Kynurenine pathway: the link between depressive disorders and inflammation

REVIEW ARTICLE

Kynurenine pathway: the link between depressive disorders and inflammation

Justyna Kubacka 1 , Anna Stefańska 1 , Grażyna Sypniewska 1

1. Department of Laboratory Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland,

Published: 2020-08-06
DOI: 10.5604/01.3001.0014.3454
GICID: 01.3001.0014.3454
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 331-339

 

Abstract

Depression is highly prevalent worldwide and the leading cause of disability. It is believed that currently more than 300 million people of all ages suffer from depression. However, the unambiguous cause of the depression remains unknown. It is suggested that the occurrence of this disease is primarily affected by genetic factors, psychological factors and atypical brain structure or function. Recently, an increasingly important role is attributed to the inflammatory response, which is considered to be the main cause of depression. Activation of the kynurenine pathway (KP) is one of the described mechanisms by which inflammation can induce depression. Kynurenine pathway activation is associated with several neuropsychiatric diseases, including major depression disorder (MDD). The imbalance between the neuroprotective and neurotoxic metabolites in the kynurenine pathway and the associated serotonin and melatonin deficiency, may contribute to the manifestation of depressive symptoms. In this review we discuss the role of the major enzymes of the tryptophan KP: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) and the role of selected kynurenic metabolites in the depressive disorders. Particular attention was also paid to the genetic basis of depressive disorders and to the summary of current knowledge on the effectiveness of treatment and supplementation with tryptophan and 5-hydroxytryptophan in depression.

References

  • 1. Arnone D., Saraykar S., Salem H., Teixeira A.L., Dantzer R., SelvarajS.: Role of kynurenine pathway and its metabolites in mooddisorders: A systematic review and meta-analysis of clinical studies.Neurosci. Biobehav. Rev., 2018; 92: 477–485
    Google Scholar
  • 2. Badawy A.A.: Hypothesis kynurenic and quinolinic acids: Themain players of the kynurenine pathway and opponents in inflammatorydisease. Med. Hypotheses, 2018; 118: 129–138
    Google Scholar
  • 3. Badawy A.A.: Kynurenine pathway of tryptophan metabolism:Regulatory and functional aspects. Int. J. Tryptophan Res., 2017;10: 1178646917691938 4 Bieliński M., Jaracz M., Lesiewska N., Tomaszewska M., SikoraM., Junik R., Kamińska A., Tretyn A., Borkowska A.: Associationbetween COMT Val158Met and DAT1 polymorphisms and depressivesymptoms in the obese population. Neuropsychiatr. Dis. Treat.,2017; 13: 2221–2229
    Google Scholar
  • 4. Bieliński M., Jaracz M., Lesiewska N., Tomaszewska M., Sikora M., Junik R., Kamińska A., Tretyn A., Borkowska A.: Association between COMT Val158Met and DAT1 polymorphisms and depressive symptoms in the obese population. Neuropsychiatr. Dis. Treat., 2017; 13: 2221–2229
    Google Scholar
  • 5. Bonaccorso S., Marino V., Biondi M., Grimaldi F., Ippoliti F.,Maes M.: Depression induced by treatment with interferon-alphain patients affected by hepatitis C virus. J. Affect. Disord., 2002;72: 237–241
    Google Scholar
  • 6. Bonaccorso S., Marino V., Puzella A., Pasquini M., Biondi M.,Artini M., Almerighi C., Verkerk R., Meltzer H., Maes M.: Increaseddepressive ratings in patients with hepatitis C receivinginterferon-α-based immunotherapy are related to interferon-α-induced changes in the serotonergic system. J. Clin. Psychopharmacol.,2002; 22: 86–90
    Google Scholar
  • 7. Capuron L., Ravaud A., Neveu P.J., Miller A.H., Maes M., DantzerR.: Association between decreased serum tryptophan concentrationsand depressive symptoms in cancer patients undergoing cytokinetherapy. Mol. Psychiatry, 2002; 7: 468–473
    Google Scholar
  • 8. Cervenka I., Agudelo L.Z., Ruas J.L.: Kynurenines. Tryptophan’smetabolites in exercise, inflammation, and mental health. Science,2017; 357: eaaf9794
    Google Scholar
  • 9. Chen H.B., Li F., Wu S., An S.C.: Hippocampus quinolinic acid modulatesglutamate and NMDAR/mGluR1 in chronic unpredictable mildstress-induced depression. Sheng Li Xue Bao, 2013; 65: 577–585
    Google Scholar
  • 10. Chiarugi A., Meli E., Moroni F.: Similarities and differences inthe neuronal death processes activated by 3OH-kynurenine andquinolinic acid. J. Neurochem., 2001; 77: 1310–1318
    Google Scholar
  • 11. Cook J.S., Pogson C.I., Smith S.A.: Indoleamine 2,3-dioxygenase.A new, rapid, sensitive radiometric assay and its application to thestudy of the enzyme in rat tissues. Biochem. J., 1980; 189: 461–466
    Google Scholar
  • 12. Dantzer R., O’Connor J.C., Lawson M.A., Kelley K.W.: Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology,2011; 36: 426–436
    Google Scholar
  • 13. Duda W., Curzytek K., Kubera M., Connor T.J., Fagan E.M., Basta–Kaim A., Trojan E., Papp M., Gruca P., Budziszewska B., Leśkiewicz M.,Maes M., Lasoń W.: Interaction of the immune-inflammatory and thekynurenine pathways in rats resistant to antidepressant treatmentin model of depression. Int. Immunopharmacol., 2019; 73: 527–538
    Google Scholar
  • 14. Elgarf A.S., Aboul-Fotouh S., Abd-Alkhalek H.A., El Tabbal M.,Hassan A.N., Kassim S.K., Hammouda G.A., Farrag K.A., Abdel-TawabA.M.: Lipopolysaccharide repeated challenge followed by chronicmild stress protocol introduces a combined model of depressionin rats: reversibility by imipramine and pentoxifylline. Pharmacol.Biochem. Behav., 2014; 126: 152–162 15 Eskelund A., Li Y., Budac D.P., Müller H.K., Gulinello M., SanchezC., Wegener G.: Drugs with antidepressant properties affect tryptophanmetabolites differently in rodent models with depression- likebehavior. J. Neurochem., 2017; 142: 118–131
    Google Scholar
  • 15. Eskelund A., Li Y., Budac D.P., Müller H.K., Gulinello M., Sanchez C., Wegener G.: Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression- like behavior. J. Neurochem., 2017; 142: 118–131
    Google Scholar
  • 16. Flint J., Kendler K.S.: The genetics of major depression. Neuron,2014; 81: 484–503
    Google Scholar
  • 17. Franklin M., Bermudez I., Murck H., Singewald N., Gaburro S.:Sub-chronic dietary tryptophan depletion – an animal model of incredepressionwith improved face and good construct validity. J. Psychiatr.Res., 2012; 46: 239–247
    Google Scholar
  • 18. Fukui S., Schwarcz R., Rapoport S.I., Takada Y., Smith Q.R.: Blood-brain barrier transport of kynurenines: implications for brainsynthesis and metabolism. J. Neurochem., 1991; 56: 2007–2017
    Google Scholar
  • 19. Gabbay V., Klein R.G., Katz Y., Mendoza S., Guttman L.E., AlonsoC.M., Babb J.S., Hirsch G.S., Liebes L.: The possible role of the kynureninepathway in adolescent depression with melancholic features.J. Child Psychol. Psychiatry, 2010; 51: 935–943
    Google Scholar
  • 20. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators:Global, regional, and national incidence, prevalence, andyears lived with disability for 310 diseases and injuries, 1990–2015:A systematic analysis for the Global Burden of Disease Study 2015.Lancet, 2016; 388: 1545–1602
    Google Scholar
  • 21. Guillemin G.J.: Quinolinic acid, the inescapable neurotoxin. FEBSJ., 2012; 279: 1356–1365
    Google Scholar
  • 22. Guillemin G.J., Kerr S.J., Smythe G.A., Smith D.G., Kapoor V.,Armati P.J., Croitoru J., Brew B.J.: Kynurenine pathway metabolismin human astrocytes: a paradox for neuronal protection. J. Neurochem.,2001; 78: 842–853
    Google Scholar
  • 23. Howren M.B., Lamkin D.M., Suls J.: Associations of depressionwith C- reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom.Med., 2009; 71: 171–186
    Google Scholar
  • 24. Hyde C.L., Nagle M.W., Tian C., Chen X., Paciga S.A., WendlandJ.R., Tung J.Y., Hinds D.A., Perlis R.H., Winslow A.R.: Identification of
    Google Scholar
  • 25. Jeon S.W., Kim Y.K.: Inflammation-induced depression: Its pathophysiologyand therapeutic implications. J. Neuroimmunol., 2017;313: 92–98
    Google Scholar
  • 26. Johansson A.S., Owe-Larsson B., Asp L., Kocki T., Adler M., HettaJ., Gardner R., Lundkvist G.B., Urbanska E.M., Karlsson H.: Activationof kynurenine pathway in ex vivo fibroblasts from patients with bipolardisorder or schizophrenia: cytokine challenge increases productionof 3-hydroxykynurenine. J. Psychiatr. Res., 2013; 47: 1815–1823
    Google Scholar
  • 27. Kruse J.L., Cho J.H., Olmstead R., Hwang L., Faull K., EisenbergerN.I., Irwin M.R.: Kynurenine metabolism and inflammation-induceddepressed mood: A human experimental study. Psychoneuroendocrinology,2019; 109: 104371
    Google Scholar
  • 28. Kupfer D.J., Frank E., Phillips M.L.: Major depressive disorder:new clinical, neurobiological, and treatment perspectives. Lancet,2012; 379: 1045–1055
    Google Scholar
  • 29. Liu H., Ding L., Zhang H., Mellor D., Wu H., Zhao D., Wu C., LinZ., Yuan J., Peng D.: The metabolic factor kynurenic acid of kynureninepathway predicts major depressive disorder. Front. Psychiatry,2018; 9: 552
    Google Scholar
  • 30. Mackay G.M., Forrest C.M., Christofides J., Bridel M.A., MitchellS., Cowlard R., Stone T.W., Darlington L.G.: Kynurenine metabolitesand inflammation markers in depressed patients treated with fluoxetineor counselling. Clin. Exp. Pharmacol. Physiol., 2009; 36: 425–435
    Google Scholar
  • 31. Menard C., Pfau M.L., Hodes G.E., Kana V., Wang V.X., BouchardS., Takahashi A., Flanigan M.E., Aleyasin H., LeClair K.B., JanssenW.G., Labonté B., Parise E.M., Lorsch Z.S., Golden S.A., et al.: Socialstress induces neurovascular pathology promoting depression. Nat.Neurosci., 2017; 20: 1752–1760
    Google Scholar
  • 32. Moffett J.R., Namboodiri M.A.: Tryptophan and the immuneresponse. Immunol. Cell Biol., 2003; 81: 247–265
    Google Scholar
  • 33. Murray C.J., Lopez A.D.: Measuring the global burden of disease.N. Engl. J. Med., 2013; 369: 448–457
    Google Scholar
  • 34. Murray E.A., Wise S.P., Drevets W.C.: Localization of dysfunctionin major depressive disorder: prefrontal cortex and amygdala. Biol.Psychiatry, 2011; 69: e43–e54
    Google Scholar
  • 35. Musso T., Gusella G.L., Brooks A., Longo D.L, Varesio L.: Interleukin-
    Google Scholar
  • 36. Myint A.M.: Kynurenines: from the perspective of major psychiatricdisorders. FEBS J., 2012; 279: 1375–1385
    Google Scholar
  • 37. National Research Council. 1989. Recommended Dietary Allowances:10th Edition. Washington, DC: The National AcademiesPress. https://doi.org/10.17226/1349 (26.06.2019)
    Google Scholar
  • 38. O’Connor J.C., Lawson M.A., André C., Moreau M., Lestage J., CastanonN., Kelley K.W., Dantzer R.: Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenaseactivation in mice. Mol. Psychiatry, 2009; 14: 511–522
    Google Scholar
  • 39. Ogawa S., Fujii T., Koga N., Hori H., Teraishi T., Hattori K., NodaT., Higuchi T., Motohashi N., Kunugi H.: Plasma L-tryptophan concentrationin major depressive disorder: New data and meta-analysis.J. Clin. Psychiatry, 2014; 75: e906–e915
    Google Scholar
  • 40. Ogyu K., Kubo K., Noda Y., Iwata Y., Tsugawa S., Omura Y., WadaM., Tarumi R., Plitman E., Moriguchi S., Miyazaki T., Uchida H., Graff–Guerrero A., Mimura M., Nakajima S.: Kynurenine pathway in depression:a systematic review and meta-analysis. Neurosci. Biobehav.Rev., 2018; 90: 16–25
    Google Scholar
  • 41. Oxenkrug G.F.: Tryptophan kynurenine metabolism as a commonmediator of genetic and environmental impacts in major depressivedisorder: The serotonin hypothesis revisited 40 years later.Isr. J. Psychiatry Relat. Sci., 2010; 47: 56–63
    Google Scholar
  • 42. Qin Y., Wang N., Zhang X., Han X., Zhai X., Lu Y.: IDO and TDOas a potential therapeutic target in different types of depression.Metab. Brain Dis., 2018; 33: 1787–1800
    Google Scholar
  • 43. Raison C.L., Dantzer R., Kelley K.W., Lawson M.A., WoolwineB.J., Vogt G., Spivey J.R., Saito K., Miller A.H.: CSF concentrations ofbrain tryptophan and kynurenines during immune stimulation withIFN-α: Relationship to CNS immune responses and depression. Mol.Psychiatry, 2010; 15: 393–403
    Google Scholar
  • 44. Réus G.Z., Carlessi A.S., Titus S.E., Abelaira H.M., Ignácio Z.M., daLuz J.R., Matias B.I., Bruchchen L., Florentino D., Vieira A., PetronilhoF., Quevedo J.: A single dose of S-ketamine induces long-term antidepressanteffects and decreases oxidative stress in adulthood ratsfollowing maternal deprivation. Dev. Neurobiol., 2015; 75: 1268–1281
    Google Scholar
  • 45. Réus G.Z., Jansen K., Titus S., Carvalho A.F., Gabbay V., QuevedoJ.: Kynurenine pathway dysfunction in the pathophysiology and treatmentof depression: evidences from animal and human studies. J.Psychiatr. Res., 2015; 68: 316–328
    Google Scholar
  • 46. Savitz J., Drevets W.C., Smith C.M., Victor T.A., Wurfel B.E., BellgowanP.S., Bodurka J., Teague T.K., Dantzer R.: Putative neuroprotectiveand neurotoxic kynurenine pathway metabolites are associatedwith hippocampal and amygdalar volumes in subjects with majordepressive disorder. Neuropsychopharmacology, 2015; 40: 463–471
    Google Scholar
  • 47. Savitz J., Drevets WC., Wurfel B.E., Ford B.N., Bellgowan P.S.,Victor T.A., Bodurka J., Teague T.K., Dantzer R.: Reduction of kynurenicacid to quinolinic acid ratio in both the depressed and remittedphases of major depressive disorder. Brain Behav. Immun.,2015; 46: 55–59
    Google Scholar
  • 48. Schwarcz R., Whetsell W.O. Jr., Mangano R.M.: Quinolinic acid:an endogenous metabolite that produces axon-sparing lesions inrat brain. Science, 1983; 219: 316–318
    Google Scholar
  • 49. Serretti A.: Genetics and pharmacogenetics of mood disorders.Psychiatr. Pol., 2017; 51: 197–203
    Google Scholar
  • 50. Sforzini L., Nettis M.A., Mondelli V., Pariante C.M.: Inflammationin cancer and depression: A starring role for the kynureninepathway. Psychopharmacology, 2019; 236: 2997–3011
    Google Scholar
  • 51. Steiner J., Walter M., Gos T., Guillemin G.J., Bernstein H.G., SarnyaiZ., Mawrin C., Brisch R., Bielau H., Meyer zu Schwabedissen L.,Bogerts B., Myint A.M.: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulategyrus: evidence for an immune-modulated glutamatergicneurotransmission? J. Neuroinflammation, 2011; 8: 94
    Google Scholar
  • 52. Stone T.W.: Neuropharmacology of quinolinic and kynurenicacids. Pharmacol. Rev., 1993; 45: 309–379
    Google Scholar
  • 53. Stone T.W., Darlington L.G.: Endogenous kynurenines as targetsfor drug discovery and development. Nat. Rev. Drug Discov.,2002; 1: 609–620
    Google Scholar
  • 54. Turska M., Rutyna R., Paluszkiewicz M., Terlecka P., DobrowolskiA., Pelak J., Turski M.P., Muszyńska B., Dabrowski W., Kocki T., PlechT.: Presence of kynurenic acid in alcoholic beverages – Is this goodnews, or bad news? Med. Hypotheses, 2019; 122: 200–205
    Google Scholar
  • 55. Turski M.P., Turska M., Paluszkiewicz P., Parada-Turska J., OxenkrugG.F.: Kynurenic acid in the digestive system – New facts, newchallenges. Int. J. Tryptophan Res., 2013; 6: 47–55
    Google Scholar
  • 56. Uher R.: The role of genetic variation in the causation of mentalillness: An evolution-informed framework. Mol. Psychiatry, 2009;14: 1072–1082
    Google Scholar
  • 57. Van der Goot A.T., Nollen E.A.: Tryptophan metabolism: enteringthe field of aging and age-related pathologies. Trends Mol.Med., 2013; 19: 336–344
    Google Scholar
  • 58. Walker A.K., Budac D.P., Bisulco S., Lee A.W., Smith R.A., BeendersB., Kelley K.W., Dantzer R.: NMDA receptor blockade byketamine abrogates lipopolysaccharide-induced depressive-likebehavior in C57BL/6J mice. Neuropsychopharmacology, 2013;38: 1609-1616
    Google Scholar
  • 59. Watanabe Y., Fujiwara M., Yoshida R., Hayaishi O.: Stereospecificityof hepatic L-tryptophan 2,3-dioxygenase. Biochem. J., 1980;189: 393–405
    Google Scholar
  • 60. Widner B., Ledochowski M., Fuchs D.: Interferon-gamma-inducedtryptophan degradation: Neuropsychiatric and immunologicalconsequences. Curr. Drug Metab., 2000; 1: 193–204
    Google Scholar
  • 61. Wigner P., Czarny P., Galecki P., Su K.P., Sliwinski T.: The molecularaspects of oxidative & nitrosative stress and the tryptophancatabolites pathway (TRYCATs) as potential causes of depression.Psychiatry Res., 2018; 262: 566–574
    Google Scholar
  • 62. Wurfel B.E., Drevets W.C., Bliss S.A., McMillin J.R., Suzuki H., FordB.N., Morris H.M., Teague T.K., Dantzer R., Savitz J.B.: Serum kynurenicacid is reduced in affective psychosis. Transl. Psychiatry, 2017; 7: e1115
    Google Scholar
  • 63. Young S.N.: Acute tryptophan depletion in humans: a reviewof theoretical, practical and ethical aspects. J. Psychiatry Neurosci.,2013; 38: 294–305
    Google Scholar
  • 64. Yuwiler A., Oldendorf W.H., Geller E., Braun L.: Effect of albuminbinding and amino acid competition on tryptophan uptake intobrain. J. Neurochem., 1977; 28: 1015–1023
    Google Scholar
  • 65. Zhu H., Bogdanov M.B., Boyle S.H., Matson W., Sharma S., MatsonS., Churchill E., Fiehn O., Rush J.A., Krishnan R.R., PickeringE., Delnomdedieu M., Kaddurah-Daouk R., PharmacometabolomicsResearch Network: Pharmacometabolomics of response to sertralineand to placebo in major depressive disorder – possible role formethoxyindole pathway. PLoS One, 2013; 8: e68283
    Google Scholar
  • 66. Zunszain P.A., Hepgul N., Pariante C.M.: Inflammation and depression.Curr. Top. Behav. Neurosci., 2013; 14: 135–151
    Google Scholar

Full text

Skip to content