Mechanisms of osteoporosis development in patients with rheumatoid arthritis

COMMENTARY ON THE LAW

Mechanisms of osteoporosis development in patients with rheumatoid arthritis

Agnieszka Matuszewska 1 , Jacek Szechiński 2

1. Katedra i Zakład Farmakologii Uniwersytetu Medycznego we Wrocławiu
2. Katedra i Klinika Reumatologii I Chorób Wewnętrznych Uniwersytetu Medycznego we Wrocławiu

Published: 2014-02-04
DOI: 10.5604/17322693.1088339
GICID: 01.3001.0003.1189
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 145-152

 

Abstract

Rheumatoid arthritis (RA) is progressive, chronic, autoimmune, systemic connective tissue disease. It affects 0,5-1% population. RA manifests as inflammation of symmetrical mainly small and medium joints with synovial hypertrophy, extra-articular lesions and systemic complications. Depending on intensity and duration of RA in imaging studies the patients demonstrate narrowing of articular fissures, presence of geodes, erosions, subluxations and/or synostoses. Progressive bone mass loss in the joint involved by the morbid process and in the entire skeleton was also described. Local (periarticular) osteoporosis is linked to the presence of cytokines and growth factors, which regulate reciprocal interactions between osteoclasts, osteoblasts and immune system cells. In the inflamed joint accumulate synoviocytes of fibroblast phenotype, synoviocytes of macrophage phenotype, antigen presenting cells, lymphocytes T, activated lymphocytes B, plasma cells and neutrophils. Increased expression of receptor activator of nuclear factor κB (RANKL), macrophage-colony stimulating factor (M-CSF), presence of TNFα, IL-1, IL-6, IL-7, IL-17 influences pathological loss of bone mass. Rheumatoid arthritis is an important risk factor of generalised osteoporosis and fractures, involved in FRAX (fracture risk assessment) algorythm. Generalised osteoporosis in patients with RA has a multifactorial aetiology. Its development reflects effects of both: factors linked to the disease (presence of proinflammatory cytokines, disability of the patients, applied therapy) and classical risk factors of osteoporosis (e.g. advanced age, sex, post-menopausal period, genetic predisposition, low peak bone mass, low body weight, deficiency of calcium and vitamin D, tobacco smoking).

References

  • 1. Adachi J.D., Olszynski W.P., Hanley D.A., Hodsman A.B., KendlerD.L., Siminoski K.G., Brown J., Cowden E.A., Goltzman D., IoannidisG., Josse R.G., Ste-Marie L.G., Tenenhouse A.M., Davison K.S., BlockaK.L., Pollock A.P., Sibley J.: Management of corticosteroid-inducedosteoporosis. Semin. Arthritis Rheum., 2000; 29: 228-251
    Google Scholar
  • 2. Adamopoulos I.E., Sabokbar A., Wordsworth B.P., Carr A., FergusonD.J., Athanasou N.A.: Synovial fluid macrophages are capableof osteoclast formation and resorption. J. Pathol., 2006; 208: 35-43
    Google Scholar
  • 3. Alves C., Colin E.M., van Oort W.J., Sluimer J.P., Hazes J.M., LuimeJ.J.: Periarticular osteoporosis: a useful feature in the diagnosis ofearly rheumatoid arthritis? Reliability and validity in a cross-sectionaldiagnostic study using dual-energy X-ray absorptiometry.Rheumatology, 2011; 50: 2257-2263
    Google Scholar
  • 4. Baek S.H., Lee S.G., Park Y.E., Kim G.T., Kim C.D., Park S.Y.: Increasedsynovial expression of IL-27 by IL-17 in rheumatoid arthritis.Inflamm. Res., 2012; 61: 1339-1345
    Google Scholar
  • 5. Broy S.B., Tanner S.B., FRAX® Position Development ConferenceMembers: Official positions for FRAX® clinical regarding rheumatoidarthritis from Joint Official Positions Development Conference of theInternational Society for Clinical Densitometry and International OsteoporosisFoundation on FRAX®. J. Clin. Densitom., 2011; 14: 184-189
    Google Scholar
  • 6. Canalis E.: Mechanisms of glucocorticoid action in bone: implicationsto glucocorticoid-induced osteoporosis. J. Clin. Endocrinol.Metab., 1996; 81: 3441-3447
    Google Scholar
  • 7. Chen Y., Zheng X., Zou R., Wang J.: Effects of cyclosporin-a onrat skeletal biomechanical properties. BMC Musculoskelet. Disord.,2011; 12: 240
    Google Scholar
  • 8. Cohen S.B., Dore R.K., Lane N.E., Ory P.A., Peterfy C.G., Sharp J.T.,van der Heijde D., Zhou L., Tsuji W., Newmark R.; Denosumab RheumatoidArthritis Study Group: Denosumab treatment effects on structuraldamage, bone mineral density, and bone turnover in rheumatoid arthritis:a twelve month, multicenter, randomised, double blind, placebocontrolled, phase II clinical trial. Arthritis Rheum., 2008; 58: 1299-1309
    Google Scholar
  • 9. Cooper C., Coupland C., Mitchell M.: Rheumatoid arthritis, corticosteroidtherapy and hip fracture. Ann. Rheum. Dis., 1995; 54: 49-52
    Google Scholar
  • 10. Cosman F., Nieves J., Herbert J., Shen V., Lindsay R.: High-doseglucocorticoids in multiple sclerosis patients exert direct effectson the kidney and skeleton. J. Bone Miner. Res., 1994; 9: 1097-1105
    Google Scholar
  • 11. Crotti T.N., Smith M.D., Weedon H., Ahern M.J., Findlay D.M.,Kraan M., Tak P.P., Haynes D.R.: Receptor activator NF-κB ligand(RANKL) expression in synovial tissue from patients with rheumatoidarthritis, spondyloarthropathy, osteoarthritis, and from normalpatients: semiquantitative and quantitative analysis. Ann. Rheum.Dis., 2002; 61: 1047-1054
    Google Scholar
  • 12. de Rooy D.P., Kälvesten J., Huizinga T.W., van der Helm-van MilA.H.: Loss of metacarpal bone density predicts RA development inrecent-onset arthritis. Rheumatology, 2012; 51: 1037-1041
    Google Scholar
  • 13. Deal C.: Bone loss in rheumatoid arthritis: systemic, periarticular,and focal. Curr. Rheumatol. Rep., 2012; 14: 231-237
    Google Scholar
  • 14. Deodhar A., Dore R.K., Mandel D., Schechtman J., Shergy W.,Trapp R., Ory P.A., Peterfy C.G., Fuerst T., Wang H., Zhou L., Tsuji W.,Newmark R.: Denosumab-mediated increase in hand bone mineraldensity associated with decreased progression of bone erosion inrheumatoid arthritis patients. Arthritis Care Res., 2010; 62: 569-574
    Google Scholar
  • 15. Di Munno O., Delle Sedie A., Rossini M., Adami S.: Disease modifyingantirheumatic drugs and bone mass in rheumatoid arthritis.Clin. Exp. Rheumatol., 2005; 23: 137-144
    Google Scholar
  • 16. Diarra D., Stolina M., Polzer K., Zwerina J., Ominsky M.S., DwyerD., Korb A., Smolen J., Hoffmann M., Scheinecker C., van der Heide D.,Landewe R., Lacey D., Richards W.G., Schett G.: Dickkopf-1 is a masterregulator of joint remodeling. Nat. Med., 2007; 13: 156-163
    Google Scholar
  • 17. Ding J., Ghali O., Lencel P., Broux O., Chauveau C., DevedjianJ.C., Hardouin P., Magne D.: TNF-α and IL-1β inhibit RUNX2 andcollagen expression but increase alkaline phosphatase activityand mineralization in human mesenchymal stem cells. Life Sci.,2009; 84: 499-504
    Google Scholar
  • 18. El Maghraoui A., Rezgi A., Mounach A., Achemlal L., Bezza A.,Ghozlani I.: Prevalence and risk factors of vertebral fractures inwomen with rheumatoid arthritis using vertebral fracture assessment.Rheumatology, 2010; 49: 1303-1310
    Google Scholar
  • 19. Fan C., Georgiou K.R., King T.J., Xian C.J.: Methotrexate toxicityin growing long bones of young rats: a model for studying cancerchemotherapy-induced bone growth defects in children. J. Biomed.Biotechnol., 2011; 2011: 903097
    Google Scholar
  • 20. Ferraccioli G., Casatta L., Bartoli E.: Increase of bone mineraldensity and anabolic variables in patients with rheumatoid arthritisresistant to methotrexate after cyclosporin A therapy. J. Rheumatol.,1996; 23: 1539-1542
    Google Scholar
  • 21. Forsblad D’Elia H., Larsen A., Waltbrand E., Kvist G., MellströmD., Saxne T., Ohlsson C., Nordborg E., Carlsten H.: Radiographic jointdestruction in postmenopausal rheumatoid arthritis is stronglyassociated with generalised osteoporosis. Ann. Rheum. Dis., 2003;62: 617-623
    Google Scholar
  • 22. Frattini A., Vezzoni P., Villa A., Sobacchi C.: The dissection ofhuman autosomal recesssive osteopetrosis identifies an osteoclastpoorform due to RANKL deficiency. Cell Cycle, 2007; 6: 3027-3033
    Google Scholar
  • 23. Gilbert L., He X., Farmer P., Rubin J., Drissi H., van Wijnen A.J.,Lian J.B., Stein G.S., Nanes M.S.: Expression of the osteoblast differentiationfactor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumornecrosis factor-α. J. Biol. Chem., 2002; 277: 2695-2701
    Google Scholar
  • 24. Gonzalez A., Maradit Kremers H., Crowson C.S., Nicola P.J., DavisJ.M. 3rd, Therneau T.M., Roger V.L., Gabriel S.E.: The widening mortalitygap between rheumatoid arthritis patients and the generalpopulation. Arthritis Rheum., 2007; 56: 3583-3587
    Google Scholar
  • 25. Hall G.M., Spector T.D., Griffin A.J., Jawad A.S., Hall M.L., Doyle D.V.:The effect of rheumatoid arthritis and steroid therapy on bone densityin postmenopausal women. Arthritis Rheum., 1993, 36: 1510-1516
    Google Scholar
  • 26. Haugeberg G., Conaghan P.G., Quinn M., Emery P.: Bone lossin patients with active early rheumatoid arthritis: infliximab andmethotrexate compared with methotrexate treatment alone. Explorativeanalysis from a 12-month randomised, double-blind, placebocontrolledstudy. Ann. Rheum. Dis., 2009; 68: 1898-1901
    Google Scholar
  • 27. Haugeberg G., Green M.J., Quinn M.A., Marzo-Ortega H., ProudmanS., Karim Z., Wakefield R.J., Conaghan P.G., Stewart S., Emery P.:Hand bone loss in early undifferentiated arthritis: evaluating bonemineral density loss before the development of rheumatoid arthritis.Ann. Rheum. Dis., 2006; 65: 736-740
    Google Scholar
  • 28. Haugeberg G., Strand A., Kvien T.K., Kirwan J.R.: Reduced loss ofhand bone density with prednisolone in early rheumatoid arthritis:results from a randomized placebo-controlled trial. Arch. Intern.Med., 2005; 165: 1293-1297
    Google Scholar
  • 29. Haugeberg G., Uhlig T., Falch J.A., Halse J.I., Kvien T.K.: Bonemineral density and frequency of osteoporosis in female patientswith rheumatoid arthritis: results from 394 patients in the OsloCounty Rheumatoid Arthritis register. Arthritis Rheum., 2000; 43:522-530
    Google Scholar
  • 30. Hein G., Eidner T., Oelzner P., Rose M., Wilke A., Wolf G., FrankeS.: Influence of rituximab on markers of bone remodeling inpatients with rheumatoid arthritis: a prospective open-label pilotstudy. Rheumatol. Int., 2011; 31: 269-272
    Google Scholar
  • 31. Hirayama T., Danks L., Sabokbar A., Athanasou N.A.: Osteoclastformation and activity in the pathogenesis of osteoporosis in rheumatoidarthritis. Rheumatology, 2002; 41: 1232-1239
    Google Scholar
  • 32. Hofbauer L.C., Gori F., Riggs B.L., Lacey D.L., Dunstan C.R., SpelsbergT.C., Khosla S.: Stimulation of osteoprotegerin ligand and inhibitionof osteoprotegerin production by glucocorticoids in humanosteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-inducedosteoporosis. Endocrinology, 1999; 140: 4382-4389
    Google Scholar
  • 33. Hofbauer L.C., Schoppet M.: Clinical implications of the osteoprotegerin/RANKL/RANKsystem for bone and vascular diseases.JAMA, 2004; 292: 490-495
    Google Scholar
  • 34. Hoff M., Kvien T.K., Kälvesten J., Elden A., Kavanaugh A., HaugebergG.: Adalimumab reduces hand bone loss in rheumatoid arthritisindependent of clinical response: subanalysis of the PREMIER study.BMC Musculoskelet. Disord., 2011; 12: 54
    Google Scholar
  • 35. Hooyman J.R., Melton L.J. 3rd, Nelson A.M., O’Fallon W.M., RiggsB.L.: Fractures after rheumatoid arthritis. A population-based study.Arthritis Rheum., 1984; 27: 1353-1361
    Google Scholar
  • 36. Jamison M., Neuberger G.B., Miller P.A.: Correlates of falls andfear of falling among adults with rheumatoid arthritis. ArthritisRheum., 2003; 49: 673-680
    Google Scholar
  • 37. Jimenez-Boj E., Redlich K., Türk B., Hanslik-Schnabel B., WanivenhausA., Chott A., Smolen J.S., Schett G.: Interaction betweensynovial inflammatory tissue and bone marrow in rheumatoid arthritis.J. Immunol., 2005; 175: 2579-2588
    Google Scholar
  • 38. Kaneki H., Guo R., Chen D., Yao Z., Schwarz E.M., Zhang Y.E.,Boyce B.F., Xing L.: Tumor necrosis factor promotes Runx2 degradationthrough up-regulation of Smurf1 and Smurf2 in osteoblasts.J. Biol. Chem., 2006; 281: 4326-4333
    Google Scholar
  • 39. Keller K.K., Thomsen J.S., Stengaard-Pedersen K., Dagnæs-HansenF., Nyengaard J.R., Hauge E.M.: Bone formation and resorptionare both increased in experimental autoimmune arthritis. PloS One,2012; 7: e53034
    Google Scholar
  • 40. Kmieć Z., Sokołowska I.: Rola cytokin z rodziny czynnika martwicynowotworów w przebiegu reumatoidalnego zapalenia stawów– nowe możliwości terapii. Pol. Merkur. Lekarski, 2007; 22: 300-304
    Google Scholar
  • 41. Kobayashi K., Takahashi N., Jimi E., Udagawa N., Takami M., KotakeS., Nakagawa N., Kinosaki M., Yamaguchi K., Shima N., Yasuda H.,Morinaga T., Higashio K., Martin T.J., Suda T.: Tumor necrosis factorα stimulates osteoclast differentiation by a mechanism independentof the ODF/RANKL-RANK interaction. J. Exp. Med., 2000; 191: 275-286
    Google Scholar
  • 42. Kokebie R., Aggarwal R., Lidder S., Hakimiyan A.A., Rueger D.C.,Block J.A., Chubinskaya S.: The role of synovial fluid markers ofcatabolism and anabolism in osteoarthritis, rheumatoid arthritisand asymptomatic organ donors. Arthritis Res. Ther., 2011; 13: R50
    Google Scholar
  • 43. Kontny E.: Pathogenesis of rheumatoid arthritis. Part II – innateimmunity, new therapeutic targets. Reumatology, 2011; 49: 115-121
    Google Scholar
  • 44. Korczowska I., Łącki J.K., Hrycaj P.: Influence of infliximab oncytokines network and markers of bone remodeling in rheumatoidarthritis patients. Yonsei Med. J., 2013; 54: 183-188
    Google Scholar
  • 45. Korczowska I., Olewicz-Gawlik A., Trefler J., Hrycaj P., Łącki J.K.:Does low-dose and short-term glucocorticoids treatment increasethe risk of osteoporosis in rheumatoid arthritis female patients?Clin. Rheumatol., 2008; 27: 565-572
    Google Scholar
  • 46. Kryśkiewicz E., Lorenc R.S.: Regulacja metabolizmu kostnego.Terapie innowacyjne w osteoporozie. Pol. Arch. Med. Wew., 2010; 120 (Suppl. 1): 31-39
    Google Scholar
  • 47. Lam J., Takeshita S., Barker J.E., Kanagawa O., Ross F.P., TeitelbaumS.L.: TNF-α induces osteoclastogenesis by direct stimulationof macrophages exposed to permissive levels of RANK ligand. J. Clin.Invest., 2000; 106: 1481-1488
    Google Scholar
  • 48. Larsen A., Dale K., Eek M.: Radiographic evaluation of rheumatoidarthritis and related conditions by standard reference films.Acta Radiol. Diagn., 1977; 18: 481-491
    Google Scholar
  • 49. Li X., Yuan F.L., Lu W.G., Zhao Y.Q., Li C.W., Li J.P., Xu R.S.: Therole of interleukin-17 in mediating joint destruction in rheumatoidarthritis. Biochem. Biophys. Res. Commun., 2010; 397: 131-135
    Google Scholar
  • 50. Lodder M.C., de Jong Z., Kostense P.J., Molenaar E.T., Staal K.,Voskuyl A.E., Hazes J.M., Dijkmans B.A., Lems W.F.: Bone mineraldensity in patients with rheumatoid arthritis: relation between diseaseseverity and low bone mineral density. Ann. Rheum. Dis., 2004;63: 1576-1580
    Google Scholar
  • 51. Lodder M.C., Haugeberg G., Lems W.F., Uhlig T., Orstavik R.E.,Kostense P.J., Dijkmans B.A., Kvien T.K., Woolf A.D., Oslo-Truro-Amsterdam(OSTRA) Collaborative Study: Radiographic damage associatedwith low bone mineral density and vertebral deformities inrheumatoid arthritis: the Oslo-Truro-Amsterdam (OSTRA) CollaborativeStudy. Arthritis Rheum., 2003; 49: 209-215
    Google Scholar
  • 52. Macovei L., Ancuta C., Belibou C., Chirieac R.: Bone mineral densityin patients with rheumatoid arthritis. Rev. Med. Chir. Soc. Med.Nat., 2011; 115: 723-730
    Google Scholar
  • 53. Marie P.J.: Transcription factors controlling osteoblastogenesis.Arch. Biochem. Biophys., 2008; 473: 98-105
    Google Scholar
  • 54. Mazzantini M., Di Munno O., Incerti-Vecchi L., Pasero G.: Vertebralbone mineral density changes in female rheumatoid arthritispatients treated with low-dose methotrexate. Clin. Exp. Rheumatol.,2000; 18: 327-331
    Google Scholar
  • 55. Mazzantini M., Di Munno O., Sinigaglia L., Bianchi G., RossiniM., Mela Q., Del Puente A., Frediani B., Cantatore F., Adami S.: Effectof cyclosporine A on bone density in female rheumatoid arthritispatients: results from a multicenter, cross-sectional study. Clin. Exp.Rheumatol., 2007; 25: 709-715
    Google Scholar
  • 56. Minaur N.J., Kounali D., Vedi S., Compston J.E., Beresford J.N., BhallaA.K.: Methotrexate in the treatment of rheumatoid arthritis. II. Invivo effects on bone mineral density. Rheumatology, 2002; 41: 741-749
    Google Scholar
  • 57. Miranda-Carús M.E., Benito-Miguel M., Balsa A., Cobo-IbánezT., Pérez de Ayala C., Pascual-Salcedo D., Martin-Mola E.: Peripheralblood T lymphocytes from patients with early rheumatoid arthritisexpress RANKL and interleukin-15 on the cell surface and promoteosteoclastogenesis in autologous monocytes. Arthritis Rheum., 2006;54: 1151-1164
    Google Scholar
  • 58. Natsui K., Tanaka K., Suda M., Yasoda A., Sakuma Y., Ozasa A.,Ozaki S., Nakao K.: High-dose glucocorticoid treatment induces rapidloss of trabecular bone mineral density and lean body mass. Osteoporos.Int., 2006; 17: 105-108
    Google Scholar
  • 59. Nemeth K., Schoppet M., Al-Fakhri N., Helas S., Jessberger R.,Hofbauer L.C., Goettsch C.: The role of osteoclast-associated receptorin osteoimmunology. J. Immunol., 2011; 186: 13-18
    Google Scholar
  • 60. O’Brien C.A., Jia D., Plotkin L.I., Bellido T., Powers C.C., StewartS.A., Manolagas S.C., Weinstein R.S.: Glucocorticoids act directly onosteoblasts and osteocytes to induce their apoptosis and reducebone formation and strength. Endocrinology, 2004; 145: 1835-1841
    Google Scholar
  • 61. Okamoto K., Takayanagi H.: Regulation of bone by the adaptiveimmune system in arthritis. Arthritis Res. Ther., 2011; 13: 219
    Google Scholar
  • 62. Orita Y., Yamamoto H., Kohno N., Sugihara M., Honda H., KawamataS., Mito S., Soe N.N., Yoshizumi M.: Role of osteoprotegerin inarterial calcification: development of new animal model. Arterioscler.Thromb. Vasc. Biol., 2007; 27: 2058-2064
    Google Scholar
  • 63. Pawlak-Buś K., Leszczyński P.: Inhibitory Wnt/β-kateniny w terapiiobniżonej masy kostnej – nowe perspektywy w leczeniu osteoporozy?Endokrynol. Otyłość, 2011; 7: 11-15
    Google Scholar
  • 64. Przedlacki J.: Zasady postępowania diagnostyczno-leczniczegow osteoporozie u osób dodorsłych Zakład Wydawniczo-PoligraficznyJerzy Krawczyk, Warszawa 2010
    Google Scholar
  • 65. Rell-Bakalarska M.: Przyczyny osteoporozy wtórnej. Chorobyukładu ruchu. W: Osteoporoza wtórna osób dorosłych, red.: PrzedlackiJ., Rell-Bakalarska M., Warszawa, 2007: 47-60
    Google Scholar
  • 66. Roux C.: Osteoporosis in inflammatory joint diseases. Osteoporos.Int., 2011; 22: 421-433
    Google Scholar
  • 67. Scott D.L., Wolfe F., Huizinga T.W.: Rheumatoid arthritis. Lancet,2010; 376: 1094-1108
    Google Scholar
  • 68. Seriolo B., Ferretti V., Sulli A., Caratto E., Fasciolo D., Cutolo M.:Serum osteocalcin levels in premenopausal rheumatoid arthritispatients. Ann. N.Y. Acad. Sci., 2002; 966: 502-507
    Google Scholar
  • 69. Smith J.B., Haynes M.K.: Rheumatoid arthritis – a molecular understanding.Ann. Intern. Med., 2002; 136: 908-922
    Google Scholar
  • 70. Sobacchi C., Frattini A., Guerrini M.M., Abinun M., PangrazioA., Susani L., Bredius R., Mancini G., Cant A., Bishop N., GrabowskiP, Del Fattore A., Messina C., Errigo G., Coxon F.P. i wsp.: Osteoclastpoorhuman osteopetrosis due to mutations in the gene encodingRANKL. Nat. Genet., 2007; 39: 960-962
    Google Scholar
  • 71. Stava C.J., Jimenez C., Hu M.I., Vassilopoulou-Sellin R.: Skeletal sequelaeof cancer and cancer treatment. J. Cancer Surviv., 2009; 3: 75-88
    Google Scholar
  • 72. Svensson B., Boonen A., Atbertsson K., van der Heijde D., KellerC., Hafstrӧm I.: Low-dose prednisolone in addition to the initialdisease-modifying antirheumatic drug in patients with early activerheumatoid arthritis reduces joint destruction and increasesthe remission rate: a two-year randomized trial. Arthritis Rheum.,2005; 52: 3360-3370
    Google Scholar
  • 73. Tascioglu F., Oner C., Armagan O.: The effect of low-dose methotrexateon bone mineral density in patients with early rheumatoidarthritis. Rheumatol. Int., 2003; 23: 231-235
    Google Scholar
  • 74. Teitelbaum S.L.: Osteoclasts: what do they do and how do theydo it? Am. J. Pathol., 2007; 170: 427-435
    Google Scholar
  • 75. Terpos E., Fragiadaki K., Konsta M., Bratengeier C., PapatheodorouA., Sfikakis P.P.: Early effects of IL-6 receptor inhibition on bonehomeostasis: a pilot study in women with rheumatoid arthritis. Clin.Exp. Rheumatol., 2011; 29: 921-925
    Google Scholar
  • 76. Tourinho T.F., Stein A., Castro J.A., Brenol J.C.: Rheumatoid arthritis:evidence for bone loss in premenopausal women. J. Rheumatol.,2005; 32: 1020-1025
    Google Scholar
  • 77. van Staa T.P., Geusens P., Bijlsma J.W., Leufkens H.G., CooperC.: Clinical assessment of the long-term risk of fracture in patientswith rheumatoid arthritis. Arthritis Rheum., 2006; 54: 3104-3112
    Google Scholar
  • 78. Veldhuis J.D.: Patophysiology of suppressed reproductive axesin men and women receiving exogenous glucocorticoids and/or exhibitingendogenous hypercortisolism. Osteoporos. Int., 1999; 9: S3
    Google Scholar
  • 79. Vis M., Havaardsholm E.A., Haugeberg G., Uhlig T., Voskuyl A.E.,van de Stadt R.J., Dijkmans B.A., Woolf A.D., Kvien T.K., Lems W.F.:Evaluation of bone mineral density, bone metabolism, osteoprotegerinand receptor activator of the NFκB ligand serum levels duringtreatment with infliximab in patients with rheumatoid arthritis.Ann. Rheum. Dis., 2006; 65: 1495-1499
    Google Scholar
  • 80. Voorzanger-Rousselot N., Ben-Tabassi N.C., Garnero P.: Oppositerelationship between circulating Dkk-1 and cartilage breakdown inpatients with rheumatoid arthritis and knee osteoarthritis. Ann.Rheum. Dis., 2009; 68: 1513-1514
    Google Scholar
  • 81. Wada C., Kataoka M., Seto H., Hayashi N., Kido J., Shinohara Y.,Nagata T.: High-turnover osteoporosis is induced by cyclosporin A inrats. J. Bone Miner. Metab., 2006; 24: 199-205
    Google Scholar
  • 82. Wei S., Kitaura H., Zhou P., Ross F.P., Teitelbaum S.L.: IL-1 mediatesINF-induced osteoclastogenesis. J. Clin. Invest., 2005; 115:282-290
    Google Scholar
  • 83. Weinstein R.S., Jilka R.L., Parfitt A.M., Manolagas S.C.: Inhibitionof osteoblastogenesis and promotion of apoptosis of osteoblasts andosteocytes by glucocorticoids. Potential mechanisms of their deleteriouseffects on bone. J. Clin. Invest., 1998; 102: 274-282
    Google Scholar
  • 84. Welsing P.M., Landewé R.B., van Riel P.L., Boers M., van GestelA.M., van der Linden S., Swinkels H.L., van der Heijde D.M.: The relationshipbetween disease activity and radiologic progression inpatients with rheumatoid arthritis: a longitudinal analysis. ArthritisRheum., 2004; 50: 2082-2093
    Google Scholar
  • 85. Wijbrandts C.A., Klaasen R., Dijkgraaf M.G., Gerlag D.M., vanEck-Smit B.L., Tak P.P.: Bone mineral density in rheumatoid arthritispatients 1 year after adalimumab therapy: arrest of bone loss. Ann.Rheum. Dis., 2009; 68: 373-376
    Google Scholar
  • 86. Wolfe F., Mitchell D.M., Sibley J.T., Fries J.F., Bloch D.A., WilliamsC.A., Spitz P.W., Haga M., Kleinheksel S.M., Cathey M.A.: The mortalityof rheumatoid arthritis. Arthritis Rheum., 1994; 37: 481-494
    Google Scholar
  • 87. Wróbel T., Mazur G., Lindner K., Ziółkowska J.: IL-17 as a mediatorof inflammation and angiogenesis. Adv. Clin. Exp. Med., 2005;14: 555-558
    Google Scholar
  • 88. Zdzisińska B., Kandefer-Szerszeń M.: Rola RANK/RANKL i OPGw szpiczaku plazmocytowym. Postępy Hig. Med. Dośw., 2006; 60:471-482
    Google Scholar

Full text

Skip to content