Health – promoting effect of quercetin in human diet

COMMENTARY ON THE LAW

Health – promoting effect of quercetin in human diet

Agnieszka Kobylińska 1 , Krystyna M. Janas 1

1. Katedra Ekofizjologii i Rozwoju Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2015-01-09
DOI: 10.5604/17322693.1135423
GICID: 01.3001.0009.6478
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 51-62

 

Abstract

Quercetin is a plant flavonoid phytochemical exhibiting a broad spectrum of properties i.a. antioxidant, anti-inflammatory and immunomodulatory. However, the effect of quercetin is not clear. This compound at low concentrations can stimulate proliferation of human cells, so it can be a potential drug in the treatment of neurodegenerative diseases and in high concentrations, it induces apoptosis thereby eliminating the infected or abnormal cells and can serve as a potential anticancer drug with wide clinical application. Action of quercetin can be explained by its interference with cellular enzymes, receptors, transporters and signalling system. Due to its widespread occurrence in the plant world, it is an integral component of the human diet. The dietary quercetin occurs most often in the form of β-glycosides connected mostly with rutinose, rhamnose and glucose. Depending on the nutritional habits, the daily intake of flavonoids, including quercetin, ranges from 3 to 70 mg. Epidemiological studies confirm an inverse correlation between the consumption of flavonoids and the incidence of lifestyle diseases and tumor formation. Published data indicate that consumption of foods rich in flavonoids reduces the risk of coronary heart disease. Thus, flavonoids – including quercetin – seem to be an interesting pro-health agent.

References

  • 1. Almén M.S., Jacobsson J.A., Moschonis G., Benedict C., ChrousosG.P., Fredriksson R., Schiöth H.B.: Genome wide analysis reveals associationof a FTO gene variant with epigenetic changes. Genomics,2012; 99: 132-137
    Google Scholar
  • 2. Arita K., Ariyoshi M., Tochio H.: Recognition of hemi-methylatedDnA by the SRA protein UHRF1 by a base-flipping mechanism. Nature,2008; 455: 818-821
    Google Scholar
  • 3. Austin R.C., Lentz S.R., Werstuck G.H.: Role of hyperhomocysteinemiain endothelial dysfunction and atherothrombotic disease.Cell Death Differ., 2004; 11: S56-S64
    Google Scholar
  • 4. Bell C.G., Finer S., Lindgren C.M., Wilson G.A., Vardhman K. RakyanV.K., Teschendorff A.E., Akan P., Stupka E., Down T.A., ProkopenkoI., Morison I.M., Mill J., Pidsley R. i wsp.: Integrated geneticand epigenetic analysis identifies haplotype-specific methylationin the FTO type 2 diabetes and obesity susceptibility locus. PLoSOne, 2010; 5: e14040 5 Berthoud H.R., Morrison C.: The brain, appetite, and obesity.Annu. Rev. Psychol., 2008; 59: 55-92
    Google Scholar
  • 5. formylcytosine and 5 carboxylcytosine: potential implications for activedemethylation of CpG sites. J. Biol. Chem., 2011; 286: 35334-35338
    Google Scholar
  • 6. Bestor T.H.: The DNA methyltransferases of mammals. Hum. Mol.Genet., 2000; 9: 2395-2402
    Google Scholar
  • 7. Bhutani N., Burns D.M., Blau H.M.: DNA demethylation dynamics.Cell, 2011; 146: 866-872
    Google Scholar
  • 8. Bird A.: DNA methylation patterns and epigenetic memory. GenesDev., 2002; 16: 6-21
    Google Scholar
  • 9. Branco M.R., Ficz G., Reik W.: Uncovering the role of 5 hydroxymethylcytosinein the epigenome. Nat. Rev. Genet., 2011; 13: 7-13
    Google Scholar
  • 10. Campión J., Milagro F.I., Martínez J.A.: Individuality and epigeneticsin obesity. Obes. Rev., 2009; 10: 383-392
    Google Scholar
  • 11. Chen C., Visootsak J., Dills S., Graham J.M. Jr.: Prader-Willi syndrome:an update and review for the primary pediatrician. Clin.Pediatr. Phila., 2007; 46: 580-591
    Google Scholar
  • 12. Chen T.,. Li E.: Structure and function of eukaryotic DNA methyltransferases.Curr. Top Dev. Biol., 2004; 60: 55-89
    Google Scholar
  • 13. Chen Z., Riggs A.D.: DNA methylation and demethylation inmammals. J. Biol. Chem., 2011; 286: 18347-18353
    Google Scholar
  • 14. Cheng X., Roberts R.J.: AdoMet-dependent methylation, DNAmethyltransferase and base flipping. Nucleic Acids Res., 2001; 29:3784-3795
    Google Scholar
  • 15. Cortellino S., Xu J., Sannai M., Moore R., Caretti E., Cigliano A.,Le Coz M., Devarajan K., Wessels A., Soprano D., Abramowitz L.K.,Bartolomei M.S., Rambow F., Bassi M.R, Bruno T. i wsp.: ThymineDNA glycosylase is essential for active DNA demethylation by linkeddeamination-base excision repair. Cell, 2011; 146: 67-79
    Google Scholar
  • 16. Deaton A.M, Bird A.: CpG islands and the regulation of transcription.Genes Dev., 2011; 25: 1010-1022
    Google Scholar
  • 17. Dina C., Meyre D., Gallina S., Durand E., Körner A., Jacobson P.,Carlsson L.M., Kiess W., Vatin V., Lecoeur C., Delplanque J., Vaillant E.,Pattou F., Ruiz J., Weill J. i wsp.: Variation in FTO contributes to childhoodobesity and severe adult obesity. Nat. Genet., 2007; 39: 724-726
    Google Scholar
  • 18. Dolinoy D.C.: The agouti mouse model: an epigenetic biosensorfor nutritional and environmental alterations on the fetal epigenome.Nutr. Rev., 2008; 66: S7-S11
    Google Scholar
  • 19. Dolinoy D.C., Huang D., Jirtle R.L.: Maternal nutrient supplementationcounteracts bisphenol A-induced DNA hypomethylation inearly development. Proc. Natl. Acad. Sci. USA, 2007; 104: 13056-13061
    Google Scholar
  • 20. Dolinoy D.C., Weidman J.R., Waterland R.A., Jirtle R.L.: Maternalgenistein alters coat color and protects Avy mouse offspring fromobesity by modifying the fetal epigenome. Environ. Health Perspect.,2006; 114: 567-572
    Google Scholar
  • 21. Fawcett K.A., Barroso I.: The genetics of obesity: FTO leads theway. Trends Genet., 2010, 26: 226-274
    Google Scholar
  • 22. Finkelstein J.D.: Methionine metabolism in mammals. J. Nutr.Biochem., 1990; 1: 228-237
    Google Scholar
  • 23. Frayling T.M., Timpson N.J., Weedon M.N., Zeggini E., Freathy R.M.,Lindgren C.M., Perry J.R., Elliott K.S., Lango H., Rayner N.W., ShieldsB., Harries L.W., Barrett J.C., Ellard S., Groves C.J. i wsp.: A commonvariant in the FTO gene is associated with body mass index and predisposesto childhood and adult obesity. Science, 2007; 316: 889-894
    Google Scholar
  • 24. Gąsiorowska D., Korzeniowska K., Jabłecka A.: Homocysteina.Farmacja współczesna, 2008; 1: 169-175
    Google Scholar
  • 25. Gehring M., Reik W., Henikoff S.: DNA demethylation by DNArepair. Trends Genet., 2009; 25: 82-90
    Google Scholar
  • 26. Germann M.W., Johnson C.N., Spring A.M.: Recognition of damagedDNA: structure and dynamic markers. Med. Res. Rev., 2012;32: 659-683
    Google Scholar
  • 27. Goldberg A.D., Allis C.D., Bernstein E.: Epigenetics: a landscapetakes shape. Cell, 2007; 128: 635-638
    Google Scholar
  • 28. Gopalakrishnan S., Van Emburgh B.O., Robertson K.D.: DNAmethylation in development and human disease. Mutat. Res., 2008;647: 30-38
    Google Scholar
  • 29. Gu T.P., Guo F, Yang H.,Wu H.P., Xu G.F., Liu W., Xie Z.G., Shi L.,He X., Jin S., Iqbal K., Shi Y.g., Deng Z., Szabó P.E., Pfeifer G.P., Li J.,Xu G.L.: The role of Tet3 DNA dioxygenase in epigenetic reprogrammingby oocytes. Nature, 2011; 477: 606-610
    Google Scholar
  • 30. Guibert S., Forné T., Weber M.: Global profiling of DNA methylationerasure in mouse primordial germ cells. Genome Res., 2012;22: 633-641
    Google Scholar
  • 31. Guo J., Su Y., Zhong C., Ming G.L., Song H.: Hydroxylation of 5methylcytosine by TET1 promotes active DNA demethylation in theadult brain. Cell, 2011; 145: 423-434
    Google Scholar
  • 32. Han Z., Niu T., Chang J., Lei X., Zhao M., Wang Q., Cheng W., WangJ., Feng Y., Chai J.: Crystal structure of the FTO protein reveals basisfor its substrate specificity. Nature, 2010; 464: 1205-1209
    Google Scholar
  • 33. Hattori N., Abe T., Hattori N., Suzuki M., Matsuyama T., Yoshida S.,Li E., Shiota K.: Preference of DNA methyltransferases for CpG islandsin mouse embryonic stem cells. Genome Res., 2004; 14: 1733-1740
    Google Scholar
  • 34. He Y.F., Li B.Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., ChenZ., Li L., Sun Y., Li X., Dai Q., Song C.X., Zhang K., He C., Xu G.L.: Tet–mediated formation of 5- carboxylcytosine and its excision by TDGin mammalian DNA. Science, 2011; 333: 1303-1307
    Google Scholar
  • 35. Hendrich B., Hardeland U., Ng H.H., Jiricny J., Bird A.: The thymineglycosylase MBD4 can bind to the product of deamination atmethylated CpG sites. Nature, 1999; 401: 301-304
    Google Scholar
  • 36. Hermann A., Gowher H., Jeltsch A.: Biochemistry and biologyof mammalian DNA methyltransferases. Cell. Mol. Life Sci., 2004;61: 2571-2587
    Google Scholar
  • 37. Hermann A., Goyal R., Jeltsch A.: The Dnmt1 DNA-(cytosine–C5)-methyltransferase methylates DNA processively with high preferencefor hemimethylated target sites. J. Biol. Chem., 2004; 279:48350-48359
    Google Scholar
  • 38. Herrera B.M., Keildson S., Lindgren C.M.: Genetics and epigeneticsof obesity. Maturitas, 2011; 69: 41-49
    Google Scholar
  • 39. Hu J.L., Zhou B.O., Zhang R.R., Zhang K.L., Zhou J.Q., Xu G.L.: TheN-terminus of histone H3 is required for de novo DNA methylationin chromatin. Proc. Natl. Acad. Sci. USA, 2009; 106: 22187-22192
    Google Scholar
  • 40. Iqbal K., Jin S.G., Pfeifer G.P., Szabó P.E.: Reprogramming of thepaternal genome upon fertilization involves genome-wide oxidationof 5 methylcytosine. Proc. Natl. Acad. Sci. USA, 2011; 108: 3642-3647
    Google Scholar
  • 41. Jair K.W., Bachman K.E., Suzuki H., Ting A.H., Rhee I., Yen R.W.,Baylin S.B., Schuebel K.E.: De novo CpG island methylation in humancancer cells. Cancer Res., 2006; 66: 682-692
    Google Scholar
  • 42. Jeltsch A.: Molecular enzymology of mammalian DNA methyltransferases.Curr. Top. Microbiol. Immunol., 2006; 301: 203-225
    Google Scholar
  • 43. Jia D., Jurkowska R.Z., Zhang X., Jeltsch A., Cheng X.: Structureof Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation.Nature, 2007; 449: 248-251
    Google Scholar
  • 44. Jones P.A.: Functions of DNA methylation: islands, start sites,gene bodies and beyond. Nat. Rev. Genet., 2012; 13: 484-492
    Google Scholar
  • 45. Karlin S., Burge C.: Dinucleotide relative abundance extremes:a genomic signature. Trends Genet., 1995; 11: 283-290
    Google Scholar
  • 46. Kelly T., Yang1 W., Chen C.S., Reynolds K., He J.: Global burdenof obesity in 2005 and projections to 2030. Int. J. Obesity, 2008; 32:1431-1437
    Google Scholar
  • 47. Klose R.J., Bird A.P.: Genomic DNA methylation: the mark andits mediators. Trends Biochem. Sci., 2006; 31: 89-97
    Google Scholar
  • 48. Kral J.G., Biron S., Simard S., Hould F.S., Lebel S., Marceau S.,Marceau P.: Large maternal weight loss from obesity surgery preventstransmission of obesity to children who were followed for 2to 18 years. Pediatrics, 2006; 118: e1644-e1649
    Google Scholar
  • 49. Larder R., Cheung M.K., Tung Y.C., Yeo G.S., Coll A.P.: Where togo with FTO? Trends Endocrinol. Metab. 2011; 22: 53-59
    Google Scholar
  • 50. Lei H., Oh S.P., Okano M., Jüttermann R., Goss K.A., Jaenisch R.,Li E.: De novo DNA cytosine methyltransferase activities in mouseembryonic stem cells. Development, 1996; 122: 3195-3205
    Google Scholar
  • 51. Li E., Bestor T.H., Jaenisch R.: Targeted mutation of the DNAmethyltransferase gene results in embryonic lethality. Cell, 1992;69: 915-926
    Google Scholar
  • 52. Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., TontiFilippiniJ., Nery J.R., Lee L., Ye Z., Ngo Q.M., Edsall L., AntosiewiczBourgetJ., Stewart R., Ruotti V., Millar A.H., Thomson J.A., Ren B.,Ecker J.R.: Human DNA methylomes at base resolution show widespreadepigenomic differences. Nature, 2009; 462: 315-322
    Google Scholar
  • 53. Maiti A., Drohat A.C.: Thymine DNA glycosylase can rapidly excise
    Google Scholar
  • 54. Mato J.M., Alvarez L., Ortiz P., Pajares M.A.: S-adenosylmethioninesynthesis: molecular mechanisms and clinical implications.Pharmacol. Ther., 1997; 73: 265-280
    Google Scholar
  • 55. Münzel M., Globisch D., Carell T.: 5-Hydroxymethylcytosine,the sixth base of the genome. Angew. Chem. (Int. Ed. Engl.), 2011;50: 6460-6468
    Google Scholar
  • 56. Okano M., Li E.: Genetic analyses of DNA methyltransferasegenes in mouse model system. J. Nutr., 2002; 132: 2462S-2465S
    Google Scholar
  • 57. Olszewska M., Kurpisz M.: Metylacja i jej rola regulacyjna wobecrodzicielskiego piętna genomowego. Postępy Hig. Med. Dośw.,2010; 64: 642-649
    Google Scholar
  • 58. Ooi S.K., Qiu C., Bernstein E., Li K., Jia D., Yang Z., ErdjumentBromageH., Tempst P., Lin S.P., Allis C.D., Cheng X., Bestor T.H.:DNMT3L connects unmethylated lysine 4 of histone H3 to de novomethylation of DNA. Nature, 2007; 448: 714-717
    Google Scholar
  • 59. Pennings S., Allan J., Davey C.S.: DNA methylation, nucleosomeformation and positioning. Brief. Funct. Genomic Proteomic, 2005;3: 351-361
    Google Scholar
  • 60. Portela A., Esteller M.: Epigenetic modifications and humandisease. Nature Biotechnol., 2010; 28: 1057-1068
    Google Scholar
  • 61. Qiu A., Jansen M., Sakaris A., Min S.H., Chattopadhyay S., Tsai E.,Sandoval C., Zhao R., Akabas M.H., Goldman I.D.: Identification of anintestinal folate transporter and the molecular basis for hereditaryfolate malabsorption. Cell, 2006; 127: 917-928
    Google Scholar
  • 62. Rakyan V.K., Blewitt M.E., Druker R., Preis J.I., Whitelaw E.: Metastableepialleles in mammals. Trends Genet., 2002; 18: 348-351
    Google Scholar
  • 63. Rivera R.M., Ross J.W.: Epigenetics in fertilization and preimplantationembryo development. Prog. Biophys. Mol. Biol., 2013;113: 423-432
    Google Scholar
  • 64. Rubin B.S., Murray M.K., Damassa D.A., King J.C., Soto A.M.:Perinatal exposure to low doses of bisphenol A affects body weight,patterns of estrous cyclicity, and plasma LH levels. Environ. HealthPerspect., 2001; 109: 675-680
    Google Scholar
  • 65. Sasaki H., Matsui Y.: Epigenetic events in mammalian germcelldevelopment: reprogramming and beyond. Nat. Rev. Genet.,2008; 9: 129-140
    Google Scholar
  • 66. Saxonov S., Berg P., Brutlag DL.: A genome-wide analysis ofCpG dinucleotides in the human genome distinguishes two distinctclasses of promoters. Proc. Natl. Acad. Sci. USA, 2006; 103: 1412-1417
    Google Scholar
  • 67. Schär P., Fritsch O.: DNA repair and the control of DNA methylation.Prog. Drug Res., 2011; 67: 51-68
    Google Scholar
  • 68. Scuteri A., Sanna S., Chen W.M., Uda M., Albai G., Strait J., NajjarS., Nagaraja R., Orrú M., Usala G., Dei M., Lai S., Maschio A., BusoneroF., Mulas A. et al.: Genome-wide association scan shows genetic variantsin the FTO gene are associated with obesity-related traits. PLoSGenet., 2007; 3: e115
    Google Scholar
  • 69. Smith Z.D., Meissner A.: DNA methylation: roles in mammaliandevelopment. Nat. Rev. Genet., 2013; 14: 204-220
    Google Scholar
  • 70. Stanger O.: Physiology of folic acid in health and disease. Curr.Drug Metab., 2002; 3: 211-223
    Google Scholar
  • 71. Suetake I., Shinozaki F., Miyagawa J., Takeshima H., Tajima S.: DNMT3Lstimulates the DNA methylation activity of Dnmt3a and Dnmt3bthrough a direct interaction. J. Biol. Chem., 2004; 279: 27816-27823
    Google Scholar
  • 72. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., BrudnoY., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A.: Conversion of5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNAby MLL partner TET1. Science, 2009; 324: 930-935
    Google Scholar
  • 73. Vucetic Z., Carlin J.L., Totoki K., Reyes T.M.: Epigenetic dysregulationof the dopamine system in diet-induced obesity. J. Neurochem.,2012; 120: 891-898
    Google Scholar
  • 74. Vucetic Z., Kimmel J., Reye T.M.: Chronic high-fat diet drivespostnatal epigenetic regulation of μ-opioid receptor in the brain.Neuropsychopharmacology, 2011; 36: 1199-1206
    Google Scholar
  • 75. Vucetic Z., Reyes T.M.: Central dopaminergic circruitry controllingfood intake and reward: implcations for the regulation ofobesity. Wiley Interdiscip. Rev. Syst. Biol. Med., 2010; 2: 577-593
    Google Scholar
  • 76. Waterland R.A., Travisano M., Tahiliani K.G., Rached M.T., MirzaS.: Methyl donor supplementation prevents transgenerational amplificationof obesity. Int. J. Obes., 2008; 32: 1373-1379
    Google Scholar
  • 77. Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., RebhanM., Schübeler D.: Distribution, silencing potential and evolutionaryimpact of promoter DNA methylation in the human genome. Nat.Genet., 2007; 39: 457-466
    Google Scholar
  • 78. Weinhold B.: Epigenetics: the science of change. Environ. HealthPerspect., 2006; 114: 160-167
    Google Scholar
  • 79. Wossidlo, M., Nakamura T., Lepikhov K., Marques C.J., ZakhartchenkoV., Boiani M., Arand J., Nakano T., Reik W., Walter J.: 5-hydroxymethylcytosine in the mammalian zygote is linked with epigeneticreprogramming. Nat. Commun., 2011; 2: 241
    Google Scholar
  • 80. Wu S.C., Zhang Y.: Active DNA demethylation: many roads leadto Rome. Nat. Rev. Mol. Cell Biol., 2010; 11: 607-620
    Google Scholar
  • 81. Xu Y., Wu F., Tan L., Xiong L., Deng J., Barbera A.J., Zheng L.,Zhang H., Huang S., Min J., Nicholson T., Chen T., Xu G., Shi Y., ZhangK., Shi Y.G.:Genome-wide regulation of 5hmC, 5mC, and gene expressionby Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell,2011; 42: 451-464
    Google Scholar
  • 82. Yeo G.S., O’Rahilly S.: Uncovering the biology of FTO. Mol. Metab.,2012; 1: 32-36
    Google Scholar
  • 83. Yoder J.A., Walsh C.P., Bestor T.H.: Cytosine methylation and theecology of intragenomic parasites. Trends Genet., 1997; 13: 335-340
    Google Scholar
  • 84. Youngson N.A., Morris M.J.: What obesity research tells us aboutepigenetic mechanisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2013;368: 1-13
    Google Scholar
  • 85. Zhu J.K.: Active DNA demethylation mediated by DNA glycosylases.Annu. Rev. Genet., 2009; 43: 143-166
    Google Scholar
  • 86. Ziller M.J., Müller F., Liao J., Zhang Y., Gu H., Bock C., Boyle P.,Epstein C.B., Bernstein B.E., Lengauer T., Gnirke A., Meissner A.: Genomicdistribution and inter-sample variation of non-CpG methylationacross human cell types. PLoS Genet., 2011; 7: e1002389
    Google Scholar

Full text

Skip to content