Hairy roots culture as a source of valuable biopharmaceuticals

COMMENTARY ON THE LAW

Hairy roots culture as a source of valuable biopharmaceuticals

Tomasz Kowalczyk 1 , Marta Łucka 1 , Janusz Szemraj 2 , Tomasz Sakowicz 1

1. Katedra Genetyki Ogólnej, Biologii Molekularnej i Biotechnologii Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
2. Zakład Biochemii Medycznej Uniwersytet Medyczny w Łodzi

Published: 2016-01-05
DOI: 10.5604/17322693.1192186
GICID: 01.3001.0009.6778
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1-9

 

Abstract

Plants have been exploited as a source of medicinal substances for years. Nowadays, achievements of modern science, including molecular biotechnology, allow their huge potential to be utilized. They have become a promising platform for the production of valuable compounds such as biopharmaceuticals. Among the various plant systems used for this purpose, hairy root cultures are also applied for the production of recombinant proteins and secondary metabolites. For this purpose plant cells of selected species are genetically transformed using different strains of Agrobacterium rhizogenes carrying the desired genes. The next steps of this process include stable and efficient expression of these genes. Hairy root cultures exhibit a number of features which make them attractive compared to various pro- and eukaryotic cell systems including other plant models. Their main advantages are: relatively low production costs, ease of scale-up, production of compounds typical for eukaryotic cells with post-translational modifications, biological safety, and in many cases there is no need for complex purification techniques of the final product. Several compounds that are successfully obtained using this production strategy are valuable pharmaceuticals. This group includes selected cytokines, vaccine antigens and antibodies.

References

  • 1. Abbasi B.H., Tian C.L., Murch S.J., Saxena P.K., Liu C.Z.: Light-enhancedcaffeic acid derivatives biosynthesis in hairy root culturesof Echinacea purpurea. Plant Cell Rep., 2007; 26: 1367-1372
    Google Scholar
  • 2. Azhakanandam K., Mccabe M.S., Power J.B., Lowe K.C., CockingE.C., Davey M.R.: T-DNA transfer, integration, expression and inheritancein rice: effects of plant genotype and Agrobacterium super–virulence. J. Plant Physiol., 2000; 157: 429-439
    Google Scholar
  • 3. Banerjee S., Singh S., Ur Rahman L.: Biotransformation studiesusing hairy root cultures – a review. Biotechnol. Adv., 2012; 30: 461-468
    Google Scholar
  • 4. Bensaddek L., Villarreal M.L., Fliniaux M.A.: Induction and growthof hairy roots for the production of medicinal compounds. Electron.J. Integr. Biosci., 2008; 3: 2-9
    Google Scholar
  • 5. Budzianowski J.: Nowa rola tytoniu – produkcja biofarmaceutyków.Przegl. Lek., 2009; 66: 894-897
    Google Scholar
  • 6. Budzianowski J.: Tytoń – producent rekombinowanych interleukin.Przegl. Lek., 2012; 69: 1060-1062
    Google Scholar
  • 7. Budzianowski J.: Tytoń – producent rekombinowanych przeciwciałmonoklonalnych. Przegl. Lek., 2011; 68: 981-986
    Google Scholar
  • 8. Chandra S., Chandra R.: Engineering secondary metabolite productionin hairy roots. Phytochem. Rev., 2011; 10: 371-395
    Google Scholar
  • 9. Condori J., Sivakumar G., Hubstenberger J., Dolan M.C., SobolevV.S., Medina-Bolivar F.: Induced biosynthesis of resveratrol and theprenylated stilbenoids arachidin-1 and arachidin-3 in hairy root culturesof peanut: effects of culture medium and growth stage. PlantPhysiol. Biochem., 2010; 48: 310-318
    Google Scholar
  • 10. Gangopadhyay M., Dewanjee S., Bhattacharya S.: Enhancedplumbagin production in elicited Plumbago indica hairy root cultures.J. Biosci. Bioeng., 2011; 111: 706-710
    Google Scholar
  • 11. Gaume A., Komarnytsky S., Borisjuk N., Raskin I.: Rhizosecretionof recombinant proteins from plant hairy roots. Plant Cell Rep.,2003; 21: 1188-1193
    Google Scholar
  • 12. Georgiev M.I., Agostini E., Ludwig-Müller J., Xu J.: Geneticallytransformed roots: from plant disease to biotechnological resource.Trends Biotechnol., 2012; 30: 528-537
    Google Scholar
  • 13. Gils M., Kandzia R., Marillonnet S., Klimyuk V., Gleba Y.: High–yield production of authentic human growth hormone using a plantvirus-based expression system. Plant Biotechnol. J., 2005; 3: 613-620
    Google Scholar
  • 14. Goel M.K., Mehrotra S., Kukreja A.K.: Elicitor-induced cellularand molecular events are responsible for productivity enhancementin hairy root cultures: an insight study. Appl. Biochem. Biotechnol.,2011; 165: 1342-1355
    Google Scholar
  • 15. Gołąb J., Jakóbisiak M., Zagożdżon R., Obłąkowski P.: Cytokiny.W: Immunologia, red.: M. Jakóbisiak, J. Gołąb, W. Lasek, PWN, Warszawa,2004, 198-224
    Google Scholar
  • 16. González-Navajas J.M., Lee J., David M., Raz E.: Immunomodulatoryfunctions of type I interferons. Nat. Rev. Immunol., 2012;12: 125-135
    Google Scholar
  • 17. Góra-Sochacka A., Redkiewicz P., Napiórkowska B., Sirko A.: Wykorzystaniesystemów roślinnych do produkcji rekombinowanychcytokin. Postępy Biochem., 2009; 55: 85-94
    Google Scholar
  • 18. Haggman H.M., Aronen T.S.: Agrobacterium rhizogenes for rootingrecalcitrant woody plants. W: Molecular biology of woody plants.t.2, red.: S.M. Jain, S.C. Minocha. Springer Netherlands 2000, 47-78
    Google Scholar
  • 19. Häkkinen S.T., Raven N., Henquet M., Laukkanen M.L., AnderleiT., Pitkänen J.P., Twyman R.M., Bosch D., Oksman-Caldentey K.M.,Schillberg S., Ritala A.: Molecular farming in tobacco hairy rootsby triggering the secretion of a pharmaceutical antibody. Biotechnol.Bioeng., 2014; 111: 336-346
    Google Scholar
  • 20. Han C., Gong Z., Hao L., Yang J., Hu J., Dong B., Fan T., Tang W.,Teng G.: Mechanism of monoclonal antibody-coupled Staphylococcussuperantigen-A induced apoptosis in human bladder cancercells. Cell Biochem. Biophys., 2011; 61: 679-684
    Google Scholar
  • 21. Hasanloo T., Rahnama H., Sepehrifar R., Shams M.R.: The influenceof yeast extract on the production of flavonolignans in hairyroot cultures of Silybum marianum L. Gaertn. 4th Kuala Lumpur InternationalConference on Biomedical Engineering. red.: N.A. Osman,F. Ibrahim, W.A. Abas, H.S. Rahman, H.N. Ting. Springer Berlin Heidelberg,Kuala Lumpur, Malaysia 2008, 358-361
    Google Scholar
  • 22. Hasanloo T., Sepehrifar R., Rahnama H., Shams M.R.: Evaluationof the yeast-extract signaling pathway leading to silymarinbiosynthesis in milk thistle hairy root culture. World J. Microbiol.Biotechnol., 2009; 25: 1901-1909
    Google Scholar
  • 23. Hiatt A., Cafferkey R., Bowdish K.: Production of antibodies intransgenic plants. Nature, 1989; 342: 76-78
    Google Scholar
  • 24. Hooykaas P.J.: Transformation mediated by Agrobacteriumtumefaciens. W: Advances in fungal biotechnology for industry,agriculture, and medicine, red.: J.S. Tkacz, L. Lange. Springer US2004, 41-65
    Google Scholar
  • 25. Huang B., Lin H., Yan C., Qiu H., Qiu L., Yu R.: Optimal inductiveand cultural conditions of Polygonum multiflorum transgenichairy roots mediated with Agrobacterium rhizogenes R1601 and ananalysis of their anthraquinone constituents. Pharmacogn. Mag.,2014; 10: 77-82
    Google Scholar
  • 26. Kai G., Yang S., Zhang Y., Luo X., Fu X., Zhang A., Xiao J.: Effectsof different elicitors on yield of tropane alkaloids in hairy roots ofAnisodus acutangulus. Mol. Biol. Rep., 2012; 39: 1721-1729
    Google Scholar
  • 27. Kang S., Ajjappala H., Seo H.H., Sim J.S., Yoon S.H., Koo B.S., KimY.H., Lee S., Hahn B.S.: Expression of the human tissue-plasminogenactivator in hairy roots of oriental melon (Cucumis melo). Plant Mol.Biol. Report., 2011; 29: 919-926
    Google Scholar
  • 28. Kaplan H.S., Olsson L.: Human-human hybridoma monoclonalantibodies in diagnosis and treatment of neoplastic disease. Biochem.Biol. Markers Neoplast. Transform., 1983; 57: 57-66
    Google Scholar
  • 29. Khojasteh A., Mirjalili M.H., Hidalgo D., Corchete P., Palazon J.:New trends in biotechnological production of rosmarinic acid. Biotechnol.Lett., 2014; 36: 2393-2406
    Google Scholar
  • 30. Kim J.A., Kim Y.S., Choi Y.E.: Triterpenoid production and phenotypicchanges in hairy roots of Codonopsis lanceolata and the plantsregenerated from them. Plant Biotechnol. Rep., 2011; 5: 255-263
    Google Scholar
  • 31. Kim O.T., Bang K.H., Shin Y.S., Lee M.J., Jung S.J., Hyun D.Y., KimY.C., Seong N.S., Cha S.W., Hwang B.: Enhanced production of asiaticosidefrom hairy root cultures of Centella asiatica (L.) Urban elicitedby methyl jasmonate. Plant Cell Rep., 2007; 26: 1941-1949
    Google Scholar
  • 32. Ko S., Liu J.R., Yamakawa T., Matsumoto Y.: Expression of theprotective antigen (SpaA) in transgenic hairy roots of tobacco. PlantMol. Biol. Report, 2006; 24: 251
    Google Scholar
  • 33. Kochan E., Wasiela M., Sienkiewicz M.: The production of ginsenosidesin hairy root cultures of American ginseng, Panax quinquefoliumL. and their antimicrobial activity. In Vitro Cell. Dev. Biol.Plant, 2013; 49: 24-29
    Google Scholar
  • 34. Kuzovkina I.N., Schneider B.: Genetically transformed root cultures- generation, properties and application in plant sciences. W:Progress in Botany, t. 67, red.: K. Esser, U. Luttge, W. Beyschlag, J.Murata. Springer Berlin Heidelberg 2006, 275-314
    Google Scholar
  • 35. Lewko W.M., Oldham R.K.: Cytokines. W: Principles of CancerBiotherapy, red.: R.K. Oldham, R.O. Dillman. Springer Netherlands2009, 155-276
    Google Scholar
  • 36. Liu C., Towler M.J., Medrano G., Cramer C.L., Weathers P.J.: Productionof mouse interleukin-12 is greater in tobacco hairy rootsgrown in a mist reactor than in an airlift reactor. Biotechnol. Bioeng.,2009; 102: 1074-1086
    Google Scholar
  • 37. Luchakivskaya Y.S., Olevinskaya Z.M., Kishchenko E.M., SpivakN.Y., Kuchuk N. V.: Obtaining of hairy-root, callus and suspenisoncell cultures of carrot (Daucus carota L.) able to accumulate humaninterferon alpha-2b. Cytol. Genet., 2012; 46: 15-20
    Google Scholar
  • 38. Łucka M., Kowalczyk T., Szemraj J., Sakowicz T.: Rośliny jakoalternatywne źródło białek terapeutycznych. Postępy Hig. Med.Dośw., 2015; 69: 362-373
    Google Scholar
  • 39. Martin K.P., Sabovljevic A., Madassery J.: High-frequency transgenicplant regeneration and plumbagin production through methyljasmonate elicitation from hairy roots of Plumbago indica L. J. CropSci. Biotechnol., 2011; 14: 205-212
    Google Scholar
  • 40. Matvieieva N.A., Kudryavets Y.I., Likhova A.A., Shakhovskij A.M.,Bezdenezhnykh N.A., Kvasko E.Y.: Antiviral activity of extracts oftransgenic chicory and lettuce plants with the human interferonα2b gene. Cytol. Genet., 2012; 46: 285-290
    Google Scholar
  • 41. Ming Q., Su C., Zheng C., Jia M., Zhang Q., Zhang H., RahmanK., Han T., Qin L.: Elicitors from the endophytic fungus Trichodermaatroviride promote Salvia miltiorrhiza hairy root growth and tanshinonebiosynthesis. J. Exp. Bot., 2013; 64: 5687-5694
    Google Scholar
  • 42. Oda K., Matsuda H., Murakami T., Katayama S., Ohgitani T., YoshikawaM.: Adjuvant and haemolytic activities of 47 saponins derivedfrom medicinal and food plants. Biol. Chem., 2000; 381: 67-74
    Google Scholar
  • 43. Ono N.N., Tian L.: The multiplicity of hairy root cultures: prolificpossibilities., Plant Sci., 2011; 180: 439-446
    Google Scholar
  • 44. Otten L., Burr T., Szegedi E.: Agrobacterium: a disease causingbacterium. W: Agrobacterium: from biology to biotechnology, red.:T. Tzfira, V. Citovsky, Springer New York 2008, 1-46
    Google Scholar
  • 45. Pandey R., Krishnasamy V., Kumaravadivel N., Rajamani K.:Establishment of hairy root culture and production of secondarymetabolites in coleus (Coleus forskohlii). J. Med. Plants Res., 2014;8: 58-62
    Google Scholar
  • 46. Papatheodoridis G., Buti M., Cornberg M., Janssen H., Mutimer D.,Pol S., Raimondo G.: EASL clinical practice guidelines: managementof chronic hepatitis B virus infection, J. Hepatol., 2012; 57: 167-185
    Google Scholar
  • 47. Pistelli L., Giovannini A., Ruffoni B., Bertoli A., Pistelli L.: Hairyroot cultures for secondary metabolites production. Adv. Exp. Med.Biol., 2010; 698: 167-184
    Google Scholar
  • 48. Pitta-Alvarez S.I., Spollansky T.C., Giulietti A.M.: The influenceof different biotic and abiotic elicitors on the production and profileof tropane alkaloids in hairy root cultures of Brugmansia candida.Enzyme Microb. Technol., 2000; 26: 252-258
    Google Scholar
  • 49. Powroźnik B., Kubowicz P., Pękala E.: Monoclonal antibodies intargeted therapy. Postępy Hig. Med. Dośw., 2012; 66: 663-673
    Google Scholar
  • 50. Rahnama H., Razi Z., Dadgar M.N., Hasanloo T.: Enhanced productionof flavonolignans in hairy root cultures of Silybum marianumby over-expression of chalcone synthase gene. J. Plant Biochem. Biotechnol.,2013; 22: 138-143
    Google Scholar
  • 51. Rao A.V., Sung M.K.: Saponins as anticancerogens. J. Nutr., 1995; 125 (Suppl.): 717S-724S
    Google Scholar
  • 52. Redkiewicz P, Więsyk A, Góra-Sochacka A, Sirko A.: Transgenictobacco plants as production platform for biologically active humaninterleukin 2 and its fusion with proteinase inhibitors. PlantBiotechnol. J., 2012; 10: 806-814
    Google Scholar
  • 53. Ritala A., Dong L., Imseng N., Seppänen-Laakso T., Vasilev N., vander Krol S., Rischer H., Maaheimo H., Virkki A., Brändli J., SchillbergS., Eibl R., Bouwmeester H., Oksman-Caldentey K.M.: Evaluation oftobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots forthe production of geraniol, the first committed step in terpenoidindole alkaloid pathway. J. Biotechnol., 2014; 176: 20-28
    Google Scholar
  • 54. Roig Celma C., Palazon J., Cusido R.M., Pinol M.T., Keil M.: Decreasedscopolamine yield in field-grown Duboisia plants regeneratedfrom hairy roots. Planta Med., 2001; 67: 249-253
    Google Scholar
  • 55. Rukavtsova E.B., Abramikhina T.V., Shulga N.Y., Bykov V.A., Bur’yanovY.I.: Tissue specific expression of hepatitis B virus surfaceantigen in transgenic plant cells and tissue culture. Russ. J. PlantPhysiol., 2007; 54: 770-775
    Google Scholar
  • 56. Ryad A., Lakhdar K., Majda K.S., Samia A., Mark A., Corinne A.D.,Eric G.: Optimization of the culture medium composition to improvethe production of hyoscyamine in elicited Datura stramonium L.hairy roots using the Response Surface Methodology (RSM). Int. J.Mol. Sci., 2010; 11: 4726-4740
    Google Scholar
  • 57. Saleem T.S., Chetty C.M., Ramkanth S., Alagusundaram M., GnanaprakashK., Rajan V.S., Angalaparameswari S.: Solanum nigrum Linn.- a review. Pharmacogn. Rev., 2009; 3: 342-345
    Google Scholar
  • 58. Schwab M.: Encyclopedia of Cancer. Springer-Verlag Berlin Heidelberg,2009
    Google Scholar
  • 59. Schwab M.: Encyclopedia of Cancer. Springer-Verlag Berlin Heidelberg,2012
    Google Scholar
  • 60. Sharp J.M., Doran P.M.: Effect of bacitracin on growth and monoclonalantibody production by tobacco hairy roots and cell suspensions.Biotechnol. Bioprocess Eng., 1999; 4: 253-258
    Google Scholar
  • 61. Sharp J.M., Doran P.M.: Strategies for enhancing monoclonalantibody accumulation in plant cell and organ cultures. Biotechnol.Prog., 2001; 17: 979-992
    Google Scholar
  • 62. Skarjinskaia M., Karl J., Araujo A., Ruby K., Rabindran S., StreatfieldS.J., Yusibov V.: Production of recombinant proteins in clonalroot cultures using episomal expression vectors. Biotechnol. Bioeng.,2008; 100: 814-819
    Google Scholar
  • 63. Solleti S.K., Bakshi S., Sahoo L.: Additional virulence genes inconjunction with efficient selection scheme, and compatible cultureregime enhance recovery of stable transgenic plants in cowpea viaAgrobacterium tumefaciens-mediated transformation. J. Biotechnol.,2008; 135: 97-104
    Google Scholar
  • 64. Srivastava S., Srivastava A.K.: Hairy root culture for mass-productionof high-value secondary metabolites. Crit. Rev. Biotechnol.,2007; 27: 29-43
    Google Scholar
  • 65. Strumberg D., Schultheis B., Scheulen M.E., Hilger R.A., KraussJ., Marschner N., Lordick F., Bach F., Reuter D., Edler L., Mross K.:Phase II study of nimotuzumab, a humanized monoclonal anti-epidermalgrowth factor receptor (EGFR) antibody, in patients with locallyadvanced or metastatic pancreatic cancer. Invest. New Drugs,2012; 30: 1138-1143
    Google Scholar
  • 66. Subroto M.A., Tampubolon E., Simanjuntak P.: Changes in solasodineaccumulation in regenerated plants of Solanum nigrum transformedwith Agrobacterium rhizogenes 15834. Biotechnology, 2007;6: 328-333
    Google Scholar
  • 67. Sudha C.G., Sherina T.V., Anu Anand V.P., Reji J.V., Padmesh P.,Soniya E.V.: Agrobacterium rhizogenes mediated transformation ofthe medicinal plant Decalepis arayalpathra and production of 2-hydroxy-4-methoxy benzaldehyde. Plant Cell Tissue Organ Cult., 2013;112: 217-226
    Google Scholar
  • 68. Sun J., Xiao J., Wang X., Yuan X., Zhao B.: Improved cardenolideproduction in Calotropis gigantea hairy roots using mechanical woundingand elicitation. Biotechnol. Lett., 2012; 34: 563-569
    Google Scholar
  • 69. Sunil Kumar G.B., Ganapathi T.R., Srinivas L., Revathi C.J., BapatV.A.: Expression of hepatitis B surface antigen in potato hairy roots.Plant Sci., 2006; 170: 918-925
    Google Scholar
  • 70. Sykłowska-Baranek K., Pietrosiuk A., Gawron A., Kawiak A., ŁojkowskaE., Jeziorek M., Chinou I.: Enhanced production of antitumournaphthoquinones in transgenic hairy root lines of Lithospermumcanescens. Plant Cell Tissue Organ Cult., 2012; 108: 213-219
    Google Scholar
  • 71. Torkamani M.R., Jafari M., Abbaspour N., Heidary R., Safaie N.:Enhanced production of valerenic acid in hairy root culture of Valerianaofficinalis by elicitation, Open Life Sci., 2014; 9: 853-863
    Google Scholar
  • 72. Tremblay R., Wang D., Jevnikar A.M., Ma S.: Tobacco, a highlyefficient green bioreactor for production of therapeutic proteins.Biotechnol. Adv., 2010; 28: 214-221
    Google Scholar
  • 74. Wang C.T., Liu H., Gao X.S., Zhang H.X.: Overexpression of G10Hand ORCA3 in the hairy roots of Catharanthus roseus improves catharanthineproduction. Plant Cell Rep., 2010; 29: 887-894
    Google Scholar
  • 75. Wang D.J., Brandsma M., Yin Z., Wang A., Jevnikar A.M., Ma S.:A novel platform for biologically active recombinant human interleukin- 13 production. Plant Biotechnol. J., 2008; 6: 504-515
    Google Scholar
  • 76. Wang J.W., Zheng L.P., Zhang B., Zou T.: Stimulation of artemisininsynthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl. Microbiol. Biotechnol.,2009; 85: 285-292
    Google Scholar
  • 77. Wasilewska A., Królicka A.: Otrzymywanie i charakterystykakultur korzeni włośnikowatych. Biotechnologia, 2005; 4: 173-188
    Google Scholar
  • 78. Wilczańska-Barska A., Królicka A., Głód D., Majdan M., KawiakA., Krauze-Baranowska M.: Enhanced accumulation of secondarymetabolites in hairy root cultures of Scutellaria lateriflora followingelicitation. Biotechnol. Lett., 2012; 34: 1757-1763
    Google Scholar
  • 79. Wirz H., Sauer-Budge A.F., Briggs J., Sharpe A., Shu S., Sharon A.:Automated production of plant-based vaccines and pharmaceuticals.J. Lab. Autom., 2012; 17: 449-457
    Google Scholar
  • 80. Wongsamuth R., Doran P.M.: Production of monoclonal antibodiesby tobacco hairy roots. Biotechnol. Bioeng., 1997; 54: 401-415
    Google Scholar
  • 81. Woods R.R., Geyer B.C., Mor T.S.: Hairy-root organ cultures forthe production of human acetylcholinesterase. BMC Biotechnol.,2008; 8: 95
    Google Scholar
  • 82. Xu J., Dolan M.C., Medrano G., Cramer C.L., Weathers P.J.: Greenfactory: plants as bioproduction platforms for recombinant proteins.Biotechnol. Adv., 2012; 30: 1171-1184
    Google Scholar
  • 83. Ya-ut P., Chareonsap P., Sukrong S.: Micropropagation and hairyroot culture of Ophiorrhiza alata Craib for camptothecin production.Biotechnol. Lett., 2011; 33: 2519-2526
    Google Scholar
  • 84. Zhai D.D., Zhong J.J.: Simultaneous analysis of three bioactivecompounds in Artemisia annua hairy root cultures by reversed-phasehigh-performance liquid chromatography-diode array detector.Phytochem. Anal., 2010; 21: 524-530
    Google Scholar
  • 85. Zhang H.C., Liu J.M., Lu H.Y., Gao S.L.: Enhanced flavonoid productionin hairy root cultures of Glycyrrhiza uralensis Fisch by combiningthe over-expression of chalcone isomerase gene with the elicitationtreatment. Plant Cell Rep., 2009; 28: 1205-1213
    Google Scholar
  • 86. Zhou M.L., Zhu X.M., Shao J.R., Wu Y.M., Tang Y.X.: Transcriptionalresponse of the catharanthine biosynthesis pathway to methyljasmonate/nitric oxide elicitation in Catharanthus roseus hairy rootculture. Appl. Microbiol. Biotechnol., 2010; 88: 737-750
    Google Scholar
  • 87. Ziemienowicz A.: Agrobacterium-mediated plant transformation:factors, applications and recent advances. Biocatal. Agric. Biotechnol.,2014; 3: 95-102
    Google Scholar

Full text

Skip to content