Interferons: between structure and function

COMMENTARY ON THE LAW

Interferons: between structure and function

Katarzyna Bandurska 1 , Izabela Król 1 , Magdalena Myga-Nowak 1

1. Zakład Mikrobiologii i Biotechnologii, Instytut Chemii, Ochrony Środowiska i Biotechnologii, Akademia im. Jana Długosza w Częstochowie

Published: 2014-05-06
DOI: 10.5604/17322693.1101229
GICID: 01.3001.0003.1220
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 428-440

 

Abstract

Interferons are a family of proteins that are released by a variety of cells in response to infections caused by viruses. Currently, we distinguish three types of interferons. They are classified based on the nucleotide sequence, interaction with specific receptors, chromosomal location, structure and physicochemical properties. The following interferons are classified as type I: α, β, ω, κ, ε, ζ, τ, δ, ν. They are recognized and bound by a receptor formed by two peptides, IFN-αR1 and IFN-αR2. Representative of type II interferons is interferon-γ. It binds to a receptor composed of chains IFNGR-1 and IFNGR-2. The recently classified type III interferons comprise IFN-λ1, IFN-λ2, and IFN-λ3. They act on receptors formed by λR1 IFN-and IL-10R2 subunits. A high level of antiviral protection is achieved by IFN-α, IFN-β and IFN-λ. Antiviral activity of interferons is based on the induction and regulation of innate and acquired immune mechanisms. By binding to transmembrane receptors, IFN interacts with target cells mainly by activating the JAK/STAT, but also other signaling pathways. This leads to induction and activation of many antiviral agents, such as protein kinase RNA-activated (PKR), ribonuclease 2-5A pathway, and Mx proteins, as well as numerous apoptotic pathways. As a result of the protective effect of interferons, the virus binding to cells and viral particles penetration into cells is stopped, and the release of the nucleocapsid from an envelope is suppressed. Disruption of transcription and translation processes of the structural proteins prevents the formation of virions or budding of viruses, and as a result degradation of the viral mRNA; the started processes inhibit the chain synthesis of viral proteins and therefore further stimulate the immune system cells.

References

  • 1. Adolf G.R., Kalsner I., Ahorn H., Maurer-Fogy I., Cantell K.: Naturalhuman interferon-α2 is O-glycosylated. Biochem J., 1991; 276:511-518
    Google Scholar
  • 2. Adolf G.R., Maurer-Fogy I., Kalsner I., Cantell K.: Purificationand characterization of natural human interferon ω1. Two alternativecleavage sites for the signal peptidase. J Biol. Chem., 1990;265: 9290-9295
    Google Scholar
  • 3. Ank N., West H., Paludan S.R.: IFN-γ: novel antiviral cytokines. J.Interferon Cytokine Res., 2006; 26: 373-379
    Google Scholar
  • 4. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., WheelerD.L.: GenBank. Nucleic Acids Res., 2005; 33: D34-D38
    Google Scholar
  • 5. Billiau A.: Interferons: the pathways of discovery. II. Immunomodulatory,in vivo and applied aspects. J. Clin. Virol., 2007; 39: 241-265
    Google Scholar
  • 6. Bloom B.R., Bennett B.: Mechanism of a reaction in vitro associatedwith delayed-type hypersensitivity. Science, 1966; 153: 80-82
    Google Scholar
  • 7. Bream J.H., Ping A., Zhang X., Winkler C., Young H.A.: A singlenucleotide polymorphism in the proximal IFN-gamma promoteralters control of gene transcription. Genes Immun., 2002; 3: 165-169
    Google Scholar
  • 8. Capobianchi M.R., Mattana P., Mercuri F., Conciatori G., AmeglioF., Ankel H., Dianzani F.: Acidlability is not an intrinsic property ofinterferon-alpha induced by HIV-infected cells. J. Interferon Res.,1992; 12: 431-438
    Google Scholar
  • 9. Cederblad B., Gobl A.E., Alm G.V.: The induction of interferonalphaand interferon-beta mRNA in human natural interferon-producingblood leukocytes requires de novo protein synthesis. J. InterferonRes., 1991; 11: 371-377
    Google Scholar
  • 10. Chakrabarti A., Jha B.K., Silverman R.H.: New insights into therole of RNase L in innate immunity. J. Interferon Cytokine Res., 2011;31: 49-57
    Google Scholar
  • 11. Chevillard C., Henri S., Stefani F., Parzy D., Dessein A.: Two newpolymorphisms in the human interferon gamma (IFN-γ) promoter.Eur. J. Immunogenet., 2002; 29: 53-56
    Google Scholar
  • 12. Choubey D., Moudgil K.D.: Interferons in autoimmune and inflammatorydiseases: regulation and roles. J. Interferon CytokineRes., 2011; 31: 857-865
    Google Scholar
  • 13. Cutrone E.C., Langer J.A.: Identification of critical residues inbovine IFNAR-1 responsible for interferon binding. J. Biol. Chem.,2001; 276: 17140-17148
    Google Scholar
  • 14. De Maeyer E., De Maeyer-Guignard J.: Type I interferons. Int.Rev. Immunol., 1998; 17: 53-73
    Google Scholar
  • 15. Dempoya J., Matsumiya T., Imaizumi T., Hayakari R., Xing F.,Yoshida H., Okumura K., Satoh K.: Double-stranded RNA inducesbiphasic STAT1 phosphorylation by both type I interferon (IFN)-dependent and type I IFN-independent pathways. J. Virol., 2012;86: 12760-12769
    Google Scholar
  • 16. Devos R., Cheroutre H., Taya Y., Fiers W.: Isolation and characterizationof IFN-gamma mRNA derived from mitogen-induced humansplenocytes. J. Interferon Res., 1982; 2: 409-420
    Google Scholar
  • 17. Díaz M.O., Pomykala H.M., Bohlander S.K., Maltepe E., Malik K.,Brownstein B., Olopade O.I.: Structure of the human type-I interferongene cluster determined from a YAC clone contig. Genomics,1994; 22: 540-552
    Google Scholar
  • 18. Feldman S.B., Ferraro M., Zheng H.M., Patel N., Gould-Fogerite S.,Fitzgerald-Bocarsly P.: Viral induction of low frequency interferon-αproducing cells. Virology, 1994; 204: 1-7
    Google Scholar
  • 19. Flaishon L., Hershkoviz R., Lantner F., Lider O., Alon R., Levo Y., FlavellR.A., Shachar I.: Autocrine secretion of interferon γ negatively regulateshoming of immature B cells. J. Exp. Med., 2000; 192: 1381-1388
    Google Scholar
  • 20. Flores I., Mariano T.M., Pestka S.: Human interferon omega (ω)binds to the α/β receptor. J. Biol. Chem., 1991; 266: 19875-19877
    Google Scholar
  • 21. Fountoulakis M., Zulauf M., Lustig A., Garotta G.: Stoichiometryof interaction between interferon γ and its receptor. Eur. J. Biochem.,1992; 208: 781-787
    Google Scholar
  • 22. Gentles A.J., Karlin S.: Why are human G-protein-coupled receptorspredominantly intronless? Trends Genet., 1999; 15: 47-49
    Google Scholar
  • 23. George C.X., Gan Z., Liu Y., Samuel C.E.: Adenosine deaminasesacting on RNA, RNA editing, and interferon action. J. Interferon CytokineRes., 2011; 31: 99-117
    Google Scholar
  • 24. George P.M., Badiger R., Alazawi W., Foster G.R., Mitchell J.A.:Pharmacology and therapeutic potential of interferons. Pharmacol.Ther., 2012; 135: 44-53
    Google Scholar
  • 25. Gibbs V.C., Takahashi M., Aguet M., Chuntharapai A.: A negativeregulatory region in the intracellular domain of the humaninterferon-α receptor. J. Biol. Chem., 1996; 271: 28710-28716
    Google Scholar
  • 26. Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T.: Immunologia. WydawnictwoNaukowe PWN, Warszawa 2012
    Google Scholar
  • 27. González-Navajas J.M., Lee J., David M., Raz E.: Immunomodulatoryfunctions of type I interferons. Nat. Rev. Immunol., 2012;12: 125-135
    Google Scholar
  • 28. Gray P.W., Goeddel D.V.: Structure of the human immune interferongene. Nature, 1982; 298: 859-863
    Google Scholar
  • 29. Hardy M.P., Owczarek C.M., Jermiin L.S., Ejdebäck M., HertzogP.J.: Characterization of the type I interferon locus and identificationof novel genes. Genomics, 2004; 84: 331-345
    Google Scholar
  • 30. Hauptmann R., Swetly P.: A novel class of human type I interferons.Nucleic Acids Res., 1985; 13: 4739-4749
    Google Scholar
  • 31. Hayden C., Pereira E., Rye P., Palmer L., Gibson N., PalenqueM., Hagel I., Lynch N., Goldblatt J., Lesouëf P.: Mutation screeningof interferon-gamma (IFNgamma) as a candidate gene for asthma.Clin. Exp. Allergy, 1997; 27: 1412-1416
    Google Scholar
  • 32. Henri S., Stefani F., Parzy D., Eboumbou C., Dessein A., ChevillardC.: Description of three new polymorphisms in the intronicand 3’UTR regions of the human interferon gamma gene. GenesImmun., 2002; 3: 1-4
    Google Scholar
  • 33. Hertzog P.J., O’Neill L.A., Hamilton J.A.: The interferon in TLR signaling:more than just antiviral. Trends Immunol., 2003; 24: 534-539
    Google Scholar
  • 34. Humphray S.J., Oliver K., Hunt A.R., Plumb R.W., Loveland J.E.,Howe K.L., Andrews T.D., Searle S., Hunt S.E., Scott C.E., Jones M.C.,Ainscough R., Almeida J.P., Ambrose K.D., Ashwell R.I. i wsp.: DNAsequence and analysis of human chromosome 9. Nature, 2004; 429:369-374
    Google Scholar
  • 35. Jung V., Rashidbaigi A., Jones C., Tischfield J.A., Shows T.B., PestkaS.: Human chromosomes 6 and 21 are required for sensitivity to humaninterferon γ. Proc. Natl. Acad. Sci. USA, 1987; 84: 4151-4155
    Google Scholar
  • 36. Karpusas M., Nolte M., Benton C.B., Meier W., Lipscomb W.N.,Goelz S.: The crystal structure of human interferon β at 2.2-A resolution.Proc. Natl. Acad. Sci. USA, 1997; 94: 11813-11818
    Google Scholar
  • 37. Kawamoto S., Oritani K., Asakura E., Ishikawa J., Koyama M., MiyanoK., Iwamoto M., Yasuda S., Nakakubo H., Hirayama F., Ishida N.,Ujiie H., Masaie H., Tomiyama Y.: A new interferon, limitin, displaysequivalent immunomodulatory and antitumor activities without myelosuppressiveproperties as compared with interferon-α. Exp. Hematol.,2004; 32: 797-805
    Google Scholar
  • 38. Khani-Hanjani A., Lacaille D., Hoar D., Chalmers A., HorsmanD., Anderson M., Balshaw R., Keown P.A.: Association between dinucleotiderepeat in non-coding region of interferon-gamma geneand susceptibility to, and severity of, rheumatoid arthritis. Lancet,2000; 356: 820-825
    Google Scholar
  • 39. Klaus W., Gsell B., Labhardt A.M., Wipf B., Senn H.: The threedimensionalhigh resolution structure of human interferon α-2a determinedby heteronuclear NMR spectroscopy in solution. J. Mol.Biol., 1997; 274: 661-675
    Google Scholar
  • 40. Kontsek P.: Human type I interferons: structure and function.Acta Virol., 1994; 38: 345-360
    Google Scholar
  • 41. Kotenko S.V.: The family of IL-10-related cytokines and their receptors:related, but to what extent? Cytokine Growth Factor Rev.,2002; 13: 223-240
    Google Scholar
  • 42. Kotenko S.V., Donnelly R.P.: Type III interferons: The Interferon-λfamily. W: The interferons. Characterization and application. MeagerA.Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2006; 141-163
    Google Scholar
  • 43. Kotenko S.V., Gallagher G., Baurin V.V., Lewis-Antes A., Shen M.,Shah N.K., Langer J.A, Sheikh F., Dickensheets H., Donelly R.P.: IFN-λsmediate antiviral protection through a distinct class II cytokine receptorcomplex. Nat. Immunol., 2003; 4: 69-77
    Google Scholar
  • 44. Krause C.D., Mei E., Xie J., Jia Y., Bopp M.A., Hochstrasser R.M.,Pestka S.: Seeing the light: preassembly and ligand-induced changesof the interferon γ receptor complex in cells. Mol. Cell. Proteomics,2002; 1: 805-815
    Google Scholar
  • 45. Krause C.D., Pestka S.: Evolution of the class 2 cytokines and receptors,and discovery of new friends and relatives. Pharmacol. Ther.,2005; 106: 299-346
    Google Scholar
  • 46. LaFleur D.W., Nardelli B., Tsareva T., Mather D., Feng P., SemenukM., Taylor K., Buergin M., Chinchilla D., Roshke V., Chen G., RubenS.M., Pitha P.M., Coleman T.A., Moore P.A.: Interferon-κ, a novel typeI interferon expressed in human keratinocytes. J. Biol. Chem., 2001;276: 39765-39771
    Google Scholar
  • 47. Lamken P., Gavutis M., Peters I., Van der Heyden J., Uzé G., PiehlerJ.: Functional cartography of the ectodomain of the type I interferonreceptor subunit ifnar1. J. Mol. Biol., 2005; 350: 476-488
    Google Scholar
  • 48. Lee N., Ni D., Brissette R., Chou M., Hussain M., Gill D.S., Liao M.J.,Testa D.: Interferon-alpha 2 variants in the human genome. J. InterferonCytokine Res., 1995; 15: 341-349
    Google Scholar
  • 49. Lefèvre F., Boulay V.: A novel and atypical type one interferongene expressed by trophoblast during early pregnancy. J. Biol. Chem.,1993; 268: 19760-19768
    Google Scholar
  • 50. Lefèvre F., Guillomot M., D›Andréa S., Battegay S., La BonnardièreC.: Interferon-delta: the first member of a novel type I interferon family.Biochimie, 1998; 80: 779-788
    Google Scholar
  • 51. Li G., Xiang Y., Sabapathy K., Silverman R.H.: An apoptotic signalingpathway in the interferon antiviral response mediated by RNaseL and c-Jun NH2-terminal kinase. J. Biol. Chem., 2004; 279: 1123-1131
    Google Scholar
  • 52. Li M., Liu X., Zhou Y., Su S.B.: Interferon-λs: the modulators of antivirus,antitumor, and immune responses. J. Leukoc. Biol., 2009; 86: 23-32
    Google Scholar
  • 53. Lindenmann J., Burke D.C., Isaacs A.: Studies on the production,mode of action and properties of interferon. Br. J. Exp. Pathol., 1957;38: 551-562
    Google Scholar
  • 54. Malmgaard L.: Induction and regulation of IFNs during viral infections.J. Interferon Cytokine Res., 2004; 24: 439-454
    Google Scholar
  • 55. Matsuda S., Kawano G., Itoh S., Mitsui Y., Iitaka Y.: Crystallizationand preliminary X-ray studies of recombinant murine interferon-β.J. Biol. Chem., 1986; 261: 16207-16209
    Google Scholar
  • 56. Matsuda S., Senda T., Itoh S., Kawano G., Mizuno H., Mitsui Y.:New crystal form of recombinant murine interferon-β. J. Biol. Chem.,1989; 264: 13381-13382
    Google Scholar
  • 57. Meager A.: The Interferons. Characterization and Application.Wiley-VHC Verlag GmbH & Co. KGaA 2006
    Google Scholar
  • 58. Meyer M.D., Hansen P.J., Thatcher W.W., Drost M., Badinga L., RobertsR.M., Li J., Ott T.L., Bazer F.W.: Extension of corpus luteum lifespanand reduction of uterine secretion of prostaglandin F2α of cows in responseto recombinant interferon-τ. J. Dairy Sci., 1995; 78: 1921-1931
    Google Scholar
  • 59. Miller D.L., Kung H.F., Pestka S.: Crystallization of recombinanthuman leukocyte interferon A. Science, 1982; 215: 689-690
    Google Scholar
  • 60. Nagarajan U.: Induction and function of IFNβ during viral andbacterial infection. Crit. Rev. Immunol., 2011; 31: 459-474
    Google Scholar
  • 61. Nardelli B., Zaritskaya L., Semenuk M., Cho Y.H., LaFleur D.W.,Shah D., Ullrich S., Girolomoni G., Albanesi C., Moore P.A.: Regulatoryeffect of IFN-κ, a novel type I IFN, on cytokine production by cells ofthe innate immune system. J. Immunol., 2002; 169: 4822-4830
    Google Scholar
  • 62. Nathan C.F., Murray H.W., Wiebe M.E., Rubin B.Y.: Identificationof interferon-γ as the lymphokine that activates human macrophageoxidative metabolism and antimicrobial activity. J. Exp. Med., 1983;158: 670-689
    Google Scholar
  • 63. Nyman T.A., Kalkkinen N., Tölö H., Helin J.: Structural characterisationof N-linked and O-linked oligosaccharides derived frominterferon-α2b and interferon-α14c produced by Sendai-virus-inducedhuman peripheral blood leukocytes. Eur. J. Biochem., 1998;253: 485-493
    Google Scholar
  • 64. Ohlsson M., Feder J., Cavalli-Sforza L.L., von Gabain A.: Close linkageof α and β interferons and infrequent duplication of β interferonin humans. Proc.Natl. Acad. Sci. USA, 1985; 82: 4473-4476
    Google Scholar
  • 65. Oritani K., Hirota S., Nakagawa T., Takahashi I., Kawamoto S., YamadaM., Ishida N., Kadoya T., Tomiyama Y., Kincade P.W., MatsuzawaY.: T lymphocytes constitutively produce an interferonlike cytokinelimitin characterized as a heat- and acid-stable and heparin-bindingglycoprotein. Blood, 2003; 101: 178-185
    Google Scholar
  • 66. Oritani K., Kincade P.W., Tomiyama Y.: Limitin: an interferonlikecytokine without myeloerythroid suppressive properties. J. Mol.Med., 2001; 79: 168-174
    Google Scholar
  • 67. Oritani K., Medina K.L., Tomiyama Y., Ishikawa J., Okajima Y., OgawaM., Yokota T., Aoyama K., Takahashi I., Kincade P.W., MatsuzawaY.: Limitin: an interferon-like cytokine that preferentially influencesB-lymphocyte precursors. Nat. Med., 2000; 6: 659-666
    Google Scholar
  • 68. Oritani K., Tomiyama Y.: Interferon-zeta/limitin: novel type I interferonthat displays a narrow range of biological activity. Int. J. Hematol.,2004; 80: 325-331
    Google Scholar
  • 69. Piasecki E.: Human acid-labile interferon α. Arch. Immunol. Ther.Exp., 1999; 47: 89-98
    Google Scholar
  • 70. Piasecki E., Knysz B., Gasiorowski J., Gładysz A.: Decrease of enhancedinterferon alpha levels in sera of HIV-infected and AIDS patients receiving combined antiretroviral therapy. Arch. Immunol.Ther. Exp., 1999; 47: 37-44
    Google Scholar
  • 71. Pestka S.: The interferons: 50 years after their discovery, there ismuch more to learn. J. Biol. Chem., 2007; 282: 20047-20051
    Google Scholar
  • 72. Pestka S., Kotenko S.V., Muthukumaran G., Izotova L.S., Cook J.R.,Garotta G.: The interferon gamma (IFN-gamma) receptor: a paradigmfor the multichain cytokine receptor. Cytokine Growth Factor Rev.,1997; 8: 189-206
    Google Scholar
  • 73. Pestka S., Krause C.D.: Interferon and related receptors. W: Theinterferons. Characterization and application. Meager A. Wiley-VCHVerlag GmbH&Co. KGaA, Weinheim 2006; 113-140
    Google Scholar
  • 74. Pestka S., Krause C.D., Walter M.R.: Interferons, interferon-likecytokines, and their receptors. Immunol. Rev., 2004; 202: 8-32
    Google Scholar
  • 75. Pestka S., Langer J.A., Zoon K.C., Samuel C.E.: Interferons and theiractions. Annu. Rev. Biochem., 1987; 56: 727-777
    Google Scholar
  • 76. Piehler J., Roisman L.C., Schreiber G.: New structural and functionalaspects of the type I interferon-receptor interaction revealedby comprehensive mutational analysis of the binding interface. J. Biol.Chem., 2000; 275: 40425-40433
    Google Scholar
  • 77. Pitha P.M. (red.): Interferon: the 50th anniversary. Curr. Top. Microbiol.Immunol., 2007; 316
    Google Scholar
  • 78. Platanias L.C.: Mechanisms of type-I- and type-II-interferon-mediatedsignalling. Nat. Rev. Immunol., 2005; 5: 375-386
    Google Scholar
  • 79. Pletneva L.M., Haller O., Porter D.D., Prince G.A., Blanco J.C.: Interferon-inducibleMx gene expression in cotton rats: cloning, characterization,and expression during influenza viral infection. J. InterferonCytokine Res., 2006; 26: 914-921
    Google Scholar
  • 80. Pravica V., Perrey C., Stevens A., Lee J.H., Hutchinson I.V.: A singlenucleotide polymorphism in the first intron of the human IFN-γ gene:absolute correlation with a polymorphic CA microsatellite marker ofhigh IFN-γ production. Hum. Immunol., 2000; 61: 863-866
    Google Scholar
  • 81. Radhakrishnan R., Walter L.J., Hruza A., Reichert P., Trotta P.P.,Nagabhushan T.L., Walter M.R.: Zinc mediated dimer of human interferon-alpha2b revealed by X-ray crystallography. Structure, 1996;4: 1453-1463
    Google Scholar
  • 82. Radhakrishnan R., Walter L.J., Subramaniam P.S., Johnson H.M.,Walter M.R.: Crystal structure of ovine interferon-tau at 2.1 A resolution.J. Mol. Biol., 1999; 286: 151-162
    Google Scholar
  • 83. Rashidbaigi A., Langer J.A., Jung V., Jones C., Morse H.G., TischfieldJ.A., Trill J.J., Kung H.F., Pestka S.: The gene for the human immuneinterferon receptor is located on chromosome 6. Proc. Natl. Acad. Sci.USA, 1986; 83: 384-388
    Google Scholar
  • 84. Roberts R.M., Ezashi T., Rosenfeld C.S., Ealy A.D., Kubisch H.M.:Evolution of the interferon tau genes and their promoters, and maternal-trophoblastinteractions in control of their expression. Reprod.Suppl., 2003; 61: 239-251
    Google Scholar
  • 85. Runkel L., Meier W., Pepinsky R.B., Karpusas M., Whitty A., KimballK., Brickelmaier M., Muldowney C., Jones W., Goelz S.E.: Structuraland functional differences between glycosylated and non-glycosylatedforms of human interferon-beta (IFN-beta). Pharm. Res., 1998;15: 641-649
    Google Scholar
  • 86. Sadler A.J., Williams B.R.: Interferon-inducible antiviral effectors.Nat. Rev. Immunol., 2008; 8: 559-568
    Google Scholar
  • 87. Sakharkar M.K., Chow V.T., Chaturvedi I., Mathura V.S., ShapshakP., Kangueane P.: A report on single exon genes (SEG) in eukaryotes.Front. Biosci., 2004; 9: 3262-3267
    Google Scholar
  • 88. Sakharkar M.K., Chow V.T., Kangueane P.: Distributions of exonsand introns in the human genome. In Silico Biol., 2004; 4: 387-393
    Google Scholar
  • 89. Sakharkar M.K., Kangueane P.: Genome SEGE: a database for ‘intronless’genes in eukaryotic genomes. BMC Bioinformatics, 2004; 5: 67
    Google Scholar
  • 90. Sakharkar M.K., Kangueane P., Petrov D.A., Kolaskar A.S., SubbiahS.: SEGE: A database on ‘intron less/single exonic’ genes from eukaryotes.Bioinformatics, 2002; 18: 1266-1267
    Google Scholar
  • 91. Samuel C.E.: Antiviral actions of interferons. Clin. Microbiol. Rev.,2001; 14: 778-809
    Google Scholar
  • 92. Schroder K., Hertzog P.J., Ravasi T., Hume D.A.: Interferon-γ: anoverview of signals, mechanisms and functions. J. Leukoc. Biol., 2004;75: 163-189
    Google Scholar
  • 93. Senda T., Saitoh S., Mitsui Y.: Refined crystal structure of recombinantmurine interferon-β at 2.15 A resolution. J. Mol. Biol., 1995;253: 187-207
    Google Scholar
  • 94. Senda T., Shimazu T., Matsuda S., Kawano G., Shimizu H., NakamuraK.T., Mitsui Y.: Three-dimensional crystal structure of recombinantmurine interferon-β. EMBO J., 1992; 11: 3193-3201
    Google Scholar
  • 95. Sheppard P., Kindsvogel W., Xu W., Henderson K., SchlutsmeyerS., Whitmore T.E., Kuestner R., Garrigues U., Birks C., Roraback J., OstranderC., Dong D., Shin J., Presnell S., Fox B. i wsp.: IL-28, IL-29 andtheir class II cytokine receptor IL-28R. Nat. Immunol., 2003; 4: 63-68
    Google Scholar
  • 96. Siddiqui M.A., Malathi K.: RNase L induces autophagy via c-Jun Nterminalkinase and double-stranded RNA-dependent protein kinasesignaling pathways. J. Biol. Chem., 2012; 287: 43651-43664
    Google Scholar
  • 97. Stalker J., Gibbins B., Meidl P., Smith J., Spooner W., Hotz H.R., CoxA.V.: The Ensembl Web site: mechanics of a genome browser. GenomeRes., 2004; 14: 951-955
    Google Scholar
  • 98. Taya Y., Devos R., Tavernier J., Cheroutre H., Engler G., Fiers W.:Cloning and structure of the human immune interferon-γ chromosomalgene. EMBO J., 1982; 1: 953-958
    Google Scholar
  • 99. Taylor K.E., Mossman K.L.: Recent advances in understandingviral evasion of type I interferon. Immunology, 2013; 138: 190-197
    Google Scholar
  • 100. Trent J.M., Olson S., Lawn R.M.: Chromosomal localization of humanleukocyte, fibroblast, and immune interferon genes by means ofin situ hybridization. Proc. Natl. Acad. Sci. USA, 1982; 79: 7809-7813
    Google Scholar
  • 101. van Pesch V., Lanaya H., Renauld J.C., Michiels T.: Characterizationof the murine alpha interferon gene family. J. Virol., 2004; 78:8219-8228
    Google Scholar
  • 102. Vilcek J.: Novel interferons. Nat. Immunol., 2003; 4: 8-9
    Google Scholar
  • 103. Walter M.R., Windsor W.T., Nagabhushan T.L., Lundell D.J., LunnC.A., Zauodny P.J., Narula S.K.: Crystal structure of a complex betweeninterferon-gamma and its soluble high-affinity receptor. Nature, 1995;376: 230-235
    Google Scholar
  • 104. Weissmann C., Weber H.: The interferon genes. Prog. NucleicAcid Res. Mol. Biol., 1986; 33: 251-300
    Google Scholar
  • 105. Wetzel R.: Assignment of the disulphide bonds of leukocyte interferon.Nature, 1981; 289: 606-607
    Google Scholar
  • 106. Wetzel R., Perry L.J., Estell D.A, Lin N., Levine H.L., Slinker B.,Fields F., Ross M.J., Shively J.: Properties of a human alpha-interferonpurified from E. coli extracts. J. Interferon Res., 1981; 1: 381-390
    Google Scholar
  • 107. Wheelock E.F.: Interferon-like virus-inhibitor induced in humanleukocytes by phytohemagglutinin. Science, 1965; 149: 310-311
    Google Scholar
  • 108. Xu J., Gu S., Wang S., Dai J., Ji C., Jin Y., Qian J., Wang L., Ye X.,Xie Y., Mao Y.: Characterization of a novel splicing variant of KLHL5,a member of the kelch protein family. Mol. Biol. Rep., 2003; 30: 239-242
    Google Scholar
  • 109. Yoshida K.: Identification and characterization of a novel kelchlikegene KLHL15 in silico. Oncol. Rep., 2005; 13: 1133-1137
    Google Scholar

Full text

Skip to content