Immune disorders induced by exposure to pyrethroid insecticides

COMMENTARY ON THE LAW

Immune disorders induced by exposure to pyrethroid insecticides

Justyna Skolarczyk 1 , Joanna Pekar 1 , Barbara Nieradko-Iwanicka 2

1. Studenckie Koło Naukowe przy Katedrze i Zakładzie Higieny Uniwersytetu Medycznego w Lublinie
2. Katedra i Zakład Higieny Uniwersytetu Medycznego w Lublinie; opiekun Studenckiego Koła Naukowego

Published: 2017-06-08
DOI: 10.5604/01.3001.0010.3827
GICID: 01.3001.0010.3827
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 446-453

 

Abstract

Pyrethroids are biocides, which belong to the third generation of insecticides. They are used as biocides, insecticides and medicines. These agents react selectively, because they are less harmful to birds and mammals (due to poor intestinal absorption and rapid detoxification in the body of homeothermic organisms) and they are poisonous for fish and insects.The aim of the article is to present the current state of knowledge on the effects of pyrethroids on the immune system based on the latest scientific research.The mechanism of action of pyrethroids include the delaying closure of voltage- sensitive sodium and chloride channels (including GABA- dependent channels). These compounds are neurotoxic.Studies have shown that they cause numerous immune disorders contributing to lowering of immunity in humans and animals. Exposure to pyrethroids can cause inhibition of proliferation of peripheral blood leukocytes and reducing the concentration of IgG immunolgobulines. They also cause reduced macrophages and decrease in interleukin 2 (IL-2), interleukin 8 (IL-8), interleukin 12p70 (IL-12p70), and interferon γ (IFN-γ). Some of these compounds cause increase of liver weight and increase of bone marrow cellularity, and may induce apoptosis of the thymus. Pyrethroids can cause allergies and asthma. Their immunosuppressive effects can impair host resistance against infections. Exposure to these compounds can also contribute to induction of the cancer, especially in patients with impaired immune function.

References

  • 1. Al-Damegh M.A.: Toxicological impact of inhaled electric mosquito-repellentliquid on the rat: a hematological, cytokine indications,oxidative stress and tumor markers. Inhal. Toxicol., 2013; 25: 292-297
    Google Scholar
  • 2. Bradberry S.M., Cage S.A., Proudfoot A.T., Vale J.A.: Poisoning dueto pyrethroids. Toxicol. Rev., 2005; 24: 93-106
    Google Scholar
  • 3. Costa C., Rapisarda V., Catania S., Di Nola C., Ledda C., Fenga C.:Cytokine patterns in greenhouse workers occupationally exposedto α-cypermethrin: an observational study. Environ. Toxicol. Pharmacol.,2013; 36: 796-800
    Google Scholar
  • 4. Dutta R., Das N.: Immunomodulation of serum complement (C3)and macrophages by synthetic pyrethroid fenvalerate: in vitro study.Toxicology, 2011; 285: 126-132
    Google Scholar
  • 5. Emara A.M., Draz E.I.: Immunotoxicological study of one of themost common over-the-counter pyrethroid insecticide products inEgypt. Inhal. Toxicol., 2007; 19: 997-1009
    Google Scholar
  • 6. Fenga C., Gangemi S., Catania S., De Luca A., Costa C.: IL-17 andIL-22 serum levels in greenhouse workers exposed to pesticides.Inflamm. Res., 2014; 63: 895-897
    Google Scholar
  • 7. Hadnagy W., Leng G., Sugiri D., Ranft U., Idel H.: Pyrethroids usedindoors – immune status of humans exposed to pyrethroids followinga pest control operation – a one year follow-up study. Int. J.Hyg. Environ. Health, 2003; 206: 93-102
    Google Scholar
  • 8. Hajduk E.: Stosowanie pestycydów w Polsce. http://www.pan–germany.org/download/fs_pol_pol.pdf (26.09.2015)
    Google Scholar
  • 9. Hudson N.L., Kasner E.J., Beckman J., Mehler L., Schwartz A., HigginsS., Bonnar-Prado J., Lackovic M., Mulay P., Mitchell Y., Larios L.,Walker R., Waltz J., Moraga-McHaley S., Roisman R., Calvert G.M.:Characteristics and magnitude of acute pesticide-related illnessesand injuries assosciated with pyrethrin and pyrethroid exposure – 11 states, 2000-2008. Am. J. Ind. Med., 2014; 57: 15-30
    Google Scholar
  • 10. Institóris L., Undeger U., Siroki O., Nehéz M., Dési I.: Comparisonof detection sensitivity of immuno – and genotoxicological effectsof subacute cypermethrin and permethrin exposure in rats. Toxicology,1999; 137: 47-55
    Google Scholar
  • 11. Jarecki W., Bobrecka-Jamro D.: Zużycie środków do produkcjirolniczej w Polsce w kontekście retardacji przemian rolniczejprzestrzeni produkcyjnej. Inżynieria Ekologiczna, 2013; 34: 121-128
    Google Scholar
  • 12. Jin Y., Pan X., Cao L., Ma B., Fu Z.: Embryonic exposure to cis-bifenthrinenantioselectively induces the transcription of genes relatedto oxidative stress, apoptosis and immunotoxicity in zebrafish(Danio rerio). Fish Shellfish Immunol., 2013; 34: 717-723
    Google Scholar
  • 13. Kaminski N.E., Faubert Kaplan B.L., Holsapple M.P.: Immunotoksyczność.W: Casarett&Doul Podstawy toksykologii, Klaassen C.D.,Watkins III J.B., red: Zielinska-Psuja B., Sapota A., MedPharm Polska,Wrocław 2014, 223-228
    Google Scholar
  • 14. Kumar A., Sasmal D., Sharma N.: Immunomodulatory role ofpiperine in deltamethrin induced thymic apoptosis and altered immunefunctions. Environ. Toxicol. Pharmacol., 2015; 39: 504-514
    Google Scholar
  • 15. Liu P., Wen W.H., Song X.X., Yuan W.H.: Effects of mixed cypermethrinand methylparathion on endocrine hormone levels andimmune functions in rats: I. Dose-response relationship. Wei ShengYan Jiu, 2006; 35: 257-260
    Google Scholar
  • 16. Neta G., Goldman L.R., Barr D., Apelberg B.J., Witter F.R., HaldenR.U.: Fetal exposure to chlordane and permethrin mixtures in relationto inflammatory cytokines and birth outcomes. Environ. Sci.Technol., 2011; 45: 1680-1687
    Google Scholar
  • 17. Nieradko-Iwanicka B.: Zastosowania pyretroidów jako leków,biocydów i pestycydów. Probl. Hig. Epidemiol., 2014; 95: 803-805
    Google Scholar
  • 18. Nieradko-Iwanicka B., Borzęcki A.: Effect of 28-day exposureto fenpropathrin on the activities of serum alanine transaminase and liver antioxidant enzymes in mice. Bull. Vet. Inst. Pulawy,2015; 59: 165-169
    Google Scholar
  • 19. Nieradko-Iwanicka B., Borzęcki A.: Subacute poisoning of micewith deltamethrin produces memory impairment, reduced locomotoractivity, liver damage and changes in blood morphology in themechanism of oxidative stress. Pharmacol. Rep., 2015; 67: 535-541
    Google Scholar
  • 20. Nieradko-Iwanicka B., Borzęcki A., Jodłowska-Jędrych B.: Effectof subacute poisoning with bifenthrin on locomotor activity, memoryretention, haemathological, biochemical and histopathologicalparameters in mice. J. Physiol. Pharmacol., 2015; 66: 129-137
    Google Scholar
  • 21. Polińska B., Matowicka-Karna J., Kemona H.: Cytokiny w nieswoistychzapalnych chorobach jelit. Postępy Hig. Med. Dośw., 2009;63: 389-394
    Google Scholar
  • 22. Punareewattana K., Smith B.J., Blaylock B.L., Longstreth J., SnodgrassH.L., Gogal R.M. Jr, Prater R.M., Holladay S.D.: Topical permethrinexposure inhibits antibody production and macrophage functionin C57Bl/6N mice. Food Chem. Toxicol., 2001; 39: 133-139
    Google Scholar
  • 23. Rejmer P.: Charakterystyka wybranych substancji chemicznych.W: Podstawy ekotoksykologii, red.: G. Borowski. Wydawnictwo Ekoinżynieria,Lublin 1997, 157-170
    Google Scholar
  • 24. Righi D.A., Palermo-Neto J.: Effects of type II pyrethroid cyhalothrinon peritoneal macrophage activity in rats. Toxicology,2005; 212: 98-106
    Google Scholar
  • 25. Shelley L.K., Ross P.S., Kennedy C.J.: Immunotoxic and cytotoxiceffects of atrazine, permethrin and piperonyl butoxide to rainbow trout following in vitro exposure. Fish Shellfish Immunol.,2012; 33: 455-458
    Google Scholar
  • 26. Sochocka M., Błach-Olszewska Z.: Mechanizmy wrodzonej odporności.Postępy Hig. Med. Dośw., 2005; 59: 250-258
    Google Scholar
  • 27. Soderlund D.M.: Molecular mechanisms of pyrethroid insecticideneurotoxicity: recent advances. Arch. Toxicol., 2012; 86: 165-181
    Google Scholar
  • 28. Soderlund D.M., Clark J.M., Sheets L.P., Mullin L.S., PiccirilloV.J., Sargent D., Stevens J.T., Weiner M.L.: Mechanisms of pyrethroidneurotoxicity: implications for cumulative risk assessment.Toxicology, 2002; 171: 3-59
    Google Scholar
  • 29. Wojewódzki Inspektorat Ochrony Środowiska w Zielonej Gó-rze: Doświadczenia z przebiegu likwidacji mogilników z terenuwojewództwa lubuskiego. Narada Strefowa WIOŚ-GIOŚ Warszawa10.12.2008 r. http://www.wios.warszawa.pl/download/1/417/P3.pdf(04.09.2015)
    Google Scholar
  • 30. Zhang Y., Zhao M., Jin M., Xu C., Wang C., Liu W.: Immunotoxicityof pyrethroid metabolites in an in vitro model. Environ. Toxicol.Chem., 2010; 29: 2505-2510
    Google Scholar
  • 31. Żelechowska A., Biziuk M., Wiergowski M.: Charakterystykapestycydów. W: Pestycydy – występowanie, oznaczanie i unieszkodliwianie,red.: M. Biziuk. Wydawnictwa Naukowo-Techniczne,Warszawa 2001, 15-25
    Google Scholar

Full text

Skip to content