Immunosuppression – tough ally in torrid time

COMMENTARY ON THE LAW

Immunosuppression – tough ally in torrid time

Elżbieta Ograczyk 1 , Magdalena Kowalewicz-Kulbat 1 , Sebastian Wawrocki 1 , Marek Fol 1

1. Uniwersytet Łódzki, Katedra Immunologii i Biologii Infekcyjnej, Łódź

Published: 2015-12-03
DOI: 10.5604/17322693.1184554
GICID: 01.3001.0009.6601
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1299-1312

 

Abstract

Immunosuppression is a condition characterized by weakened or inhibited immune response. It occurred both in humoral and cellular response. This is related to the variable levels of deficiency for each antibody class (IgG, IgM, IgA) and a decrease in the number and function of immune cells, mainly T cells which results in the inhibition of cytokine production, signaling transduction and clonal expansion. Immunosuppressive therapy is used in many fields of medicine, such as transplantology, oncology, autoimmune disorders. Immunosuppression can be induced in several ways, by the surgical resection of the organs of the immune system, physical methods using X-rays or chemical methods using pharmacological agents. The most common way to induce immunosuppression is the administration of immunosuppressive drugs, amongst others: glucocorticoids, cytostatic drugs, immunophilin-binding agents, monoclonal antibodies. Unfortunately, the desired therapeutic effects of immunosuppression may be accompanied by a number of side effects associated with both impaired immunity (susceptibility to infections, including those caused by opportunistic microorganisms), toxic effects on the tissues (nephrotoxicity, neurotoxicity), or with a direct impact on the processes of malignancy. This harmful influence can be limited by the modification of the existing drugs, looking for new ones or developing new methods for the controlled kinetics of releasing the immunosuppressive pharmaceuticals. The personalization of immunosuppressant treatment according to genetic/genomic characteristics of individual patient represents the quite innovative look into the issue of immunosuppression.

References

  • 1. Alangari A.: Genomic and non-genomic actions of glucocorticoidsin astma. Ann. Thor. Med., 2010; 5: 133-139
    Google Scholar
  • 2. Al-Hashimi M., Scott S.W., Thompson J.P., Lambert D.G.: Opioidsand immune modulation: more questions than answers. Br. J. Anaesth.,2013; 111: 80-88
    Google Scholar
  • 3. Barańska-Rybak W., Nowicki R.: Nowe miejscowe niesteroidoweleki immunosupresyjne w leczeniu zespołu atopowego zapaleniaskóry u dzieci i dorosłych. Alerg. Astma Immun., 2003; 8: 69-77
    Google Scholar
  • 4. Barreiro C., Prieto C., Sola-Landa A., Solera E., Martínez-Castro M.,Pérez-Redondo R., García-Estrada C., Aparicio J.F., Fernández-MartínezL.T., Santos-Aberturas J., Salehi-Najafabadi Z., Rodríguez-GarcíaA., Tauch A., Martín J.F.: Draft genome of Streptomyces tsukubaensisNRRL 18488, the producer of the clinically important immunosuppressantTacrolimus (FK506). J. Bacteriol., 2012; 194: 3756-3757
    Google Scholar
  • 5. Benyamin R., Trescot A.M., Datta S., Buenaventura R., Adlaka R.,Sehgal N., Glaser S.E., Vallejo R.: Opioid complications and side effects.Pain Physician, 2008; 11: S105-S120
    Google Scholar
  • 6. Boland J.W., Foulds G.A., Ahmedzai S.H., Pockley A.G.: A preliminaryevaluation of the effects of opioids on innate and adaptivehuman in vitro immune function. BMJ Support. Palliat. Care, 2014;4: 357-367
    Google Scholar
  • 7. Börner C., Warnick B., Smida M., Hartig R., Lindquist J.A., Schraven B., Höllt V., Kraus J.: Mechanisms of opioid-mediated inhibition ofhuman T cell receptor signaling. J. Immunol., 2009; 183: 882-889
    Google Scholar
  • 8. Botnick LE, Hannon EC, Hellman S.: Limited proliferation of stemcells surviving alkylating agents. Nature, 1976; 262: 68-70
    Google Scholar
  • 9. Bradley J.R.: TNF-mediated inflammatory disease. J. Pathol. 2008;214: 149-160
    Google Scholar
  • 10. Busse W.W., Morgan W.J., Gergen P.J., Mitchell H.E., Gern J.E.,Liu A.H., Gruchalla R.S., Kattan M., Teach S.J., Pongracic J.A., ChmielJ.F., Steinbach S.F., Calatroni A., Togias A., Thompson K.M., SzeflerS.J., Sorkness C.A.: Randomized trial of omalizumab (anti-IgE) forasthma in inner-city children. N. Engl. J. Med., 2011; 364: 1005-1015
    Google Scholar
  • 11. Cantacuzene J.: Nouvelles recherches sur le monde de destructiondes vibrions dans l’organisme. Ann. Inst. Pasteur, 1898; 12: 273-300
    Google Scholar
  • 12. Cen J., Shi M., Yang Y., Fu Y., Zhou H., Wang M., Su Z., Wei Q.:Isogarcinol is a new immunosuppressant. PLoS One, 2013; 8: e66503
    Google Scholar
  • 13. Chen Y., Chu S.H., Wei T.Y., Yen T.H., Chiang Y.J., Wu C.T., ChenH.W.: Does mycophenolate mofetil increase the incidence of infectionsin stable renal transplant recipients initially treated witha two-drug regimen? Transplant. Proc., 2004; 36: 2122-2123
    Google Scholar
  • 14. Chwieśko S., Kowal-Bielecka O., Sierakowski S.: Zastosowaniecyklofosfamidu w leczeniu pacjentów z twardziną układową. PostępyHig. Med. Dośw., 2006; 60: 300-306
    Google Scholar
  • 15. Ciliao H.L., Ribeiro D.L., Camargo-Godoy R.B., Specian A.F.,Serpeloni J.M., Cólus I.M.: Cytotoxic and genotoxic effects of highconcentrations of the immunosuppressive drugs cyclosporine andtacrolimus in MRC-5 cells. Exp. Toxicol. Pathol., 2015; 67: 179-187
    Google Scholar
  • 16. Cole P.D., Zebala J.A., Kamen B.A.: Antimetabolites: a new perspective.Drug Discov. Today Ther. Strateg., 2005; 2: 337-342
    Google Scholar
  • 17. Coscia L.A., Constantinescu S., Davison J.M., Moritz M.J., ArmentiV.T.: Immunosuppressive drugs and fetal outcome. Best Pract. Clin.Obstet. Gynecol., 2014; 28: 1174-1187
    Google Scholar
  • 18. Cosío B.G., Torrego A., Adcock I.M.: Molecular mechanisms ofglucocorticoids. Arch. Bronconeumol., 2005; 41: 34-41
    Google Scholar
  • 19. Coutinho A.E., Chapman K.E.: The anti-inflammatory and immunosuppressiveeffects of glucocorticoids, recent developments andmechanistic insights. Mol. Cell. Endocrinol., 2011; 335: 2-13
    Google Scholar
  • 20. Divekar P.V., Read G., Vining L.C.: Caerulomycin, a new antibioticfrom Streptomyces caeruleus Baldacci. II. Structure. Can. J. Chem.,1967; 45: 1215-1222
    Google Scholar
  • 21. Durlik M.: Nowotwory u biorców przeszczepu nerkowego – rolazakażeń wirusowych i leczenia immunosupresyjnego. Postępy NaukMed., 2009; 10: 827-833
    Google Scholar
  • 22. Dutta S., Basak B., Bhunia B., Chakraborty S., Dey A.: Kineticsof rapamycin production by Streptomyces hygroscopicus MTCC 4003.Biotech., 2014; 4: 523-531
    Google Scholar
  • 23. Ebrahimi A., Hosseini S.A., Rahim F.: Immunosuppressive therapyin allograft transplantation: from novel insights and strategies totolerance and challenges. Centr. Eur. J. Immunol., 2014; 39: 400-409
    Google Scholar
  • 24. Fallahzadeh M.K., Namazi M.R.: Opioid-mediated immunosuppressionas a novel mechanism for the immunomodulatory effectof ultraviolet radiation. Indian J. Dermatol. Venereol. Leprol., 2009;75: 622-623
    Google Scholar
  • 25. Ferraro C., Quemeneur L., Prigent A.F., Taverne C., Revillard J.P.,Bonnefoy-Berard N.: Anthracyclines trigger apoptosis of both G0-G1 and cycling peripheral blood lymphocytes and induce massivedeletion of mature T and B cells. Cancer Res., 2000; 60: 1901-1907
    Google Scholar
  • 26. Figueiredo R.S., Wilson C.: Modern immunosuppression. Surgery,2014; 32: 344-350
    Google Scholar
  • 27. First M.R.: Immunosuppressive agents and their actions. Transplant.Proc., 2002; 34: 1369-1371
    Google Scholar
  • 28. Funk A., Divekar P.V.: Caerulomycin, a new antibiotic from Streptomycescaeruleus Baldacci: I. Production, isolation, assay and biologicalproperties. Can. J. Microbiol., 1959; 5: 317-321
    Google Scholar
  • 29. Gabryel B., Kapałka A., Sobczyk W., Łabuzek K., Gawęda A., Janas-KozikM.: Dysregulacja szlaku sygnałowego mTOR w patogeneziezaburzeń ze spektrum autystycznego. Postępy Hig. Med. Dośw.,2014; 68: 375-383
    Google Scholar
  • 30. Gifford C., Christelis N., Cheng A.: Preventing postoperativeinfection: the anaesthetist’s role. Cont. Edu. Anaesth. Crit. Care &Pain, 2011; 11: 151-156
    Google Scholar
  • 31. Grochow L.B.: Covalent-DNA binding drugs. W: Perry M.C. (red.),The Chemotherapy Source Book. Baltimore, MD: Williams & Wilkins;1996; 293-316
    Google Scholar
  • 32. Grzanka A., Jarząb J.: Niegenomowy mechanizm działania glikokortykosteroidów.Pneumonol. Alergol. Pol., 2009; 77: 387-393
    Google Scholar
  • 33. Hartl F.U., Hayer-Hartl M.: Molecular chaperones in the cytosol:from nascent chain to folded protein. Science, 2002; 295: 1852-1858
    Google Scholar
  • 34. Haubitz M.: Acute and long-term toxicity of cyclophosphamide.Transplantations Medizin, 2007; 19: 26-31
    Google Scholar
  • 35. Hsu D.C., Katelaris C.H.: Long-term management of patients takingimmunosuppressive drugs. Aust. Prescr., 2009; 32: 68-71
    Google Scholar
  • 36. Huyan X.H., Lin Y.P., Gao T., Chen R.Y., Fan Y.M.: Immunosupressiveeffect of cyclophosphamide on white blood cells and lymphocytesubpopulations from peripheral blood of Balb/c mice. Int.Immunopharmacol., 2011; 11: 1293-1297
    Google Scholar
  • 37. Ismael G.F., Rosa D.D., Mano M.S., Awada A.: Novel cytotoxicdrugs: old challenges, new solutions. Cancer Treat. Rev., 2008; 34:81-91
    Google Scholar
  • 38. Joo H.N., Kim S., Kang S., Lee K.H.: The use of immunosuppressivedrugs and legal implications in xenotransplantation. Mol. Cell.Toxicol., 2010; 6: 327-335
    Google Scholar
  • 39. Judd L.L., Schettler P.J., Brown E.S., Wolkowitz O.M., SternbergE.M., Bender B.G., Bulloch K., Cidlowski J.A., de Kloet E.R., Fardet L.,Joëls M., Leung D.Y., McEwen B.S., Roozendaal B., Van Rossum E.F.,Ahn J., Brown D.W., Plitt A., Singh G.: Adverse consequences of glucocorticoidmedication: psychological, cognitive, and behavioraleffects. Am. J. Psychiatry, 2014; 171: 1045-1051
    Google Scholar
  • 40. Kappos L., Bates D., Edan G., Eraksoy M., Garcia-Merino A., GrigoriadisN., Hartung HP., Havrdová E., Hillert J., Hohlfeld R., KremenchutzkyM., Lyon-Caen O., Miller A., Pozzilli C., Ravnborg M. i wsp.:Natalizumab treatment for multiple sclerosis: updated recommendationsfor patient selection and monitoring. Lancet Neurol., 2011;10: 745-758
    Google Scholar
  • 41. Kaur S., Srivastava G., Sharma A.N., Jolly R.S.: Novel immunosuppressiveagent caerulomycin A exerts its effect by depleting cellulariron content. Br. J. Pharmacol., 2015; 172: 2286-2299
    Google Scholar
  • 42. Kivity S., Zafrir Y., Loebstein R., Pauzner R., Mouallem M., MayanH.: Clinical characteristic and risk factors for low dose methotrexatetoxicity: a cohort of 28 patients. Autoimmun. Rev., 2014;13: 1109-1113
    Google Scholar
  • 43. Kochel I., Strządała L.: Rola białek wiążących FK506 w regulacjiaktywności czynników transkrypcyjnych w komórkach T. PostępyHig. Med. Dośw., 2004; 58: 118-127
    Google Scholar
  • 44. Laplante M., Sabatini D.: mTOR signaling in growth control anddisease. Cell, 2012; 149: 274-293
    Google Scholar
  • 45. Lawen A.: Biosynthesis of cyclosporins and other natural peptidylpropyl cis/trans isomerase inhibitors. Biochim. Biophys. Acta,2015; 1850: 2111-2120
    Google Scholar
  • 46. Leszczyński P., Pawlak-Buś K.: Czy pacjenta z reumatoidalnymzapaleniem stawów można leczyć dwoma lekami biologicznymi jednocześnie?Ann. Acad. Med. Stetin., 2010; 56: 15-20
    Google Scholar
  • 47. Lian Q., Cheng Y., Zhong C., Wang F.: Inhibition of the IgE-mediated activation of RBL-2H3 cells by TIPP, a novel thymic immunosuppressivepentapeptide. Int. J. Mol. Sci., 2015; 16: 2252-2268
    Google Scholar
  • 48. Mackiewicz S.: Glikokortykosteroidy – mity i fakty. Reumatologia,2007; 45: 198-204
    Google Scholar
  • 49. Manzia T.M., Angelico R., Ciano P., Mugweru J., Owusu K., SforzaD., Toti L., Tisone G.: Impact of immunosuppression minimizationand withdrawal in long-term hepatitis C virus liver transplant recipients.World J. Gastroenterol., 2014; 20: 12217-12225
    Google Scholar
  • 50. Misiura K.: Leki oksazafosforinanowe. Poszukiwanie nowychpochodnych, badania metabolizmu i stosowanie nowych strategiiterapeutycznych. Postępy Hig. Med. Dośw., 2004; 58: 463-471
    Google Scholar
  • 51. Moghadam-Kia S., Werth V.P.: Prevention and treatment of systemicglucocorticoid side effects. Int. J. Dermatol., 2010; 49: 239-248
    Google Scholar
  • 52. Mueller X.M.: Drug immunosuppression therapy for adult hearttransplantation. Part 2: clinical applications and results. Ann. Thorac.Surg., 2004; 77: 363-371
    Google Scholar
  • 53. Nash P.T., Florin T.H.: Tumour necrosis factor inhibitors. Med.J. Aust., 2005; 183: 205-208
    Google Scholar
  • 54. Nevozhay D., Kańska U., Budzyńska R., Boratyński J.: Współczesnystan badań nad koniugatami i innymi systemami dostarczanialeków w leczeniu schorzeń nowotworowych i innych jednostek chorobowych.Postępy Hig. Med. Dośw., 2007; 61: 350-360
    Google Scholar
  • 55. Norman D.J.: Mechanisms of action and overview of OKT3. Ther.Drug Monit., 1995; 17: 615-620
    Google Scholar
  • 56. Olczak-Kowalczyk D., Bedra B., Śmirska E., Pawłowska J., GrendaR.: Zmiany w jamie ustnej u pacjentów po transplantacji narządówunaczynionych w zależności od rodzaju stosowanej immunosupresji– badanie pilotażowe. Czas. Stomatol., 2006; 11: 759-768
    Google Scholar
  • 57. Oliveira V.D., Zankl H., Rath T.: Mutagenic and cytotoxic effectsof immunosuppressive drugs on human lymphocyte cultures. Exp.Clin. Transplant., 2004; 2: 273-279
    Google Scholar
  • 58. Olson R.D., Headley M.B., Hodzic A., Walsh G.M., Wingett D.G.:In vitro and in vivo immunosuppressive activity of a novel anthracycline,13-deoxy, 5-iminodoxorubicin. Int. Immunopharmacol.,2007; 7: 734-743
    Google Scholar
  • 59. Payne S., Miles D.: Mechanisms of anticancer drugs. W: ScottBrown’sOtorhinolaryngology: Head and Neck Surgery 7thEdition,t.1, red.: M.J. Gleeson, CRC Press Taylor & Francis Group, London2008, 34-46
    Google Scholar
  • 60. Peters G.J., van der Wilt C.L., van Moorsel C.J.A., Kroep J.R., BergmanA.M., Ackland S.P.: Basis for effective combination cancer chemotherapywith antimetabolites. Pharmacol. Ther., 2000; 87: 227-253
    Google Scholar
  • 61. Pillans P.: Immunosuppressants – mechanisms of action andmonitoring. Aust. Prescr., 2006; 29: 99-101
    Google Scholar
  • 62. Płużański A.: Słownik terminów onkologicznych. GastroenterologiaKliniczna, 2010; 2: 117-120
    Google Scholar
  • 63. Polman C.H., O’Connor P.W., Havrdova E., Hutchinson M., KapposL, Miller D.H., Phillips J.T., Lublin F.D., Giovannoni G., Wajgt A.,Toal M., Lynn F., Panzara M.A., Sandrock A.W.; AFFIRM Investigators:A randomized, placebo-controlled trial of natalizumab for relapsingmultiple sclerosis. N. Engl. J. Med., 2006; 354: 899-910
    Google Scholar
  • 64. Ponticelli C., Tarantino A., Campise M., Montagnino G., AroldiA., Passerini P.: From cyclosporine to the future. Transplant. Proc..2004; 36: 557S-560S
    Google Scholar
  • 65. Radzikowska E.: Zapalenia płuc w immunosupresji – ogólne problemykliniczne. Pneumonol. Alergol. Pol., 2010; 78: 236-243
    Google Scholar
  • 66. Rainiene T.: Immunosuppression in the past and today. ActaMed. Lituanica, 2005; 12: 10-17
    Google Scholar
  • 67. Rathee P., Chaudhary H., Rathee S., Rathee D., Kumar V.: Immunosuppressants:a Review. Pharma Innovation J., 2012; 1: 90-101
    Google Scholar
  • 68. Rivinius R., Helmschrott M., Ruhparwar A., Schmack B., KleinB., Erbel C., Gleissner C.A., Akhavanpoor M., Frankenstein L., DarcheF.F., Thomas D., Ehlermann P., Bruckner T., Katus H.A., Doesch A.O.:Analysis of malignancies in patients after heart transplantation withsubsequent immunosuppressive therapy. Drug. Des. Devel. Ther.,2014; 9: 93-102
    Google Scholar
  • 69. Rusinek B., Obtułowicz K., Czarnobilska E.: Receptor glikokortykosteroidowyi molekularny mechanizm działania glikokortykosteroidóww astmie oskrzelowej. Alergologia. Immunologia, 2010;7: 39-43
    Google Scholar
  • 70. Sandborn W.J., Colombel J.F., Enns R., Feagan B.G., Hanauer S.B.,Lawrance I.C., Panaccione R., Sanders M., Schreiber S., Targan S., vanDeventer S., Goldblum R., Despain D., Hogge G.S., Rutgeerts P.: Natalizumabinduction and maintenance therapy for Crohn’s disease.N. Engl. J. Med., 2005; 353: 1912-1925
    Google Scholar
  • 71. Sassoon I., Blanc V.: Antibody-drug conjugate (ADC) clinicalpipeline: a review. Methods Mol. Biol., 2013; 1045: 1-27
    Google Scholar
  • 72. Schweingruber N., Haine A., Tiede K., Karabinskaya A., van denBrandt J., Wüst S., Metselaar J.M., Gold R., Tuckermann J.P., ReichardtH.M., Lühder F.: Liposomal encapsulation of glucocorticoids alterstheir mode of action in the treatment of experimental autoimmuneencephalomyelitis. J. Immunol., 2011; 187: 4310-4318
    Google Scholar
  • 73. Sebastiani M., Anelli M.G., Atzeni F., Bazzani C., Farina I., FedeleA.L., Favalli E.G., Fineschi I., Cino N., Dal Forno I., Gasparini S., CassaraE., Giardina R., Bruschi E., Addimanda O. i wsp.: Efficacy and safetyof rituximab with and without methotrexate in the treatment ofrheumatoid arthritis patients: results from the GISEA register. JointBone Spine, 2014; 81: 508-512
    Google Scholar
  • 74. Siena S., Castro-Malaspina H., Gulati S.C., Lu L., Colvin M.O.,Clarkson B.D., O’Reilly R.J., Moore M.A.: Effects of in vitro purgingwith 4-hydroperoxycyclophosphamide on the hematopoieticand microenvironmental elements of human bone marrow. Blood,1985; 65: 655-662
    Google Scholar
  • 75. Smorenburg C.H., Sparreboom A., Bontenbal M., Verweij J.: Combinationchemotherapy of the taxanes and antimetabolites: its useand limitations. Eur. J. Cancer, 2001; 37: 2310-2323
    Google Scholar
  • 76. Stefanowicz J., Ruckemann-Dziurdzińska K., Owczuk R., Iżycka-Świeszewska E., Balcerska A.: Nefrotoksyczność pochodnych iperytuazotowego (ifosfamid, cyklofosfamid, trofosfamid) u dzieci. Nefrol.Dial. Pol., 2011; 15: 247-251
    Google Scholar
  • 77. Steiner R.W., Awdishu L.: Steroids in kidney transplant patients.Semin. Immunopathol., 2011; 33: 157-167
    Google Scholar
  • 78. Swaminathan S., Riminton S.: Monoclonal antibody therapy fornon-malignant disease. Aust. Presc., 2006; 29: 130-133
    Google Scholar
  • 79. Szczepański L., Szczepańska-Szerej A.: Postępująca wieloogniskowaleukoencefalopatia a leczenie biologiczne. Reumatologia,2008; 2: 91-94
    Google Scholar
  • 80. Szuławska A., Czyż M.: Molekularne mechanizmy działania antracyklin.Postępy Hig. Med. Dośw., 2006; 60: 78-100
    Google Scholar
  • 81. Thell K., Hellinger R., Schabbauer G., Gruber C.W.: Immunosuppressivepeptides and their therapeutic applications. Drug Discov.Today, 2014; 19: 645-653
    Google Scholar
  • 82. Trefler J., Matyska-Piekarska E., Łącki J.K.: Rola cyklofosfamiduw leczeniu reumatoidalnego zapalenia stawów i jego powikłań. Pol.Merkur. Lekarski, 2007; 132: 566-570
    Google Scholar
  • 83. Trevillian P.: Immunosuppressants – clinical applications. Aust.Prescr., 2006; 29: 102-108
    Google Scholar
  • 84. Vallejo R., de Leon-Casasola O., Benyamin R.: Opioid therapyand immunosuppression: a review. Am. J. Ther., 2004; 11: 354-365
    Google Scholar
  • 85. Varga G., Ehrchen J., Brockhausen A., Weinhage T., Nippe N., BelzM., Tsianakas A., Ross M., Bettenworth D., Spieker T., Wolf M., LippeR., Tenbrock K., Leenen P.J., Roth J., Sunderkötter C.: Immune suppressionvia glucocorticoid-stimulated monocytes: a novel mechanism to cope with inflammation. J. Immunol., 2014; 193: 1090-1099
    Google Scholar
  • 86. Vasudevan D., Gopalan G., Kumar A., Garcia V.J., Luan S., SwaminathanK.: Plant immunophilins: a review of their structure-functionrelationship. Biochim. Biophys. Acta, 2014; 14: 3-10
    Google Scholar
  • 87. Verma S., Miles D., Gianni L., Krop I.E., Welslau M., Baselga J.,Pegram M., Oh D.Y., Diéras V., Guardino E., Fang L., Lu M.W., Olsen S.,Blackwell K.: Trastuzumab emtansine for HER2-positive advancedbreast cancer. N. Engl. J. Med., 2012; 367: 1783-1791
    Google Scholar
  • 88. Wang R.E., Liu T., Cao Y., Du J., Luo X., Deshmukh V., Kim C.H.,Lawson B.R., Tremblay M.S., Young T.S., Kazane S.A., Wang F., SchultzP.G.: An immunosuppressive antibody-drug conjugate. J. Am. Chem.Soc., 2015; 137: 3229-3232
    Google Scholar
  • 89. Wang X., Tang X., Xu D.: Immunosuppressive effect of mycophenolatemefetil with two different dosages in cadaveric renaltransplantation: a short study. Transplant. Proc., 1998; 30: 3573-3574
    Google Scholar
  • 90. Wu C.H., Wu T.C., Liu F.L., Sytwu H.K., Chang D.M.: TNF-α inhibitorreverse the effects of human umbilical cord-derived stem cellson experimental arthritis by increasing immunosuppression. Cell.Immunol., 2012; 273: 30-40
    Google Scholar
  • 91. Younes A., Bartlett N.L., Leonard J.P., Kennedy D.A., Lynch C.M.,Sievers E.L., Forero-Torres A.: Brentuximab Vedotin (SGN-35) for relapsedCD30-positive lymphomas. N. Engl. J. Med., 2010; 363: 1812-1821
    Google Scholar
  • 92. Zaza G., Granata S., Tomei P., Dalla-Gassa A., Lupo A.: Personalizationof the immunosuppressive treatment in renal transplantrecipients: the great challenge in „Omics” medicine. Int. J. Mol. Sci.,2015; 16: 4281-4305
    Google Scholar
  • 93. Zhang E.Y., Xiong J., Parker B.L., Chen A.Y., Fields P.E., Ma X., QiuJ., Yankee T.M.: Depletion and recovery of lymphoid subsets followingmorphine administration. Br. J. Pharmacol., 2011; 164: 1829-1844
    Google Scholar
  • 94. Żółtowska K., Sobczak M.: Perspektywy wykorzystania polimerowychnośników epidoksorubicyny i cyklofosfamidu w terapiinowotworów. Polim. Med., 2014; 44: 51-62
    Google Scholar

Full text

Skip to content