Interactions of proliferation and differentiation signaling pathways in myogenesis

COMMENTARY ON THE LAW

Interactions of proliferation and differentiation signaling pathways in myogenesis

Marta Milewska 1 , Kamil Grabiec 1 , Katarzyna Grzelkowska-Kowalczyk 1

1. Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Published: 2014-05-08
DOI: 10.5604/17322693.1101617
GICID: 01.3001.0003.1228
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 517-527

 

Abstract

The commitment of myogenic cells in skeletal muscle differentiation requires earlier irreversible interruption of the cell cycle. At the molecular level, several key regulators of the cell cycle have been identified: cyclin-dependent kinases and their cyclins stimulate the cell cycle progress and its arrest is determined by the activity of cdk inhibitors (Cip/Kip and INK protein families) and pocket protein family: Rb, p107 and p130. The biological activity of cyclin/cdk complexes allows the successive phases of the cell cycle to occur. Myoblast specialization, differentiation and fusion require the activity of myogenic regulatory factors, which include MyoD, myogenin, Myf5 and MRF4. MyoD and Myf5 play a role in muscle cell specialization, myogenin controls the differentiation process, whereas MRF4 is involved in myotube maturation. The deregulation of the cell cycle leads to uncontrolled proliferation, which antagonizes the functions of myogenic factors and it explains the lack of differentiation-specific gene expression in dividing cells. Conversely, the myogenic factor MyoD seems to cooperate with cell cycle inhibitors leading to inhibition of cell cycle progress and commitment to the differentiation process. The hypophosphorylated form of Rb and cdk inhibitors play an important role in permanent arrest of the cell cycle in differentiated myotubes. Furthermore, cyclin/cdk complexes not only regulate cell division by phosphorylation of several substrates, but may also control other cellular processes such as signal transduction, differentiation and apoptosis. Beyond regulating the cell cycle, Cip/Kip proteins play an important role in cell death, transcription regulation, cell fate determination, cell migration and cytoskeletal dynamics. The article summarizes current knowledge concerning the interactions of intracellular signaling pathways controlling crucial stages of fetal and regenerative myogenesis.

References

  • 1. Bejsovec A.: Wnt pathway activation: new relations and locations.Cell, 2005; 120: 11-14
    Google Scholar
  • 2. Besson A., Assoian R.K., Roberts J.M.: Regulation of the cytoskeleton:an oncogenic function for CDK inhibitors? Nat. Rev. Cancer, 2004;4: 948-955
    Google Scholar
  • 3. Besson A., Dowdy S.F., Roberts J.M.: CDK inhibitors: cell cycle regulatorsand beyond. Dev. Cell, 2008; 14: 159-169
    Google Scholar
  • 4. Besson A., Gurian-West M., Schmidt A., Hall A., Roberts J.M.: p27Kip1modulates cell migration through the regulation of RhoA activation.Genes Dev., 2004; 18: 862-876
    Google Scholar
  • 5. Blais A., Tsikitis M., Acosta-Alvear D., Sharan R., Kluger Y., DynlachtD.: An initial blueprint for myogenic differentiation. Genes Dev., 2005;19: 553-569
    Google Scholar
  • 6. Blomen V.A., Boonstra J.: Cell fate determination during G1 phaseprogression. Cell. Mol. Life Sci., 2007; 64: 3084-3104
    Google Scholar
  • 7. Cao Y., Kumar R.M., Penn B.H., Berkes C.A., Kooperberg C., BoyerL.A., Young R.A., Tapscott S.J.: Global and gene-specific analyses showdistinct roles for Myod and Myog at a common set of promoters. EMBOJ., 2006; 25: 502-511
    Google Scholar
  • 8. Carnac G., Fajas L., L’Honoré A., Sardet C., Lamb N.J., FernandezA.: The retinoblastoma-like protein p130 is involved in the determinationof reserve cells in differentiating myoblasts. Curr. Biol., 2000;10: 543-546
    Google Scholar
  • 9. Cenciarelli C., De Santa F., Puri P.L., Mattei E., Ricci L., Bucci F., FelsaniA., Caruso M.: Critical role played by cyclin D3 in the MyoD-mediatedarrest of cell cycle during myoblast differentiation. Mol. Cell. Biol.,1999; 19: 5203-5217
    Google Scholar
  • 10. Chang T.H., Primig M., Had Chouel J., Tajbakhsh S., Rocancourt D.,Fernandez A., Kappler R., Scherthan H., Buckingham M.: An enhancerdirects differential expression of the linked Mrf4 and Myf5 myogenicregulatory genes in the mouse. Dev. Biol., 2004; 269: 595-608
    Google Scholar
  • 11. Cottone G., Baldi A., Palescandolo E., Manente L., Penta R., PaggiM.G., De Luca A.: PKN is a novel partner of cyclin T2a in muscle differentiation.J. Cell Physiol., 2006; 207: 232-237
    Google Scholar
  • 12. Crescenzi M., Fleming T.P., Lassar A.B., Weintraub H., Aaronson S.A.:MyoD induces growth arrest independent of differentiation in normaland transformed cells. Proc. Natl. Acad. Sci USA, 1990; 87: 8442-8446
    Google Scholar
  • 13. De Falco G., Comes F., Simone C.: pRb: master of differentiation.Coupling irreversible cell cycle withdrawal with induction of muscle–specific transcription. Oncogene, 2006; 25: 5244-5249
    Google Scholar
  • 14. De Luca A., De Falco M., Baldi A., Paggi M.G.: Cyclin T. Three formsfor different roles in physiological and pathological functions. J. CellPhysiol., 2003; 194: 101-107
    Google Scholar
  • 15. De Santa F., Albini S., Mezzaroma E., Baron L., Felsani A., Caruso M.:pRb-dependent cyclin D3 protein stabilization is required for myogenicdifferentiation. Mol. Cell. Biol., 2007; 27: 7248-7265
    Google Scholar
  • 16. Degens H.: Age-related skeletal muscle dysfunction: causes and mechanisms.J. Musculoskelet. Neuronal Interact., 2007; 7: 246-252
    Google Scholar
  • 17. Delgado I., Huang X., Jones S., Zhang L., Hatcher R., Gao B., Zhang P.:Dynamic gene expression during the onset of myoblast differentiationin vitro. Genomics, 2003; 82: 109-121
    Google Scholar
  • 18. Dynlacht B.D.: Regulation of transcription by protein that controlthe cell cycle. Nature, 1997; 389: 149-152
    Google Scholar
  • 19. Etienne-Manneville S., Hall A.: Rho GTPases in cell biology. Nature,2002; 420: 629-635
    Google Scholar
  • 20. Ferri P., Barbieri E., Burattini S., Guescini M., D’Emilio A., BiagiottiL., Del Grande P., De Luca A., Stocchi V., Falcieri E.: Expression and subcellularlocalization of myogenic regulatory factors during the differentiationof skeletal muscle C2C12 myoblasts. J. Cell. Biochem., 2009;108: 1302-1317
    Google Scholar
  • 21. Figueroa A., Cuadrado A., Fan J., Atasoy U., Muscat G.E., MuñozCanovesP., Gorospe M., Muñoz A.: Role of HuR in skeletal myogenesisthrough coordinate regulation of muscle differentiation genes. Mol.Cell. Biol., 2003; 23: 4991-5004
    Google Scholar
  • 22. Frey M.R., Golovin A., Polk D.B.: Epidermal growth factor-stimulatedintestinal epithelial cell migration requires Src family kinase-dependentp38 MAPK signaling. J. Biol. Chem., 2004; 279: 44513-44521
    Google Scholar
  • 23. Gaubatz S., Lindeman G.J., Ishida S., Jakoi L., Nevins J.R., LivingstonD.M., Rempel R. E.: E2F4 and E2F5 play an essential role in pocketprotein-mediated G1 control. Mol. Cell, 2000; 6: 729-735
    Google Scholar
  • 24. Gill R.M., Hamel P.A.: Subcellular compartmentalization of E2Ffamily members is required for maintenance of the postmitotic statein terminally differentiated muscle. J. Cell Biol., 2000; 148: 1187-1201
    Google Scholar
  • 25. Gougelet A., Colnot S.: A complex interpaly between Wnt/β-cateninsignalling and the cell cycle in the adult liver. Int. J. Hepatol. 2012; 2012:816125
    Google Scholar
  • 26. Gu W., Schneider J.W., Condorelli G., Kaushal S., Mahdavi V., Nadal-GinardB.: Interaction of myogenic factors and the retinoblastomaprotein mediates muscle cell commitment and differentiation. Cell,1993; 72: 309-324
    Google Scholar
  • 27. Guttridge D.C., Albanese C., Reuther J.Y., Pestell R.G., Baldwin A.S.Jr.:NF-κB controls cell growth and differentiation through transcriptionalregulation of cyclin D1. Mol. Cell. Biol., 1999; 19: 5785-5799
    Google Scholar
  • 28. Hermann C.H., Mancini M.A.: The Cdk9 and cyclin T subunits ofTAK/P-TEFb localize to splicing factor-rich nuclear speckle regions. J.Cell Sci., 2001; 114: 1491-1503
    Google Scholar
  • 29. Huh M.S., Parker M.H., Scimè A., Parks R., Rudnicki M.A.: Rb isrequired for progression through myogenic differentiation but notmaintenance of terminal differentiation. J. Cell Biol., 2004; 166: 865-876
    Google Scholar
  • 30. Ishibashi J., Perry R.L., Asakura A., Rudnicki M.A.: MyoD inducesmyogenic differentiation through cooperation of its NH2- and COOHterminalregions. J. Cell Biol., 2005; 171: 471-482
    Google Scholar
  • 31. Itoh Y., Masuyama N., Nakayama K., Nakayama K.I., Gotoh Y.: Thecyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migrationin the developing mouse neocortex. J. Biol. Chem., 2007; 282:390-396
    Google Scholar
  • 32. Joyce D., Albanese C., Steer J., Fu M., Bouzahzah B., Pestell R.G.:NF-kappaB and cell-cycle regulation: the cyclin connection. CytokineGrowth Factor Rev., 2001; 12: 73-90
    Google Scholar
  • 33. Kassar-Duchossoy L., Gayraud-Morel B., Gomès D., RocancourtD., Buckingham M., Shinin V., Tajbakhsh S.: Mrf4 determines skeletalmuscle identity in Myf5:Myod double-mutant mice. Nature, 2004; 431:466-471
    Google Scholar
  • 34. Kataoka Y., Matsumura I., Ezoe S., Nakata S., Takigawa E., Sato Y.,Kawasaki A., Yokota T., Nakajima K., Felsani A., Kanakura Y.: Reciprocalinhibition between MyoD and STAT3 in the regulation of growthand differentiation of myoblasts. J. Biol. Chem., 2003; 278: 44178-44187
    Google Scholar
  • 35. Kawauchi T., Chihama K., Nabeshima Y., Hoshino M.: Cdk5 phosphorylatesand stabilizes p27kip1 contributing to actin organization andcortical neuronal migration. Nat. Cell Biol., 2006; 8: 17-26
    Google Scholar
  • 36. Kitzmann M., Carnac G., Vandromme M., Primig M., Lamb N.J.,Fernandez A.: The muscle regulatory factors MyoD and Myf-5 undergodistinct cell cycle-specific expression in muscle cells. J. Cell Biol., 1998;142: 1447-1459
    Google Scholar
  • 37. Kitzmann M., Fernandez A.: Crosstalk between cell cycle regulatorsand the myogenic factor MyoD in skeletal myoblasts. Cell. Mol.Life Sci., 2001; 58: 571-579
    Google Scholar
  • 38. Kitzmann M., Vandromme M., Schaeffer V., Carnac G., Labbé J.C.,Lamb N.J., Fernandez A.: cdk1- and cdk2-mediated phosphorylation ofMyoD Ser200 in growing C2 myoblasts: role in modulating MyoD halflifeand myogenic activity. Mol. Cell. Biol., 1999; 19: 3167-3176
    Google Scholar
  • 39. Knight J.D., Kothary R.: The myogenic kinome: protein kinasescritical to mammalian skeletal myogenesis. Skelet. Muscle, 2011; 1: 29
    Google Scholar
  • 40. Langley B., Thomas M., McFarlane C., Gilmour S., Sharma M.,Kambadur R.: Myostatin inhibits rhabdomyosarcoma cell proliferationthrough an Rb-independent pathway. Oncogene, 2004; 23: 524-534
    Google Scholar
  • 41. Lee S., Helfman D.M.: Cytoplasmic p21Cip1 is involved in Ras-inducedinhibition of the ROCK/LIMK/Cofilin pathway. J. Biol. Chem.,2003; 279: 1885-1891
    Google Scholar
  • 42. Magenta A., Cenciarelli C., De Santa F., Fuschi P., Martelli F., CarusoM., Felsani A.: MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Mol. Cell. Biol., 2003; 23: 2893-2906
    Google Scholar
  • 43. Martin P.: Wound healing-aiming for perfect skin regeneration.Science, 1997; 276: 75-81
    Google Scholar
  • 44. Messina G., Blasi C., La Rocca S.A., Pompili M., Calconi A., GrossiM.: p27Kip1 acts downstream on N-cadherin-mediated cell adhesionto promote myogenesis beyond cell cycle regulation. Mol. Biol. Cell,2005; 16: 1469-1480
    Google Scholar
  • 45. Mukai H.: The structure and function of PKN, a protein kinase havinga catalytic homologous to that of PKC. J. Biochem., 2003; 133: 17-27
    Google Scholar
  • 46. Mukai H., Toshimori M., Shibata H., Takanaga H., Kitagawa M., MiyaharaM., Shimakawa M., Ono Y.: Interaction of PKN with alpha-actinin.J. Biol. Chem., 1997; 272: 4740-4746
    Google Scholar
  • 47. Nance J., Priess J.R.: Cell polarity and gastrulation in C. elegans. Development,2002; 129: 387-397
    Google Scholar
  • 48. Nguyen L., Besson A., Heng J., Schurrmans C., Teboul L., PhilpottA., Roberts J.M., Guillemot F.: p27Kip1 independently promotes neuronaldifferentiation and migration in the cerebral cortex. Genes Dev.,2006; 20: 1511-1524
    Google Scholar
  • 49. Nobes C.D., Hall A.: Rho GTPases control polarity, protrusion, andadhesion during cell movement. J. Cell Biol., 1999; 144: 1235-1244
    Google Scholar
  • 50. Novitch B.G., Spicer D.B., Kim P.S., Cheung W.L., Lassar A.B.: pRb isrequired for MEF2-dependent gene expression as well as cell-cycle arrestduring skeletal muscle differentiation. Curr. Biol., 1999; 9: 449-459
    Google Scholar
  • 51. Peng J., Zhu Y., Milton J.T., Price D.H.: Identification of multiple cyclinsubunits of human P-TEFb. Genes Dev., 1998; 12: 755-762
    Google Scholar
  • 52. Perris R.: The extracellular matrix in neural crest-cell migration.Trends Neurosci., 1997; 20: 23-31
    Google Scholar
  • 53. Petropoulos H., Skerjanc I.S.: β-catenin is essential and sufficient forskeletal myogenesis in P19 cells. J. Biol. Chem., 2002; 277: 15393-15299
    Google Scholar
  • 54. Puri P.L., Sartorelli V.: Regulation of muscle regulatory factorsby DNA-binding, interacting proteins, and post-transcriptional modifications.J. Cell Physiol., 2000; 185: 155-173
    Google Scholar
  • 55. Reynaud E.G., Guillier M., Leibovitch M.P., Leibovitch S.A.: Dimerizationof the amino terminal domain of p57Kip2 inhibits cyclin D1-cdk4kinase activity. Oncogene, 2000; 19: 1147-1152
    Google Scholar
  • 56. Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H.,Borisy G., Parsons J.T., Horwitz A.F.: Cell migration: integrating signalsfrom front to back. Science, 2003; 302: 1704-1709
    Google Scholar
  • 57. Sahai E., Olson M.F., Marshall C.J.: Cross-talk between Ras and Rhosignalling pathways in transformation favours proliferation and increasedmotility. EMBO J., 2001; 20: 755-766
    Google Scholar
  • 58. Seale P., Rudnicki M.A.: A new look at the origin, function, and„stem cell” status of muscle satellite cells. Dev. Biol., 2000; 218: 115-124
    Google Scholar
  • 59. Shen X., Collier J.M., Hlaing M., Zhang L., Delshad E.H., Bristow J.,Bernstein H.S.: Genome-wide examination of myoblast cell cycle withdrawalduring differentiation. Dev. Dyn., 2003; 226: 128-138
    Google Scholar
  • 60. Sherr C.J.: G1 phase progression: cycling on cue. Cell, 1994;79: 551-555
    Google Scholar
  • 61. Simone C., Bagella L., Bellan C., Giordano A.: Physical interaction betweenpRb and cdk9/cyclin T2 complex. Oncogene, 2002; 21: 4158-4165
    Google Scholar
  • 62. Simone C., Giordano A.: New insight in CDK9 function: from Tat toMyoD. Front. Biosci., 2001; 6: 1073-1082
    Google Scholar
  • 63. Simone C., Stiegler P., Bagella L., Pucci B., Bellan C., De Falco G., DeLuca A., Guanti G., Puri P. L., Giordano A.: Activation of MyoD-dependenttranscription by cdk9/cyclin T2. Oncogene, 2002; 21: 4137-4148
    Google Scholar
  • 64. Takahashi Y., Rayman J.B., Dynlacht B.D.: Analysis of promoter bindingby the E2F and pRB families in vivo: distinct E2F proteins mediateactivation and repression. Genes Dev., 2000; 14: 804-816
    Google Scholar
  • 65. Tanaka H., Yamashita T., Asada M., Mizutani S., Yoshikawa H., TohyamaM.: Cytoplasmic p21Cip1/Waf1 regulates neurite remodeling by inhibitingRho-kinase activity. J. Cell Biol., 2002; 158: 321-329
    Google Scholar
  • 66. Tanaka H., Yamashita T., Yachi K., Fujiwara T., Yoshikawa H., TohyamaM.: Cytoplasmic p21(Cip1/WAF1) enhances axonal regenerationand functional recovery after spinal cord injury in rats. Neuroscience,2004; 127: 155-164
    Google Scholar
  • 67. Tapscott S.J.: The circuitry of a master switch: MyoD and the regulationof skeletal muscle gene transcription. Development, 2005; 132:2685-2695
    Google Scholar
  • 68. Ungerbäck J., Elander N., Grünberg J., Sigvardsson M., Söderkvist P.:The Notch-2 gene is regulated by Wnt signaling in cultured colorectalcancer cells. PLoS One, 2011; 6: e17957
    Google Scholar
  • 69. Vial E., Sahai E., Marshall C.J.: ERK-MAPK signaling coordinatelyregulates activity of Rac1 and RhoA for tumor cell motility. CancerCell, 2003; 4: 67-79
    Google Scholar
  • 70. Vidal A., Millard S., Miller J., Koff A.: Rho activity can alter the translationof mRNA and is important for RasV12-induced transformation ina manner dependent on p27 status. J. Biol. Chem., 2002; 277: 16433-16440
    Google Scholar
  • 71. Vlach J., Hennecke S., Amati B.: Phosphorylation-dependent degradationof the cyclin-dependent kinase inhibitor p27. EMBO J., 1997;16: 5334-5344
    Google Scholar
  • 72. Wei Q., Paterson B.M.: Regulation of MyoD function in the dividingmyoblast. FEBS Lett., 2001; 490: 171-178
    Google Scholar
  • 73. Weinberg R.A.: Tumor suppressor genes. Science, 1991; 254: 1138-1146
    Google Scholar
  • 74. Weise C., Dai F., Pröls F., Ketelsen U.P., Dohrmann U., Kirsch M.,Brand-Saberi B.: Myogenin (Myf4) upregulation in trnas-differentiatingfibroblasts from a congenital myopathy with arrest of myogenesisand defects of myotube formation. Anat. Embryol., 2006; 211: 639-648
    Google Scholar
  • 75. Worthylake R.A., Lemoine S., Watson J.M., Burridge K.: RhoA is requiredfor monocyte tail retraction during transendothelial migration.J. Cell Biol., 2001; 154: 147-160
    Google Scholar
  • 76. Yokoo T., Toyoshima H., Miura M., Wang Y., Iida K.T., Suzuki H., SoneH., Shimano H., Gotoda T., Nishimori S., Tanaka K., Yamada N.: p57Kip2regulates actin dynamics by binding and translocating LIM-kinase 1 tothe nucleus. J. Biol. Chem., 2003; 278: 52919-52923
    Google Scholar
  • 77. Yoshida N., Yoshida S., Koishi K., Masuda K., Nabeshima Y.: Cell heterogeneityupon myogenic differentiation: down-regulation of MyoDand Myf-5 generates ‘reserve cells’. J. Cell Sci., 1998; 111: 769-779
    Google Scholar
  • 78. Zammit P.S., Partridge T.A., Yablonka-Reuveni Z.: The skeletal musclesatellite cell: the stem cell that came in from the cold. J. Histochem.Cytochem., 2006; 54: 1177-1191
    Google Scholar
  • 79. Zhang J.M., Wei Q., Zhao X., Paterson B.M.: Coupling of the cell cycleand myogenesis through the cyclin D1-dependent interaction of MyoDwith cdk4. EMBO J., 1999; 18: 926-933
    Google Scholar

Full text

Skip to content