Immunological aging and clinical consequences

REVIEW ARTICLE

Immunological aging and clinical consequences

Anna Tylutka 1 , Agnieszka Zembroń-Łacny 1

1. Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski,

Published: 2020-07-08
DOI: 10.5604/01.3001.0014.3054
GICID: 01.3001.0014.3054
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 260-271

 

Abstract

Immunosenescence is defined as the changes in the immune system associated with age. It is a progressive and irreversible process involving a decrease in the number of naïve T and B cells, NK cells cytotoxic and activity, and disruption of pro and anti-inflammatory balance by altering the production of IL-2, -4, -6, -10, -10, TNF-α, interferon γ and others. With age there is an increase in autoimmunity and generalized inflammation with simultaneous immunodeficiency, which results in greater susceptibility to infectious diseases, a decrease in reactivity to prophylactic vaccinations, the incidence of autoimmune diseases, and increased risk of infectious injury complications, exacerbation of symptoms of chronic diseases and an insufficient response to the presence of cells cancer. For years, based on the analysis of the frequency of viral and bacterial infections, immunological indicators and inflammation, attempts have been made to develop the immune risk profile (IRP) and effective methods of preventing disorders of the immune system and prolonging the functional capacity of the elderly.

References

  • 1. Al-Attar A., Presnell S.R., Clasey J.L., Long D.E., Walton R.G., SextonM., Starr M.E., Kern P.A., Peterson C.A., Lutz C.T.: Human bodycomposition and immunity: Visceral adipose tissue produces IL-15and muscle strength inversely correlates with NK cell function inelderly humans. Front. Immunol., 2018; 9: 440
    Google Scholar
  • 2. Arnon T.I., Lev M., Katz G., Chernobrov Y., Porgador A., MandelboimO.: Recognition of viral hemagglutinins by NKp44 but not byNKp30. Eur. J. Immunol., 2001; 31: 2680–2689
    Google Scholar
  • 3. Asif N., Iqbal R., Nazir C.F.: Human immune system during sleep.Am. J. Clin. Exp. Immunol., 2017; 6: 92–96
    Google Scholar
  • 4. Bancos S., Phipps R.P.: Memory B cells from older people expressnormal levels of cyclooxygenase-2 and produce higher levels of IL-6and IL-10 upon in vitro activation. Cell. Immunol., 2010; 266: 90–97
    Google Scholar
  • 5. Bender B.S., Nagel J.E., Adler W.H., Andres R.: Absolute peripheralblood lymphocyte count and subsequent mortality of elderlyman. The Baltimore longitudinal study of aging. J. Am. Geriatr. Soc.,1986; 34: 649–654
    Google Scholar
  • 6. Bulati M., Buffa S., Candore G., Caruso C., Dunn-Walters D.K., PellicanòM., Wu Y.C., Colona Romano G.: B cells and immunosenescence:A focus on IgG+IgD−CD27−(DN) B cells in aged humans. Ageing. Res.Rev., 2011; 10: 274–284
    Google Scholar
  • 7. Camous X., Pera A., Solana R., Larbi A.: NK cells in healthy agingand age-associated diseases. J. Biomed. Biotechnol., 2012; 2012: 195956
    Google Scholar
  • 8. Campos C., Pera A., Sanchez-Correa B., Alonso C., Lopez-FernandezI., Morgado S., Tarazona R., Solana R.: Effect of age and CMV onNK cell subpopulations. Exp. Gerontol., 2014; 54: 130–137
    Google Scholar
  • 9. Cano L.E., Lopera D.E.: Introduction to T and B lymphocytes. W:Autoimmunity: From Bench to Bedside, red.: J.M. Anaya, Y. Shoenfeld,A. Rojas-Villarraga, R.A. Levy, R. Cervera. El Rosario UniversityPress, Bogota (Colombia) 2013
    Google Scholar
  • 10. Carrasco Y.R., Fleire S.J., Cameron T., Dustin M.L., Batista F.D.:LFA-1/ICAM-1 interaction lowers the threshold of B cell activationby facilitating B cell adhesion and synapse formation. Immunity.,2004; 20: 589–599
    Google Scholar
  • 11. Cen L., Yang C., Huang S., Zhou M., Tang X., Li K., Guo W., WuZ., Mo M., Xiao Y., Chen X., Yang X., Huang Q., Chen C., Qu S., Xu P.:Peripheral lymphocyte subsets as a marker of Parkinson’s disease ina Chinese population. Neurosci. Bull., 2017; 33: 493–500
    Google Scholar
  • 12. Chidrawar S.M., Khan N., Chan Y.L., Nayak L., Moss P.A.: Ageingis associated with a decline in peripheral blood CD56 bright NK cells.Immun. Ageing., 2006; 3: 10
    Google Scholar
  • 13. Chong Y., Ikematsu H., Yamaji K., Nishimura M., Nabeshima S.,Kashiwagi S., Hayashi J.: CD27+ (memory) B cell decrease and apoptosis-resistant CD27− (naive) B cell increase in aged humans: Implicationsfor age-related peripheral B cell developmental disturbances.Int. Immunol., 2005; 17: 383–390
    Google Scholar
  • 14. Colonna-Romano G., Bulati M., Aquino A., Pellicanò M., VitelloS., Lio D., Candore G., Caruso C.: A double-negative (IgD−CD27−) B cellpopulation is increased in the peripheral blood of elderly people.Mech. Ageing Dev., 2009; 130: 681–690
    Google Scholar
  • 15. Cooper M.A., Fehniger T.A., Caligiuri M.A.: The biology of humannatural killer-cell subsets. Trends. Immunol., 2001; 22: 633–640
    Google Scholar
  • 16. Corley J., Shivappa N., Hébert J.R., Starr J.M., Deary I.J.: Associationsbetween dietary inflammatory index scores and inflammatorybiomarkers among older adults in the Lothian Birth Cohort 1936Study. J. Nutr. Health. Aging., 2019; 23: 628-636
    Google Scholar
  • 17. Drela N.: Immunologiczna teoria starzenia. Post. Bioch., 2014;60: 221-232
    Google Scholar
  • 18. Dunn-Walters D.K.: The ageing human B cell repertoire: A failureof selection? Clin. Exp. Immunol., 2016; 183: 50–56
    Google Scholar
  • 19. Esin S., Batoni G., Counoupas C., Stringaro A., BrancatisanoF.L., Colone M., Maisetta G., Florio W., Arancia G., Campa M.: Directbinding of human NK cell natural cytotoxicity receptor NKp44 tothe surfaces of mycobacteria and other bacteria. Infect. Immun.,2008; 76: 1719–1727
    Google Scholar
  • 20. Farr A.G., Sidman C.L.: Reduced expression of Ia antigens bythymic epithelial cells of aged mice. J. Immunol., 1984; 133: 98–103
    Google Scholar
  • 21. Flórez-Álvarez L., Hernandez J.C., Zapata W.: NK cells in HIV-1infection: From basic science to vaccine strategies. Front. Immunol.,2018; 9: 2290
    Google Scholar
  • 22. Frasca D., Diaz A., Romero M., Landin A.M., Blomberg B.B.: Ageeffects on B cells and humoral immunity in humans. Ageing Res.Rev., 2011; 10: 330–335
    Google Scholar
  • 23. Frasca D., Diaz A., Romero M., Thaller S., Blomberg B.B.: Metabolicrequirements of human pro-inflammatory B cells in aging andobesity. PLoS One, 2019; 14: e0219545
    Google Scholar
  • 24. Frasca D., Landin A.M., Riley R.L., Blomberg B.B.: Mechanismsfor decreased function of B cells in aged mice and humans. J. Immunol.,2008; 180: 2741–2746
    Google Scholar
  • 25. Fu B., Tian Z., Wei H.: Subsets of human natural killer cells andtheir regulatory effects. Immunology, 2014; 141: 483–489
    Google Scholar
  • 26. Fuentes E., Fuentes M., Alarcón M., Palomo I.: Immune systemdysfunction in the elderly. An. Acad. Bras. Cienc., 2017; 89: 285–299
    Google Scholar
  • 27. Fülop T., Larbi A., Dupuis G., Le Page A., Frost E.H., Cohen A.A.,Witkowski J.M., Franceschi C.: Immunosenescence and inflammagingas two sides of the same coin: Friends or foes? Front. Immunol.,2018; 8: 1960
    Google Scholar
  • 28. Gala K., Burdzinska A., Paczek L.: Mezenchymalne komorki macierzysteszpiku kostnego a starzenie. Post. Biol. Komórki, 2010;37: 89–106
    Google Scholar
  • 29. Geginat J., Sallusto F., Lanzavecchia A.: Cytokine-driven proliferationand differentiation of human naive, central memory, andeffector memory CD4+ T cells. J. Exp. Med., 2001; 194: 1711–1719
    Google Scholar
  • 30. Goronzy J.J., Weyand C.M.: Successful and maladaptive T cellsaging. Immunity, 2017; 46: 364–378
    Google Scholar
  • 31. Gounder S.S., Abdullah B.J., Radzuanb N.E., Zain F.D., Sait N.B.,Chua C., Subramani B.: Effect of aging on NK cell population andtheir proliferation at ex vivo culture condition. Anal. Cell. Pathol.,2018; 2018: 7871814
    Google Scholar
  • 32. Guzik T.J., Cosentino F.: Epigenetics and immunometabolismin diabetes and aging. Antioxid. Redox. Signal., 2018; 29: 257–274
    Google Scholar
  • 33. Haynes L., Maue A.C.: Effects of aging on T cell function. Curr.Opin. Immunol., 2009; 21: 414–417
    Google Scholar
  • 34. Hazeldine J., Lord J.M.: The impact of ageing on natural killercell function and potential consequences for health in older adults.Ageing. Res. Rev., 2013; 12: 1069–1078
    Google Scholar
  • 35. Hecht M.L., Rosental B., Horlacher T., Hershkovitz O., De Paz J.L.,Noti C., Schauer S., Porgador A., Seeberger P.H.: Natural cytotoxicityreceptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J. Proteome Res., 2009; 8: 712–720
    Google Scholar
  • 36. Inoue S., Saito M., Kotani J.: Immunosenescence in neurocriticalcare. J. Intensive Care, 2018; 6: 65
    Google Scholar
  • 37. Kang I., Hong M.S., Nolasco H., Park S.H., Dan J.M., Choi J.Y.,Craft J.: Age associated change in the frequency of memory CD4+ Tcells impairs long term CD4+ T cell responses to influenza vaccine.J. Immunol., 2004; 173: 673–681
    Google Scholar
  • 38. Keenan C.R., Allan R.S.: Epigenomic drivers of immune dysfunctionin aging. Aging Cell., 2019; 18: e12878
    Google Scholar
  • 39. Kolar G.R., Mehta D., Wilson P.C., Capra J.D.: Diversity of theIg repertoire is maintained with age in spite of reduced germinalcentre cells in human tonsil lymphoid tissue. Scand. J. Immunol.,2006; 64: 314–324
    Google Scholar
  • 40. Lara J., Cooper R., Nissan J., Ginty A.T., Khaw K.T., Deary I.J., LordJ.M., Kuh D., Mathers J.C.: A proposed panel of biomarkers of healthyageing. BMC Med., 2015; 13: 222
    Google Scholar
  • 41. Lee I.M., Shiroma E.J., Kamada M., Bassett D.R., Matthews C.E.,Buring J.E.: Association of step volume and intensity with all-causemortality in older women. JAMA Intern. Med., 2019; 179: 1105–1112
    Google Scholar
  • 42. Le Garff-Tavernier M., Béziat V., Decocq J., Siguret V., GandjbakhchF., Pautas E., Debré P., Merle-Beral H., Vieillard V.: Human NKcells display major phenotypic and functional changes over the lifespan. Aging Cell., 2010; 9: 527–535
    Google Scholar
  • 43. Lynch L.A., O’Connell J.M., Kwasnik A.K., Cawood T.J., O’FarrellyC., O’Shea D.B.: Are natural killer cells protecting the metabolicallyhealthy obese patient? Obesity, 2009; 17: 601–605
    Google Scholar
  • 44. Ma S., Wang C., Mao X., Hao Yi.: B cell dysfunction associatedwith aging and autoimmune diseases. Front. Immunol., 2019; 10: 318
    Google Scholar
  • 45. Malaguarnera L., Cristaldi E., Lipari H., Malaguarnera M.: Acquiredimmunity: Immunosenescence and physical activity. Eur. Rev.Aging. Phys. Act., 2008; 5: 61
    Google Scholar
  • 46. Martin V., Wu Y.C., Kipling D., Dunn-Walters D.K.: Age-relatedaspects of human IgM+ B cell heterogeneity. Ann. N. Y. Acad. Sci.,2015; 1362: 153–163
    Google Scholar
  • 47. Martorana A., Balistreri C.R., Bulati M., Buffa S., Azzarello D.M.,Camarda C., Monastero R., Caruso C., Colonna-Romano G.: Doublenegative (CD19+IgG+IgD-CD27-) B lymphocytes: a new insight fromtelomerase in healthy elderly, in centenarian offspring and in Alzheimer’sdisease patients. Immunol. Lett., 2014; 162: 303–309
    Google Scholar
  • 48. Mehr R., Melamed D.: Reversing B cell aging. Aging, 2011; 3:438–443
    Google Scholar
  • 49. Murray M.A., Chotirmall S.H.: The Impact of immunosenescenceon pulmonary disease. Mediators. Inflamm., 2015; 2015: 692546
    Google Scholar
  • 50. O’Rourke R.W., Kay T., Scholz M.H., Diggs B., Jobe B.A., LewinsohnD.M., Bakke A.C.: Alterations in T-cell subset frequency in peripheralblood in obesity. Obes. Surg., 2005; 15: 1463–1468
    Google Scholar
  • 51. O’Shea D., Cawood T.J., O’Farrelly C., Lynch L.: Natural killer cellsin obesity: Impaired function and increased susceptibility to the effectsof cigarette smoke. PLoS One., 2010; 5: e8660
    Google Scholar
  • 52. Palmer D.B.: The effect of age on thymic function. Front. Immunol.,2013; 4: 316
    Google Scholar
  • 53. Panda A., Qian F,. Mohanty S., van Duin D., Newman F.K., ZhangL., Chen S., Towle V., Belshe R.B., Fikrig E., Allore H.G., MontgomeryR.R., Shaw A.C.: Age-associated decrease in TLR function in primaryhuman dendritic cells predicts influenza vaccine response. J. Immunol.,2010; 184: 2518–2527
    Google Scholar
  • 54. Pawelec G.: Immune signatures associated with mortality differin elderly populations from different birth cohorts and countrieseven within northern Europe. Mech. Ageing Dev., 2019; 177: 182–185
    Google Scholar
  • 55. Pedersen B.K.: The physiology of optimizing health with focuson exercise as medicine. Annu Rev Physiol., 2019; 81: 607–627
    Google Scholar
  • 56. Pertovaara M., Raitala A., Lehtimäki T., Karhunen P.J., Oja S.S.,Jylhä M., Hervonen A., Hurme M.: Indoleamine 2,3-dioxygenase activityin nonagenarians is markedly increased and predicts mortality.Mech. Ageing. Dev., 2006; 127: 497–499
    Google Scholar
  • 57. Pessoa de Magalhães R.J., Vidriales M.B., Paiva B., Fernandez-Gimenez C., Garcia-Sanz R., Mateos M.V., GutierrezN.C., LecrevisseQ., Blanco J.F., Hernandez J., de las Heras N., Martinez-Lopez J., RoigM., Costa E.S., Ocio E.M., et al.: Analysis of the immune system ofmultiple myeloma patients achieving long-term disease control bymultidimensional flow cytometry. Haematologica, 2013; 98: 79–86
    Google Scholar
  • 58. Pilarski L.M., Yacyshyn B.R., Jensen G.S., Pruski E., Pabst H.F.:Beta 1 integrin (CD29) expression on human postnatal T cell subsetsdefined by selective CD45 isoform expression. J. Immunol., 1991;147: 830–837
    Google Scholar
  • 59. Pinti M., Appay V., Campisi J., Frasca D., Fülöp T., Sauce D., LarbiA., Weinberger B., Cossarizza A.: Aging of the immune system: Focuson inflammation and vaccination. Eur. J. Immunol., 2016; 46:2286–2301
    Google Scholar
  • 60. Pisegna S., Zingoni A., Pirozzi G., Cinque B., Cifone M.G., MorroneS., Piccoli M., Frati L., Palmieri G., Santoni A.: Src-dependentSyk activation controls CD69-mediated signaling and function onhuman NK cells. J. Immunol., 2002; 169: 68–74
    Google Scholar
  • 61. Ponnappan S., Ponnappan U.: Aging and immune function: Molecularmechanisms to interventions. Antioxid Redox Signal., 2011;14: 1551–1585
    Google Scholar
  • 62. Salam N., Rane S., Das R., Faulkner M., Gund R., Kandpal U., LewisV.,Mattoo H., Prabhu S., Ranganathan V.,Durdik J., George A., RathS., Bal V.: T cell ageing: Effects of age on development, survival &function. Indian. J. Med. Res., 2013; 138: 595–608
    Google Scholar
  • 63. Santos R.V., Viana V.A., Boscolo R.A., Margues V.G., SantanaM.G., Lira F.S., Tufik S., de Mello M.T.: Moderate exercise trainingmodulates cytokine profile and sleep in elderly people. Cytokine,2012; 60: 731–735
    Google Scholar
  • 64. Scholz J.L., Diaz A., Riley R.L., Cancro M.P., Frasca D.: A comparativereview of aging and B cell function in mice and humans. Curr.Opin. Immunol., 2013; 25: 504–510
    Google Scholar
  • 65. Shi Y., Yamazaki T., Okubo Y., Uehara Y., Sugane K., Agematsu K.:Regulation of aged humoral immune defense against pneumococcalbacteria by IgM memory B cell. J. Immunol., 2005; 175: 3262–3267
    Google Scholar
  • 66. Simoni M., Baldacci S., Maio S., Cerrai S., Sarno G., Viegi G.:Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis.,2015; 7: 34–45
    Google Scholar
  • 67. Solana C., Tarazona R., Solana R.: Immunosenescence of naturalkiller cells, inflammation, and Alzheimer’s disease. Int. J. Alzheimers.Dis., 2018; 2018: 3128758
    Google Scholar
  • 68. Sproston N.R., El Mohtadi M., Slevin M., Gilmore W., AshworthJ.J.: The effect of C-reactive protein isoforms on nitric oxide productionby U937 monocytes/macrophages. Front. Immunol., 2018; 9: 1500
    Google Scholar
  • 69. Szabo P., Shen S., Telford W., Weksler M.E.: Impaired rearrangementof IgH V to DJ segments in bone marrow Pro-B cells from oldmice. Cell. Immunol., 2003; 222: 78–87
    Google Scholar
  • 70. Tawinwung S., Petpiroon N., Chanvorachote P.: Blocking of type 1 angiotensin II receptor inhibits T-lymphocyte activation and IL-2production. In. Vivo, 2018; 32: 1353–1359
    Google Scholar
  • 71. Tseng H.C., Bui V., Man Y.G., Cacalano N., Jewett A.: Inductionof split anergy conditions natural killer cells to promote differentiationof stem cells through cel-cell contact and secreted factors.Front. Immunol., 2014; 5: 269
    Google Scholar
  • 72. Tsuboi I., Morimoto K., Hirabayashi Y., Li G.X., Aizawa S., MoriK.J., Kanno J., Inoue T.: Senescent B lymphopoiesis is balanced insuppressive homeostasis: Decrease in interleukin‐7 and transforminggrowth factor-β levels in stromal cells of senescence‐acceleratedmice. Exp. Biol. Med., 2004; 229: 494–502
    Google Scholar
  • 73. Urbanowicz I., Nahaczewska W., Stacherzak-Pawlik J., WoźniakM.: Starzenie się limfocytów i jego wpływ na rozwój przewlekłejbiałaczki limfocytowej. Diagn. Lab., 2013; 49: 137–144
    Google Scholar
  • 74. Weksler M.E.: Changes in the B-cell repertoire with age. Vaccine,2000; 18: 1624–1628
    Google Scholar
  • 75. Wikby A., Ferguson F., Forsey R., Thompson J., Strindhall J., LöfgrenS., Nilsson B.O., Ernerudh J., Pawelec G., Johansson B.: An immunerisk phenotype, cognitive impairment, and survival in verylate life: Impact of allostatic load in Swedish octogenarian and nonagenarianhumans. J. Gerontol. A Biol. Sci. Med. Sci., 2005; 60: 556–565
    Google Scholar
  • 76. Wikby A., Johansson B., Ferguson F.: The OCTO and NONA immunelongitudinal studies: A review of 11 years studies of Swedishvery old humans. Adv. Cell. Aging Gerontol., 2002; 13: 1–16
    Google Scholar
  • 77. Wikby A., Nilsson B.O., Forsey R., Thompson J., StrindhallJ., Löfgren S., Ernerudh J., Pawelec G., Ferguson F., Johansson B.:The immune risk phenotype is associated with IL-6 in the terminaldecline stage: Findings from the Swedish NONA immunelongitudinal study of very late life functioning. Mech. AgeingDev., 2006; 127: 695–704
    Google Scholar
  • 78. Witkowski J.M.: Mechanizmy starzenia się układu odpornościowegona niektóre choroby wieku podeszłego. Post. Bioch., 2014;60: 233–239
    Google Scholar
  • 79. Xia C., Rao X., Zhong J.: Role of T lymphocytes in type 2 diabetesand diabetes-associated inflammation. J. Diabetes. Res., 2017;2017: 6494795
    Google Scholar
  • 80. Zelle-Rieser C., Thangvadivel S., Biedermann R., Brunner A.,Stoitzner P., Willenbacher E., Greil R., Jöhrer K.: T cells in multiplemyeloma display features of exhaustion and senescence at the tumorsite. J. Hematol. Oncol., 2016; 9: 116
    Google Scholar

Full text

Skip to content