984; 44: 112-119
Google Scholar - 49. Langer C.J.: The global role of irinotecan in the treatment oflung cancer: 2003 update. Oncology, 2003; 17: 30-40
Google Scholar - 49. Langer C.J.: The global role of irinotecan in the treatment oflung cancer: 2003 update. Oncology, 2003; 17: 30-40
Google Scholar - 50. Lazard D., Zupko K., Poria Y., Nef P., Lazarovits J., Horn S., KhenM., Lancet D.: Odorant signal termination by olfactory UDP glucuronosyltransferase. Nature, 1991; 349: 790-793
Google Scholar - 50. Lazard D., Zupko K., Poria Y., Nef P., Lazarovits J., Horn S., KhenM., Lancet D.: Odorant signal termination by olfactory UDP glucuronosyltransferase. Nature, 1991; 349: 790-793
Google Scholar - 51. Leu Y.L., Roffler S.R., Chern J.W.: Design and synthesis of water-solubleglucuronide derivatives of camptothecin for cancerprodrug monotherapy and antibody-directed enzyme prodrugtherapy (ADEPT). J. Med. Chem., 1999; 42: 3623-3628
Google Scholar - 51. Leu Y.L., Roffler S.R., Chern J.W.: Design and synthesis of water-solubleglucuronide derivatives of camptothecin for cancerprodrug monotherapy and antibody-directed enzyme prodrugtherapy (ADEPT). J. Med. Chem., 1999; 42: 3623-3628
Google Scholar - 52. Li J., Shi M., Cao Y., Yuan W., Pang T., Li B., Sun Z., Chen L., ZhaoR.C.: Knockdown of hypoxia-inducible factor-1α in breast carcinomaMCF-7 cells results in reduced tumor growth and increasedsensitivity to methotrexate. Biochem. Biophys. Res. Commun.,2006; 342: 1341-1351
Google Scholar - 52. Li J., Shi M., Cao Y., Yuan W., Pang T., Li B., Sun Z., Chen L., ZhaoR.C.: Knockdown of hypoxia-inducible factor-1α in breast carcinomaMCF-7 cells results in reduced tumor growth and increasedsensitivity to methotrexate. Biochem. Biophys. Res. Commun.,2006; 342: 1341-1351
Google Scholar - 53. Li M.L., Horn L., Firby P.S., Moore M.J.: Pharmacological determinantsof 9-aminocamptothecin cytotoxicity. Clin. Cancer Res.,2001; 7: 168-174
Google Scholar - 53. Li M.L., Horn L., Firby P.S., Moore M.J.: Pharmacological determinantsof 9-aminocamptothecin cytotoxicity. Clin. Cancer Res.,2001; 7: 168-174
Google Scholar - 54. Lim Y.C., Desta Z., Flockhart D.A., Skaar T.C.: Endoxifen (4-hydroxy-N-desmethyl-tamoxifen)has anti-estrogenic effects in breastcancer cells with potency similar to 4-hydroxy-tamoxifen. CancerChemother. Pharmacol., 2005; 55: 471-478
Google Scholar - 54. Lim Y.C., Desta Z., Flockhart D.A., Skaar T.C.: Endoxifen (4-hydroxy-N-desmethyl-tamoxifen)has anti-estrogenic effects in breastcancer cells with potency similar to 4-hydroxy-tamoxifen. CancerChemother. Pharmacol., 2005; 55: 471-478
Google Scholar - 55. Mathijssen R.H., van Alphen R.J., Verweij J., Loos W.J., NooterK., Stoter G., Sparreboom A.: Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res., 2001; 8: 2182-2194
Google Scholar - 55. Mathijssen R.H., van Alphen R.J., Verweij J., Loos W.J., NooterK., Stoter G., Sparreboom A.: Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res., 2001; 8: 2182-2194
Google Scholar - 56. Michael M., Doherty M.M.: Tumoral drug metabolism: overviewand its implications for cancer therapy. J. Clin. Oncol., 2005;23: 205-229
Google Scholar - 56. Michael M., Doherty M.M.: Tumoral drug metabolism: overviewand its implications for cancer therapy. J. Clin. Oncol., 2005;23: 205-229
Google Scholar - 57. Nagar S., Blanchard R.L.: Pharmacogenetics of uridine diphosphoglucuronosyltransferase(UGT) 1A family members and itsrole in patient response to irinotecan. Drug Metab. Rev., 2006;38: 393-409
Google Scholar - 57. Nagar S., Blanchard R.L.: Pharmacogenetics of uridine diphosphoglucuronosyltransferase(UGT) 1A family members and itsrole in patient response to irinotecan. Drug Metab. Rev., 2006;38: 393-409
Google Scholar - 58. Nakamura A., Nakajima M., Yamanaka H., Fujiwara R., Yokoi T.:Expression of UGT1A and UGT2B mRNA in human normal tissuesand various cell lines. Drug Metab. Dispos., 2008; 36: 1461-1464
Google Scholar - 58. Nakamura A., Nakajima M., Yamanaka H., Fujiwara R., Yokoi T.:Expression of UGT1A and UGT2B mRNA in human normal tissuesand various cell lines. Drug Metab. Dispos., 2008; 36: 1461-1464
Google Scholar - 59. O’Dwyer P.J., Leyland-Jones B., Alonso M.T., Marsoni S., WittesR.E.: Etoposide (VP-16-213): current status of an active anticancerdrug. N. Engl. J. Med., 1985; 312: 692-700
Google Scholar - 59. O’Dwyer P.J., Leyland-Jones B., Alonso M.T., Marsoni S., WittesR.E.: Etoposide (VP-16-213): current status of an active anticancerdrug. N. Engl. J. Med., 1985; 312: 692-700
Google Scholar - 60. Ogura K., Ishikawa Y., Kaku T., Nishiyama T., Ohnuma T., MuroK., Hiratsuka A.: Quaternary ammonium-linked glucuronidationof trans-4-hydroxytamoxifen, an active metabolite of tamoxifen,by human liver microsomes and UDP-glucuronosyltransferase 1A4.Biochem. Pharmacol., 2006; 71: 1358-1369
Google Scholar - 60. Ogura K., Ishikawa Y., Kaku T., Nishiyama T., Ohnuma T., MuroK., Hiratsuka A.: Quaternary ammonium-linked glucuronidationof trans-4-hydroxytamoxifen, an active metabolite of tamoxifen,by human liver microsomes and UDP-glucuronosyltransferase 1A4.Biochem. Pharmacol., 2006; 71: 1358-1369
Google Scholar - 61. Oguri T., Takahashi T., Miyazaki M., Isobe T., Kohno N., MackenzieP.I., Fujiwara Y.: UGT1A10 is responsible for SN-38 glucuronidationand its expression in human lung cancers. AnticancerRes., 2004; 24: 2893-2896
Google Scholar - 61. Oguri T., Takahashi T., Miyazaki M., Isobe T., Kohno N., MackenzieP.I., Fujiwara Y.: UGT1A10 is responsible for SN-38 glucuronidationand its expression in human lung cancers. AnticancerRes., 2004; 24: 2893-2896
Google Scholar - 62. Ohno S., Nakajin S.: Determination of mRNA expression ofhuman UDP-glucuronosyltransferases and application for localizationin various human tissues by real-time reverse transcriptase-polymerasechain reaction. Drug Metab. Dispos., 2009; 37: 32-40
Google Scholar - 62. Ohno S., Nakajin S.: Determination of mRNA expression ofhuman UDP-glucuronosyltransferases and application for localizationin various human tissues by real-time reverse transcriptase-polymerasechain reaction. Drug Metab. Dispos., 2009; 37: 32-40
Google Scholar - 63. Olson J.A., Moon R.C., Anders M.W., Fenselau C., Shane B.: Enhancementof biological activity by conjugation reactions. J. Nutr.,1992; 122: 615-624
Google Scholar - 63. Olson J.A., Moon R.C., Anders M.W., Fenselau C., Shane B.: Enhancementof biological activity by conjugation reactions. J. Nutr.,1992; 122: 615-624
Google Scholar - 64. Paigen K.: Mammalian β-glucuronidase: genetics, molecularbiology, and cell biology. Prog. Nucleic Acid Res. Mol. Biol., 1989;37: 155-205
Google Scholar - 64. Paigen K.: Mammalian β-glucuronidase: genetics, molecularbiology, and cell biology. Prog. Nucleic Acid Res. Mol. Biol., 1989;37: 155-205
Google Scholar - 65. Paul D., Standifer K.M., Inturrisi C.E., Pasternak G.W.: Pharmacologicalcharacterization of morphine-6 β-glucuronide, a verypotent morphine metabolite. J. Pharmacol. Exp. Ther., 1989; 251:477-483
Google Scholar - 65. Paul D., Standifer K.M., Inturrisi C.E., Pasternak G.W.: Pharmacologicalcharacterization of morphine-6 β-glucuronide, a verypotent morphine metabolite. J. Pharmacol. Exp. Ther., 1989; 251:477-483
Google Scholar - 66. Pawlowska M., Chu R., Fedejko-Kap B., Augustin E., MazerskaZ., Radominska-Pandya A., Chambers T.C.: Metabolic transformationof antitumor acridinone C-1305 but not C-1311 via selectivecellular expression of UGT1A10 increases cytotoxic response: implicationsfor clinical use. Drug Metab. Dispos., 2013; 41: 414-421
Google Scholar - 66. Pawlowska M., Chu R., Fedejko-Kap B., Augustin E., MazerskaZ., Radominska-Pandya A., Chambers T.C.: Metabolic transformationof antitumor acridinone C-1305 but not C-1311 via selectivecellular expression of UGT1A10 increases cytotoxic response: implicationsfor clinical use. Drug Metab. Dispos., 2013; 41: 414-421
Google Scholar - 67. Prijovich Z.M., Chen B.M., Leu Y.L., Chern J.W., Roffler S.R.: Anti-tumouractivity and toxicity of the new prodrug 9-aminocamptothecinglucuronide (9ACG) in mice. Br. J. Cancer, 2002; 86: 1634-1638
Google Scholar - 67. Prijovich Z.M., Chen B.M., Leu Y.L., Chern J.W., Roffler S.R.: Anti-tumouractivity and toxicity of the new prodrug 9-aminocamptothecinglucuronide (9ACG) in mice. Br. J. Cancer, 2002; 86: 1634-1638
Google Scholar - 68. Prijovich Z.M., Chen K.C., Roffler S.R.: Local enzymatic hydrolysisof an endogenously generated metabolite can enhance CPT-11anticancer efficacy. Mol. Cancer Ther., 2009; 8: 940-946
Google Scholar - 68. Prijovich Z.M., Chen K.C., Roffler S.R.: Local enzymatic hydrolysisof an endogenously generated metabolite can enhance CPT-11anticancer efficacy. Mol. Cancer Ther., 2009; 8: 940-946
Google Scholar - 69. Prijovich Z.M., Leu Y.L., Roffler S.R.: Effect of pH and human serumalbumin on the cytotoxicity of a glucuronide prodrug of 9-aminocamptothecin.Cancer Chemother. Pharmacol., 2007; 60: 7-17
Google Scholar - 69. Prijovich Z.M., Leu Y.L., Roffler S.R.: Effect of pH and human serumalbumin on the cytotoxicity of a glucuronide prodrug of 9-aminocamptothecin.Cancer Chemother. Pharmacol., 2007; 60: 7-17
Google Scholar - 70. Raynal C., Pascussi J.M., Leguelinel G., Breuker C., Kantar J., LallemantB., Poujol S., Bonnans C., Joubert D., Hollande F., LumbrosoS., Brouillet J.P., Evrard A.: Pregnane X Receptor (PXR) expressionin colorectal cancer cells restricts irinotecan chemosensitivitythrough enhanced SN-38 glucuronidation. Mol. Cancer, 2010; 9: 46
Google Scholar - 70. Raynal C., Pascussi J.M., Leguelinel G., Breuker C., Kantar J., LallemantB., Poujol S., Bonnans C., Joubert D., Hollande F., LumbrosoS., Brouillet J.P., Evrard A.: Pregnane X Receptor (PXR) expressionin colorectal cancer cells restricts irinotecan chemosensitivitythrough enhanced SN-38 glucuronidation. Mol. Cancer, 2010; 9: 46
Google Scholar - 71. Ross W., Rowe T., Glisson B., Yalowich J., Liu L.: Role of topoisomeraseII in mediating epipodophyllotoxin-induced DNA cleavage.Cancer Res., 1984; 44: 5857-5860
Google Scholar - 71. Ross W., Rowe T., Glisson B., Yalowich J., Liu L.: Role of topoisomeraseII in mediating epipodophyllotoxin-induced DNA cleavage.Cancer Res., 1984; 44: 5857-5860
Google Scholar - 72. Rowland A., Miners J.O., Mackenzie P.I.: The UDP-glucuronosyltransferases:their role in drug metabolism and detoxification.Int. J. Biochem. Cell Biol., 2013; 45: 1121-1132
Google Scholar - 72. Rowland A., Miners J.O., Mackenzie P.I.: The UDP-glucuronosyltransferases:their role in drug metabolism and detoxification.Int. J. Biochem. Cell Biol., 2013; 45: 1121-1132
Google Scholar - 73. Rubin E., Wood V., Bharti A., Trites D., Lynch C., Hurwitz S.,Bartel S., Levy S., Rosowsky A., Toppmeyer D., Kufe D.: A phaseI and pharmacokinetic study of a new camptothecin derivative,9-aminocamptothecin. Clin. Cancer Res., 1995; 1: 269-276
Google Scholar - 74. Sallustio B.C., Harkin L.A., Mann M.C., Krivickas S.J., BurchamP.C.: Genotoxicity of acyl glucuronide metabolites formed fromclofibric acid and gemfibrozil: a novel role for phase-II-mediatedbioactivation in the hepatocarcinogenicity of the parent aglycones?.Toxicol. Appl. Pharmacol., 1997; 147: 459-464
Google Scholar - 76. Sfakianos J., Coward L., Kirk M., Barnes S.: Intestinal uptakeand biliary excretion of the isoflavone genistein in rats. J. Nutr.,1997; 127: 1260-1268
Google Scholar - 77. Stahelin H.F., von Wartburg A.: The chemical and biologicalroute from podophyllotoxin glucoside to etoposide: ninth Cainmemorial Award lecture. Cancer Res., 1991; 51: 5-15
Google Scholar - 78. Starlard-Davenport A., Lyn-Cook B., Beland F.A., Pogribny I.P.:The role of UDP-glucuronosyltransferases and drug transportersin breast cancer drug resistance. Exp. Oncol., 2010; 32: 172-180
Google Scholar - 79. Starlard-Davenport A., Lyn-Cook B., Radominska-Pandya A.:Identification of UDP-glucuronosyltransferase 1A10 in non-malignantand malignant human breast tissues. Steroids, 2008; 73:611-620
Google Scholar - 80. Starlard-Davenport A., Lyn-Cook B., Radominska-Pandya A.:Novel identification of UDP-glucuronosyltransferase 1A10 as anestrogen-regulated target gene. Steroids, 2008; 73: 139-147
Google Scholar - 81. Starlard-Davenport A., Xiong Y., Bratton S., Gallus-Zawada A.,Finel M., Radominska-Pandya A.: Phenylalanine90 and phenylalanine93are crucial amino acids within the estrogen binding site of thehuman UDP-glucuronosyltransferase 1A10. Steroids, 2007; 72: 85-94
Google Scholar - 82. Steele N.L., Plumb J.A., Vidal L., Tjornelund J., Knoblauch P.,Rasmussen A., Ooi C.E., Buhl-Jensen P., Brown R., Evans T.R., DeBonoJ.S.: A phase I pharmacokinetic and pharmacodynamic study of thehistone deacetylase inhibitor belinostat in patients with advancedsolid tumors. Clin. Cancer Res., 2008; 14: 804-810
Google Scholar - 83. Stone A.N., Mackenzie P.I., Galetin A., Houston J.B., MinersJ.O.: Isoform selectivity and kinetics of morphine 3- and 6-glucuronidationby huaman UDP-glucuronosyltransferases: evidencefor atypical glucuronidation kinetics by UGT2B7. Drug Metab. Dispos.,2003; 31: 1086-1089
Google Scholar - 84. Strassburg C.P., Nguyen N., Manns M.P., Tukey R.H.: UDP-glucuronosyltransferaseactivity in human liver and colon. Gastroenterology,1999; 116: 149-160
Google Scholar - 85. Sun D., Chen G., Dellinger R.W., Duncan K., Fang J.L., Lazarus P.:Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidationby human UGT1A4 variants. Breast Cancer Res., 2006; 8: R50
Google Scholar - 86. Sun D., Sharma A.K., Dellinger R.W., Blevins-Primeau A.S., BallietR.M., Chen G., Boyiri T., Amin S., Lazarus P.: Glucuronidationof active tamoxifen metabolites by the human UDP glucuronosyltransferases.Drug Metab. Dispos., 2007; 35: 2006-2014
Google Scholar - 87. Tolson A.H., Wang H.: Regulation of drug-metabolizing enzymesby xenobiotic receptors: PXR and CAR. Adv. Drug Deliv. Rev.,2010; 62: 1238-1249
Google Scholar - 88. Toussaint C., Albin N., Massaad L., Grunenwald D., Parise O.Jr., Morizet J., Gouyette A., Chabot G.G.: Main drug- and carcinogen-metabolizingenzyme systems in human non-small cell lungcancer and peritumoral tissues. Cancer Res., 1993; 53: 4608-4612
Google Scholar - 89. Tukey R.H., Strassburg C.P.: Human UDP-glucuronosyltransferases:metabolism, expression and disease. Annu. Rev. Pharmacol.
Google Scholar - 90. Vigushin D.M., Coombes R.C.: Histone deacetylase inhibitorsin cancer treatment. Anticancer Drugs, 2002; 13: 1-13
Google Scholar - 91. Wang L.Z., Ramirez J., Yeo W., Chan M.Y., Thuya W.L., Lau J.Y.,Wan S.C., Wong A.L., Zee Y.K., Lim R., Lee S.C., Ho P.C., Lee H.S., ChanA., Ansher S., Ratain M. J., Goh B.C.: Glucuronidation by UGT1A1 isthe dominant pathway of the metabolic disposition of belinostatin liver cancer patients. PloS One, 2013; 8: e54522
Google Scholar - 92. Wani M.C., Nicholas A.W., Manikumar G., Wall M.E.: Plant antitumoragents. 25. Total synthesis and antileukemic activity ofring A substituted camptothecin analogues. Structure-activitycorrelations. J. Med. Chem., 1987; 30: 1774-1779
Google Scholar - 93. Weenen H., Lankelma J., Penders P.G., McVie J.G., ten BokkelHuinink W.W., de Planque M.M., Pinedo H.M.: Pharmacokineticsof 4’-epi-doxorubicin in man. Invest. New Drugs, 1983; 1: 59-64
Google Scholar - 94. Weenen H., van Maanen J.M., de Planque M.M., McVie J.G., PinedoH.M.: Metabolism of 4’-modified analogs of doxorubicin. Uniqueglucuronidation pathway for 4’-epidoxorubicin. Eur. J. CancerClin. Oncol., 1984; 20: 919-926
Google Scholar - 95. Wen Z., Tallman M.N., Ali S.Y., Smith P.C.: UDP-glucuronosyltransferase1A1 is the principal enzyme responsible for etoposideglucuronidation in human liver and intestinal microsomes: structuralcharacterization of phenolic and alcoholic glucuronides ofetoposide and estimation of enzyme kinetics. Drug Metab. Dispos.,2007; 35: 371-380
Google Scholar - 96. White I.N.: Tamoxifen: is it safe? Comparison of activation anddetoxication mechanisms in rodents and in humans. Curr. DrugMetab., 2003; 4: 223-239
Google Scholar - 97. Zaya M.J., Hines R.N., Stevens J.C.: Epirubicin glucuronidationand UGT2B7 developmental expression. Drug Metab. Dispos.,2006; 34: 2097-2101
Google Scholar