Metformin as a key to alternative activation of microglia?

COMMENTARY ON THE LAW

Metformin as a key to alternative activation of microglia?

Krzysztof Łabuzek 1 , Bożena Gabryel 2 , Bogusław Okopień 1

1. Klinika Chorób Wewnętrznych i Farmakologii Klinicznej Katedry Farmakologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny
2. Zakład Farmakologii Katedry Farmakologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny

Published: 2014-03-07
DOI: 10.5604/17322693.1093217
GICID: 01.3001.0003.1200
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 247-257

 

Abstract

The results of recent studies suggest that metformin, in addition to its antihyperglycemic efficacy, may also attenuate neuroinflammation and directly act on the central nervous system. However, the molecular mechanisms by which metformin exerts its anti-inflammatory effects in the brain remain largely unknown. Adenosine-monophosphate-activated protein kinase (AMPK) activation is the most well-known mechanism of metformin action. However, some of the biological responses to metformin (e.g. the release of cytokines and the expression of arginase I or PGC-1α) are not limited to AMPK activation but also are mediated by AMPK-independent mechanisms. This article reviews current evidence supporting the hypothesis that the shift of microglia toward alternative activation may underlie the beneficial effects of metformin observed in animal models of neurological disorders.

References

  • 1. Alimova I.N., Liu B., Fan Z., Edgerton S.M., Dillon T., Lind S.E., ThorA.D.: Metformin inhibits breast cancer cell growth, colony formationand induces cell cycle arrest in vitro. Cell Cycle, 2009; 8: 909-915
    Google Scholar
  • 2. Anisimov V.N., Berstein L.M., Egormin P.A., Piskunova T.S., PopovichI.G., Zabezhinski M.A., Kovalenko I.G., Poroshina T.E., SemenchenkoA.V., Provinciali M., Re F., Franceschi C.: Effect of metforminon life span and on the development of spontaneous mammary tumorsin HER-2/neu transgenic mice. Exp. Gerontol., 2005; 40: 685-693
    Google Scholar
  • 3. Bailey C.J.: Biguanides and NIDDM. Diabetes Care, 1992; 15: 755-772
    Google Scholar
  • 4. Batandier C., Guigas B., Detaille D., El-Mir M.Y., Fontaine E., RigouletM., Leverve X.M.: The ROS production induced by a reverse–electron flux at respiratory-chain complex 1 is hampered by metformin.J. Bioenerg. Biomembr., 2006; 38: 33-42
    Google Scholar
  • 5. Beal M.F.: Energetics in the pathogenesis of neurodegenerativediseases. Trends Neurosci., 2000; 23: 298-304
    Google Scholar
  • 6. Beckner M.E., Gobbel G.T., Abounader R., Burovic F., Agostino N.R.,Laterra J., Pollack I.F.: Glycolytic glioma cells with active glycogensynthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis.Lab. Invest., 2005; 85: 1457-1470
    Google Scholar
  • 7. Bellin C., de Wiza D.H., Wiernsperger N.F., Rösen P.: Generationof reactive oxygen species by endothelial and smooth muscle cells:influence of hyperglycemia and metformin. Horm. Metab. Res., 2006;38: 732-739
    Google Scholar
  • 8. Ben Ayed B., Dammak dit Mlik S., Ben Arab H., Trabelssi H., ChahtourH., Mathlouthi N., Dhuib M., Kassis M., Saiidane D., Trabelssi K.,Guermazi M.: Metformin effects on clomifene-induced ovulation inthe polycystic ovary syndrome. Tunis. Med., 2009; 87: 43-49
    Google Scholar
  • 9. Benveniste E.N.: Role of macrophages/microglia in multiple sclerosisand experimental allergic encephalomyelitis. J. Mol. Med.,1997; 75: 165-173
    Google Scholar
  • 10. Bergeron R., Ren J.M., Cadman K.S., Moore I.K., Perret P., PypaertM., Young L.H., Semenkovich C.F., Shulman G.I.: Chronic activationof AMP kinase results in NRF-1 activation and mitochondrial biogenesis.Am. J. Physiol. Endocrinol. Metab., 2001; 281: E1340-E1346
    Google Scholar
  • 11. Blázquez C., Geelen M. J., Velasco G., Guzmán M.: The AMP-activatedprotein kinase prevents ceramide synthesis de novo andapoptosis in astrocytes. FEBS Lett., 2001; 489: 149-153
    Google Scholar
  • 12. Block M.L., Hong J.S.: Chronic microglial activation and progressivedopaminergic neurotoxicity. Biochem. Soc. Trans., 2007;35: 1127-1132
    Google Scholar
  • 13. Bonnefont-Rousselot D., Raji B., Walrand S., Gardès-Albert M.,Jore D., Legrand A., Peynet J., Vasson M.P.: An intracellular modulationof free radical production could contribute to the beneficialeffects of metformin towards oxidative stress. Metabolism, 2003;52: 586-589
    Google Scholar
  • 14. Boudeau J., Scott J.W., Resta N., Deak M., Kieloch A., KomanderD., Hardie D.G., Prescott A.R., van Aalten D.M., Alessi D.R.: Analysisof the LKB1-STRAD-MO25 complex. J. Cell Sci., 2004; 117: 6365-6375
    Google Scholar
  • 15. Bowker S.L., Majumdar S.R., Veugelers P., Johnson J.A.: Increasedcancer-related mortality for patients with type 2 diabetes who usesulfonylureas or insulin. Diabetes Care, 2006; 29: 254-258
    Google Scholar
  • 16. Carlson N.G., Wieggel W.A., Chen J., Bacchi A., Rogers S.W., GahringL.C.: Inflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α impartneuroprotection to an excitotoxin through distinct pathways.J. Immunol., 1999; 163: 3963-3968
    Google Scholar
  • 17. Chen Y., Zhou K., Wang R., Liu Y., Kwak Y.D., Ma T., ThompsonR.C., Zhao Y., Smith L., Gasparini L., Luo Z., Xu H., Liao F.F.: Antidiabeticdrug metformin (GlucophageR) increases biogenesis of Alzheimer’samyloid peptides via up-regulating BACE1 transcription. Proc.Natl. Acad. Sci. USA, 2009; 106: 3907-3912
    Google Scholar
  • 18. Cho Y.K., Choi Y.H., Kim S.H., Lee M.G.: Effects of Escherichia colilipopolysaccharide on the metformin pharmacokinetics in rats. Xenobiotica,2009; 39: 946-954
    Google Scholar
  • 19. Choi M.K., Song I.S.: Organic cation transporters and their pharmacokineticand pharmacodynamic consequences. Drug Metab.Pharmacokinet., 2008; 23: 243-253
    Google Scholar
  • 20. Colton C.A., Mott R.T., Sharpe H., Xu Q., Van Nostrand W.E., VitekM.P.: Expression profiles for macrophage alternative activationgenes in AD and in mouse models of AD. J. Neuroinflammation,2006; 3: 27
    Google Scholar
  • 21. Correia S., Carvalho C., Santos M.S., Proença T., Nunes E., DuarteA.I., Monteiro P., Seiça R., Oliveira C.R., Moreira P.I.: Metformin protectsthe brain against the oxidative imbalance promoted by type 2diabetes. Med. Chem., 2008; 4: 358-364
    Google Scholar
  • 22. Culmsee C., Monnig J., Kemp B.E., Mattson M.P.: AMP-activatedprotein kinase is highly expressed in neurons in the developing ratbrain and promotes neuronal survival following glucose deprivation.J. Mol. Neurosci., 2001; 17: 45-58
    Google Scholar
  • 23. Czapski G.A., Gajkowska B., Strosznajder J.B.: Systemic administrationof lipopolysaccharide induces molecular and morphologicalalterations in the hippocampus. Brain Res., 2010; 1356: 85-94
    Google Scholar
  • 24. Dasgupta B., Milbrandt J.: AMP-activated protein kinase phosphorylatesretinoblastoma protein to control mammalian braindevelopment. Dev. Cell, 2009; 16: 256-270
    Google Scholar
  • 25. Detaille D., Guigas B., Leverve X., Wiernsperger N., Devos P.:Obligatory role of membrane events in the regulatory effect of metforminon the respiratory chain function. Biochem. Pharmacol.,2002; 63: 1259-1272
    Google Scholar
  • 26. Dziewulska A., Dobrzyń P., Dobrzyń A.: Rola kinazy białkowejaktywowanej przez AMP (AMPK) w regulacji metabolizmu mięśniszkieletowych. Postępy Hig. Med. Dośw., 2010; 64: 513-521
    Google Scholar
  • 27. Edwards J.P., Zhang X., Frauwirth K.A., Mosser D.M.: Biochemicaland functional characterization of three activated macrophagepopulations. J. Leukoc. Biol., 2006; 80: 1298-1307
    Google Scholar
  • 28. El-Mir M.Y., Detaille D., R-Villanueva G., Delgado-Esteban M.,Guigas B., Attia S., Fontaine E., Almeida A., Leverve X.: Neuroprotectiverole of antidiabetic drug metformin against apoptotic celldeath in primary cortical neurons. J. Mol. Neurosci., 2008; 34: 77-87
    Google Scholar
  • 29. El-Mir M.Y., Nogueira V., Fontaine E., Avéret N., Rigoulet M., LeverveX.: Dimethylbiguanide inhibits cell respiration via an indirecteffect targeted on the respiratory chain complex I. J. Biol. Chem.,2000; 275: 223-228
    Google Scholar
  • 30. Evans J.M., Donnelly L.A., Emslie-Smith A.M., Alessi D.R., MorrisA.D.: Metformin and reduced risk of cancer in diabetic patients.BMJ, 2005; 330: 1304-1305
    Google Scholar
  • 31. Fijałkowski F., Jarzyna R.: Rola podwzgórzowej kinazy białkowejaktywowanej przez AMP w kontroli pobierania pokarmu. PostępyHig. Med. Dośw., 2010; 64: 231-243
    Google Scholar
  • 32. Fu X., Wan S., Lyu Y.L., Liu L.F., Qi H.: Etoposide induces ATM–dependent mitochondrial biogenesis through AMPK activation.PLoS One, 2008; 23: 3: e2009
    Google Scholar
  • 33. Gambineri A., Semple R.K., Forlani G., Genghini S., Grassi I., HydenC.S., Pagotto U., O’Rahilly S., Pasquali R.: Monogenic polycysticovary syndrome due to a mutation in the lamin A/C gene is sensitiveto thiazolidinediones but not to metformin. Eur. J. Endocrinol.,2008; 159: 347-353
    Google Scholar
  • 34. Garcia-Gil M., Pesi R., Perna S., Allegrini S., Giannecchini M.,Camici M., Tozzi M.G.: 5’-aminoimidazole-4-carboxamide ribosideinduces apoptosis in human neuroblastoma cells. Neuroscience,2003; 117: 811-820
    Google Scholar
  • 35. Giri S., Nath N., Smith B., Viollet B., Singh A.K., Singh I.:5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside inhibitsproinflammatory response in glial cells: a possible role of AMP-activatedprotein kinase. J. Neurosci., 2004; 24: 479-487
    Google Scholar
  • 36. Giulian D., Baker T.J.: Characterization of ameboid microglia isolatedfrom developing mammalian brain. J. Neurosci., 1986; 6: 2163-2178
    Google Scholar
  • 37. Guastamacchia E., Resta F., Triggiani V., Liso A., Licchelli B., GhiyasaldinS., Sabbà C., Tafaro E.: Evidence for a putative relationship betweentype 2 diabetes and neoplasia with particular reference to breastcancer: role of hormones, growth factors and specific receptors.Curr. Drug Targets Immune Endocr. Metabol. Disord., 2004; 4: 59-66
    Google Scholar
  • 38. Hanisch U.K., Kettenmann H.: Microglia: active sensor and versatileeffectors cells in the normal and pathologic brain. Nat. Neurosci.,2007; 10: 1387-1394
    Google Scholar
  • 39. Hardie D.G.: Regulation of fatty acid and cholesterol metabolismby the AMP-activated protein kinase. Biochim. Biophys. Acta,1992; 1123: 231-238
    Google Scholar
  • 40. Hawley S.A., Gadalla A.E., Olsen G.S., Hardie D.G.: The antidiabeticdrug metformin activates the AMP-activated protein kinasecascade via an adenine nucleotide-independent mechanism. Diabetes,2002; 51: 2420-2425
    Google Scholar
  • 41. Herrero M.T., Barcia C., Navarro J.M.: Functional anatomy ofthalamus and basal ganglia. Childs Nerv. Syst., 2002; 18: 386-404
    Google Scholar
  • 42. Imamura K., Ogura T., Kishimoto A., Kaminishi M., Esumi H.:Cell cycle regulation via p53 phosphorylation by a 5’-AMP activatedprotein kinase activator, 5-aminoimidazole- 4-carboxamide-1-β-D-ribofuranoside, in a human hepatocellular carcinoma cell line.Biochem. Biophys. Res. Commun., 2001; 287: 562-567
    Google Scholar
  • 43. Isakovic A., Harhaji L., Stevanovic D., Markovic Z., Sumarac–Dumanovic M., Starcevic V., Micic D., Trajkovic V.: Dual antigliomaaction of metformin: cell cycle arrest and mitochondria-dependentapoptosis. Cell. Mol. Life Sci., 2007; 64: 1290-1302
    Google Scholar
  • 44. Isoda K., Young J.L., Zirlik A., MacFarlane L.A., Tsuboi N., GerdesN., Schönbeck U., Libby P.: Metformin inhibits proinflammatoryresponses and nuclear factor-κB in human vascular wall cells. Arterioscler.Thromb. Vasc. Biol., 2006; 26: 611-617
    Google Scholar
  • 45. Jack D.B.: Handbook of clinical pharmacokinetic data. Macmillian,Basingstoke 1992
    Google Scholar
  • 46. Jimenez S., Baglietto-Vargas D., Caballero C., Moreno-Gonzalez I.,Torres M., Sanchez-Varo R., Ruano D., Vizuete M., Gutierrez A., VitoricaJ.: Inflammatory response in the hippocampus of PS1M146L/APP751SLmouse model of Alzheimer’s disease: age-dependent switchin the microglial phenotype from alternative to classic. J. Neurosci.,2008; 28: 11650-11661
    Google Scholar
  • 47. Kaminski M., Kiessling M., Süss D., Krammer P.H., Gülow K.: Novelrole for mitochondria: protein kinase Cθ-dependent oxidativesignaling organelles in activation-induced T-cell death. Mol. Cell.Biol., 2007; 27: 3625-3639
    Google Scholar
  • 48. Kefas B.A., Cai Y., Kerckhofs K., Ling Z., Martens G., HeimbergH., Pipeleers D., Van de Casteele M.: Metformin-induced stimulationof AMP-activated protein kinase in beta-cells impairs their glucoseresponsiveness and can lead to apoptosis. Biochem. Pharmacol.,2004; 68: 409-416
    Google Scholar
  • 49. Kim W.G., Mohney R.P., Wilson B., Jeohn G.H., Liu B., Hong J.S.:Regional difference in susceptibility to lipopolysaccharide-inducedneurotoxicity in the rat brain: role of microglia. J. Neurosci., 2000;20: 6309-6316
    Google Scholar
  • 50. Kukidome D., Nishikawa T., Sonoda K., Imoto K., Fujisawa K.,Yano M., Motoshima H., Taguchi T., Matsumura T., Araki E.: Activationof AMP-activated protein kinase reduces hyperglycemia-inducedmitochondrial reactive oxygen species production and promotesmitochondrial biogenesis in human umbilical vein endothelial cells.Diabetes, 2006; 55: 120-127
    Google Scholar
  • 51. Kuo C.L., Ho F.M., Chang M.Y., Prakash E., Lin W.W.: Inhibitionof lipopolysaccharide-induced inducible nitric oxide synthase andcyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamideriboside is independent of AMP-activated protein kinase. J.Cell. Biochem., 2008; 103: 931-940
    Google Scholar
  • 52. Labuzek K., Liber S., Gabryel B., Adamczyk J., Okopień B.:Metformin increases phagocytosis and acidifies lysosomal/endosomalcompartments in AMPK-dependent manner in rat primarymicroglia. Naunyn Schmiedebergs Arch. Pharmacol., 2010;381: 171-186
    Google Scholar
  • 53. Łabuzek K., Liber S., Gabryel B., Okopień B.: Metformin has adenosine-monophosphateactivated protein kinase (AMPK)-independenteffects on LPS-stimulated rat primary microglial cultures. Pharmacol.Rep., 2010; 62: 827-848
    Google Scholar
  • 54. Łabuzek K., Suchy D., Gabryel B., Bielecka A., Liber S., Okopień B.:Quantification of metformin by the HPLC method in brain regions,cerebrospinal fluid and plasma of rats treated with lipopolysaccharide.Pharmacol. Rep., 2010; 62: 956-965
    Google Scholar
  • 55. Lai L., Leone T.C., Zechner C., Schaeffer P.J., Kelly S.M., FlanaganD.P., Medeiros D.M., Kovacs A., Kelly D.P.: Transcriptional coactivatorsPGC-1α and PGC-lβ control overlapping programs required forperinatal maturation of the heart. Genes Dev., 2008; 22: 1948-1961
    Google Scholar
  • 56. Lee Y.B., Schrader J.W., Kim S.U.: p38 map kinase regulates TNF-αproduction in human astrocytes and microglia by multiple mechanisms.Cytokine, 2000; 12: 874-880
    Google Scholar
  • 57. Legro R.S., Myers E.R., Barnhart H.X., Carson S.A., Diamond M.P.,Carr B.R., Schlaff W.D., Coutifaris C., McGovern P.G., Cataldo N.A.,Steinkampf M.P., Nestler J.E., Gosman G., Guidice L.C., Leppert P.C.,Reproductive Medicine Network: The pregnancy in polycystic ovarysyndrome study: baseline characteristics of the randomized cohortincluding racial effects. Fertil. Steril., 2006; 86: 914-933
    Google Scholar
  • 58. Lemere C.A.: A beneficial role for IL-1β in Alzheimer disease? J.Clin. Invest., 2007: 117: 1483-1485
    Google Scholar
  • 59. Li J., Baud O., Vartanian T., Volpe J.J., Rosenberg P.A.: Peroxynitritegenerated by inducible nitric oxide synthase and NADPH oxidasemediates microglial toxicity to oligodendrocytes. Proc. Natl. Acad.Sci. USA, 2005; 102: 9936-9941
    Google Scholar
  • 60. Li J., Zeng Z., Viollet B., Ronnett G.V., McCullough L.D.: Neuroprotectiveeffects of adenosine monophosphate-activated protein kinaseinhibition and gene deletion in stroke. Stroke, 2007; 38: 2992-2999
    Google Scholar
  • 61. Libby G., Donnelly L.A., Donnan P.T., Alessi D.R., Morris A.D.,Evans J.M.: New users of metformin are at low risk of incident cancer:a cohort study among people with type 2 diabetes. DiabetesCare, 2009; 32: 1620-1625
    Google Scholar
  • 62. Ma T.C., Buescher J.L., Oatis B., Funk J.A., Nash A.J., Carrier R.L.,Hoyt K.R.: Metformin therapy in a transgenic mouse model of Huntington’sdisease. Neurosci. Lett., 2007; 411: 98-103
    Google Scholar
  • 63. Majumdar A., Cruz D., Asamoah N., Buxbaum A., Sohar I., LobelP., Maxfield F.R.: Activation of microglia acidifies lysosomes andleads to degradation of Alzheimer amyloid fibrils. Mol. Biol. Cell,2007; 18: 1490-1496
    Google Scholar
  • 64. Mamputu J.C., Wiernsperger N.F., Renier G.: Antiatherogenicproperties of metformin: the experimental evidence. Diabetes Metab.,2003; 29: 6S71-6S76
    Google Scholar
  • 65. McCullough L.D., Zeng Z., Li H., Landree L.E., McFadden J., RonnettG.V.: Pharmacological inhibition of AMP-activated protein kinase providesneuroprotection in stroke. J. Biol. Chem., 2005; 280: 20493-20502
    Google Scholar
  • 66. McGeer P.L., Kawamata T., Walker D.G., Akiyama H., Tooyama I.,McGeer E.G.: Microglia in degenerative neurological disease. Glia,1993; 7: 84-92
    Google Scholar
  • 67. Micic D., Cvijovic G., Trajkovic V., Duntas L.H., Polovina S.: Metformin:its emerging role in oncology. Hormones, 2011; 10: 5-15
    Google Scholar
  • 68. Mielke J.G., Taghibiglou C., Wang Y.T.: Endogenous insulin signalingprotects cultured neurons from oxygen-glucose deprivation–induced cell death. Neuroscience, 2006; 143: 165-173
    Google Scholar
  • 69. Motoshima H., Goldstein B.J., Igata M., Araki E.: AMPK and cellproliferation – AMPK as a therapeutic target for atherosclerosis andcancer. J. Physiol., 2006; 574: 63-71
    Google Scholar
  • 70. Müller N., Ackenheil M.: Psychoneuroimmunology and the cytokineaction in the CNS: implications for psychiatric disorders. Prog.Neuropsychopharmacol. Biol. Psychiatry, 1998; 22: 1-33
    Google Scholar
  • 71. Nath N., Khan M., Paintlia M.K., Singh I., Hoda M.N., Giri S.:Metformin attenuated the autoimmune disease of the central nervoussystem in animal models of multiple sclerosis. J. Immunol.,2009; 182: 8005-8014
    Google Scholar
  • 72. Ouslimani N., Mahrouf M., Peynet J., Bonnefont-Rousselot D.,Cosson C., Legrand A., Beaudeux J.L.: Metformin reduces endothelialcell expression of both the receptor for advanced glycation endproducts and lectin-like oxidized receptor 1. Metabolism, 2007; 56:308-313
    Google Scholar
  • 73. Ouslimani N., Peynet J., Bonnefont-Rousselot D., Thérond P.,Legrand A., Beaudeux J.L.: Metformin decreases intracellular productionof reactive oxygen species in aortic endothelial cells. Metabolism,2005; 54: 829-834
    Google Scholar
  • 74. Owen M.R., Doran E., Halestrap A.P.: Evidence that metforminexerts its anti-diabetic effects through inhibition of complex 1 ofthe mitochondrial respiratory chain. Biochem. J., 2000; 348: 607-614
    Google Scholar
  • 75. Pertsch M., Duncan G.E., Stumpf W.E., Pilgrim C.: A histochemicalstudy of the regional distribution in the rat brain of enzymaticactivity hydrolyzing glucose- and 2-deoxyglucose-6-phosphate. Histochemistry,1988; 88: 257-262
    Google Scholar
  • 76. Piwkowska A., Rogacka D., Jankowski M., Dominiczak M.H., StepińskiJ.K., Angielski S.: Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun.,2010; 393: 268-273
    Google Scholar
  • 77. Potter W.B., O’Riordan K.J., Barnett D., Osting S.M., Wagoner M.,Burger C., Roopra A.: Metabolic regulation of neuronal plasticityby the energy sensor AMPK. PLoS One, 2010; 5: e8996
    Google Scholar
  • 78. Puigserver P., Rhee J., Lin J., Wu Z., Yoon J.C., Zhang C.Y., KraussS., Mootha V.K., Lowell B.B., Spiegelman B.M.: Cytokine stimulationof energy expenditure through p38 MAP kinase activation of PPAR-γcoactivator-1. Mol. Cell, 2001; 8: 971-982
    Google Scholar
  • 79. Puzanowska-Tarasiewicz H., Kuźmicka L., Tarasiewicz M.: Reaktywneformy azotu i tlenu. Pol. Merkur. Lekarski, 2009; 27: 338-340
    Google Scholar
  • 80. Ramamurthy S., Ronnett G.: AMP-activated protein kinase(AMPK) and energy-sensing in the brain. Exp. Neurobiol., 2012; 21:52-60
    Google Scholar
  • 81. Rattan R., Giri S., Singh A.K., Singh I.: 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferationin vitro and in vivo via AMP-activated protein kinase. J. Biol.Chem., 2005; 280: 39582-39593
    Google Scholar
  • 82. Reznick R.M., Shulman G.I.: The role of AMP-activated proteinkinase in mitochondrial biogenesis. J. Physiol., 2006; 574: 33-39
    Google Scholar
  • 83. Ropelle E.R., Pauli J.R., Zecchin K.G., Ueno M., de Souza C.T.,Morari J., Faria M.C., Velloso L.A., Saad M.J., Carvalheira J.B.: A centralrole for neuronal adenosine 5’-monophosphate-activated proteinkinase in cancer-induced anorexia. Endocrinology, 2007; 148:5220-5229
    Google Scholar
  • 84. Rozemuller J.M., van der Valk P., Eikelenboom P.: Activated microgliaand cerebral amyloid deposits in Alzheimer’s disease. Res.Immunol., 1992; 143: 646-649
    Google Scholar
  • 85. Ruggiero-Lopez D., Lecomte M., Moinet G., Patereau G., LagardeM., Wiernsperger N.: Reaction of metformin with dicarbonyl compounds.Possible implication in the inhibition of advanced glycationend product formation. Biochem. Pharmacol., 1999; 58: 1765-1773
    Google Scholar
  • 86. Saeedi R., Parsons H.L., Wambolt R.B., Paulson K., Sharma V.,Dyck J.R., Brownsey R.W., Allard M.F.: Metabolic actions of metforminin the heart can occur by AMPK-independent mechanisms. Am. J.Physiol. Heart Circ. Physiol., 2008; 294: H2497-H2506
    Google Scholar
  • 87. Sawada H., Hishida R., Hirata Y., Ono K., Suzuki H., MuramatsuS., Nakano I., Nagatsu T., Sawada M.: Activated microglia affect thenigro-striatal dopamine neurons differently in neonatal and agedmice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J.Neurosci. Res., 2007; 85: 1752-1761
    Google Scholar
  • 88. Schneider M.B., Matsuzaki H., Haorah J., Ulrich A., Standop J.,Ding X.Z., Adrian T.E., Pour PM.: Prevention of pancreatic cancerinduction in hamsters by metformin. Gastroenterology, 2001; 120:1263-1270
    Google Scholar
  • 89. Semmler A., Hermann S., Mormann F., Weberpals M., PaxianS.A., Okulla T., Schäfers M., Kummer M.P., Klockgether T., HenekaM.T.: Sepsis causes neuroinflammation and concomitant decreaseof cerebral metabolism. J. Neuroinflammation, 2008; 5: 38
    Google Scholar
  • 90. Shaftel S.S., Kyrkanides S., Olschowka J.A., Miller J.N., JohnsonR.E., O’Banion M.K.: Sustained hippocampal IL-1β overexpressionmediates chronic neuroinflammation and ameliorates Alzheimerplaque pathology. J. Clin. Invest., 2007; 117: 1595-1604
    Google Scholar
  • 91. Skup M.: Komórka glejowa w normie i patologii. W: Mózg a zachowanie.T. Górska, A. Grabowska, J. Zagrodzka. PWN Warszawa.2000, 4: 68-90
    Google Scholar
  • 92. Sonoda J., Laganière J., Mehl I.R., Barish G.D., Chong L.W., Li X.,Scheffler I.E., Mock D.C., Bataille A.R., Robert F., Lee C.H., Giguère V.,Evans R.M.: Nuclear receptor ERRα and coactivator PGC-1β are effectorsof IFN-γ-induced host defense. Genes Dev., 2007; 21: 1909-1920
    Google Scholar
  • 93. Steinberg G.R., Kemp B.E.: AMPK in health and disease. Physiol.Rev., 2009; 89: 1025-1078
    Google Scholar
  • 94. Tachida Y., Nakagawa K., Saito T., Saido T.C., Honda T., Saito Y.,Murayama S., Endo T., Sakaguchi G., Kato A., Kitazume S., HashimotoY.: Interleukin-1β up-regulates TACE to enhance α-cleavage of APPin neurons: resulting decrease in Aβ production. J. Neurochem.,2008; 104: 1387-1393
    Google Scholar
  • 95. Takei Y., Laskey R.: Tumor necrosis factor α regulates responsesto nerve growth factor, promoting neural cell survival but suppressingdifferentiation of neuroblastoma cells. Mol. Biol. Cell, 2008;19: 855-864
    Google Scholar
  • 96. Tien J.C., Tan T.Y.: Non-surgical interventions for threatenedand recurrent miscarriages. Singapore Med. J., 2007; 48: 1074-1090
    Google Scholar
  • 97. Towler M.C., Hardie D.G.: AMP-activated protein kinase in metaboliccontrol and insulin signaling. Circ. Res., 2007; 100: 328-341
    Google Scholar
  • 98. Tucker G.T., Casey C., Phillips P.J., Connor H., Ward J.D., WoodsH.F.: Metformin kinetics in healthy subjects and in patients withdiabetes mellitus. Br. J. Clin. Pharmacol., 1981; 12: 235-246
    Google Scholar
  • 99. Vats D., Mukundan L., Odegaard J.I., Zhang L., Smith K.L., MorelC.R., Wagner R.A., Greaves D.R., Murray P.J., Chawla A.: Oxidativemetabolism and PGC-1β attenuate macrophage-mediated inflammation.Cell. Metab., 2006; 4: 13-24
    Google Scholar
  • 100. Vazquez-Martin A., Oliveras-Ferraros C., Menendez J.A.: Theantidiabetic drug metformin suppresses HER2 (erbB-2) oncoproteinoverexpression via inhibition of the mTOR effector p70S6K1 in humanbreast carcinoma cells. Cell Cycle, 2009; 8: 88-96
    Google Scholar
  • 101. Vingtdeux V., Giliberto L., Zhao H., Chandakkar P., Wu Q., SimonJ.E., Janle E.M., Lobo J., Ferruzzi M.G., Davies P., MarambaudP.: AMP-activated protein kinase signaling activation by resveratrolmodulates amyloid-β peptide metabolism. J. Biol. Chem., 2010;285: 9100-9113
    Google Scholar
  • 102. Wilcock C., Bailey C.J.: Accumulation of metformin by tissuesof the normal and diabetic mouse. Xenobiotica, 1994; 24: 49-57
    Google Scholar
  • 103. Wilcock C., Wyre N.D., Bailey C.J.: Subcellular distribution ofmetformin in rat liver. J. Pharm. Pharmacol., 1991; 43: 442-444
    Google Scholar
  • 104. Wilkinson B.L., Landreth G.E.: The microglial NADPH oxidasecomplex as a source of oxidative stress in Alzheimer’s disease. J.Neuroinflammation, 2006; 3: 30
    Google Scholar
  • 105. Wu Z., Puigserver P., Andersson U., Zhang C., Adelmant G., MoothaV., Troy A., Cinti S., Lowell B., Scarpulla R.C., Spiegelman B.M.:Mechanisms controlling mitochondrial biogenesis and respirationthrough the thermogenic coactivator PGC-1. Cell, 1999; 98: 115-124
    Google Scholar
  • 106. Xie M., Zhang D., Dyck J.R., Li Y., Zhang H., Morishima M., MannD.L., Taffet G.E., Baldini A., Khoury D.S., Schneider M.D.: A pivotalrole for endogenous TGF-β-activated kinase-1 in the LKB1/AMP–activated protein kinase energy-sensor pathway. Proc. Natl. Acad.Sci. USA, 2006; 103: 17378-17383
    Google Scholar
  • 107. Xie Z., Dong Y., Zhang M., Cui M.Z., Cohen R.A., Riek U., NeumannD., Schlattner U., Zou M.H.: Activation of protein kinase Cζby peroxynitrite regulates LKB1-dependent AMP-activated proteinkinase in cultured endothelial cells. J. Biol. Chem., 2006; 281: 6366-6375
    Google Scholar
  • 108. Xie Z., Wei M., Morgan T.E., Fabrizio P., Han D., Finch C.E., LongoV.D.: Peroxynitrite mediates neurotoxicity of amyloid β-peptide1-42-and lipopolysaccharide-activated microglia. J. Neurosci., 2002; 22:3484-3492
    Google Scholar
  • 109. Zakikhani M., Dowling R., Fantus I.G., Sonenberg N., Pollak M.:Metformin is an AMP kinase-dependent growth inhibitor for breastcancer cells. Cancer Res., 2006; 66: 10269-10273
    Google Scholar
  • 110. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., WuM., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., GoodyearL.J., Moller D.E.: Role of AMP-activated protein kinase in mechanismof metformin action. J. Clin. Invest., 2001; 108: 1167-1174
    Google Scholar
  • 111. Zou M.H., Kirkpatrick S.S., Davis B.J., Nelson J.S., Wiles W.G.4th,Schlattner U., Neumann D., Brownlee M., Freeman M.B., GoldmanM.H.: Activation of the AMP-activated protein kinase by the anti–diabetic drug metformin in vivo. Role of mitochondrial reactivenitrogen species. J. Biol. Chem., 2004; 279: 43940-43951
    Google Scholar

Full text

Skip to content