Microevolution of BCG substrains

COMMENTARY ON THE LAW

Microevolution of BCG substrains

Katarzyna Krysztopa‑Grzybowska 1 , Anna Lutyńska 1

1. Zakład Badania Surowic i Szczepionek, Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny w Warszawie

Published: 2016-12-21
DOI: 10.5604/17322693.1226692
GICID: 01.3001.0009.6903
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1259-1266

 

Abstract

Tuberculosis was, and still is, one of the main causes of morbidity and mortality in the world. Thus it still remains a public health priority. Nonetheless, without a newly developed vaccine, it is rather unlikely to be easily resolved. The only available vaccine against tuberculosis (BCG) has been used for nearly 100 years. Currently a variety of BCG substrains are used by many manufacturers in the world. All these substrains were obtained from a single parental strain of Mycobacterium bovis. Attempts to explain the complete mechanisms of attenuation, as well as tracing the microevolution resulting from the different distribution time and conditions of production of BCG vaccines in the different parts of the world, might explain the differences in the observed efficacy of vaccines produced with different substrains. The most important marker associated with attenuation of virulent M. bovis is the loss of the RD1 region observed in all BCG substrains. Among other attenuation markers, still not completely identified, accumulation of SNP mutations seems to be an important one. The different number of passages and culture conditions of the parental vaccine strain have led to there being about 50 different sister vaccine BCG substrains throughout the world. Among them, there are “early strains”, distributed until 1927, and “later strains” with the RD2 deletion obtained during 1927‑1961. It has also been found that 22 regions containing 52 genes were lost during the distribution of sister substrains during the period 1924‑1966. Genetic differences due to selection pressure, revealing specific microevolutionary traits, may explain the variability in immunogenicity and residual virulence of each vaccine BCG substrain.

References

  • 1. Abdallah A.M., Gey van Pittius N.C., Champion P.A.D., Cox J., LuirinkJ., Vandenbroucke‑Grauls C.M., Applmelk B.J., Bitter W.: Type VII secre‑tion ‑ mycobacteria show the way. Nat. Rev. Microbiol., 2007; 5: 883‑891
    Google Scholar
  • 2. Bedwell J., Kairo S.K., Behr M.A., Bygraves J.A.: Identification ofsubstrains of BCG vaccine using multiplex PCR. Vaccine, 2001; 19:2146‑2151
    Google Scholar
  • 3. Behr M.A.: BCG‑different strains, different vaccines? Lancet In‑fect. Dis., 2002; 2: 86‑92
    Google Scholar
  • 4. Behr M.A., Schroeder B.G., Brinkman J.N., Slayden R.A., BarryC.E.: A point mutation in the mma3 gene is responsible for impairedmethoxymycolic acid production in Mycobacterium bovis BCG strainsobtained after 1927. J. Bacteriol., 2000; 182: 3394‑3399
    Google Scholar
  • 5. Behr M.A., Small P.M.: A historical and molecular phylogeny ofBCG strains. Vaccine, 1999; 17: 915‑922
    Google Scholar
  • 6. Behr M.A., Wilson M.A., Gill W.P., Salamon H., Schoolnik G.K., RaneS., Small P.M.: Comparative genomics of BCG vaccines by whole‑ge‑nome DNA microarray. Science, 1999; 284: 1520‑1523
    Google Scholar
  • 7. Brosch R., Gordon S.V., Buchrieser C., Pym A.S., Garnier T., ColeS.T.: Comparative genomics uncovers large tandem chromosomal du‑plications in Mycobacterium bovis BCG Pasteur. Yeast, 2000; 17: 111‑123
    Google Scholar
  • 8. Brosch R., Gordon S.V., Garnier T., Eiglmeier K., Frigui W., ValentiP., Dos Santos S., Duthoy S., Lacroix C., Garcia‑Pelayo C., Inwald J.K.,Golby P., Garcia J.N., Hewinson R.G., Behr M.A. i wsp.: Genome plas‑ticity of BCG and impact on vaccine efficacy. Proc. Natl. Acad. Sci.USA, 2007; 104: 5596‑5601
    Google Scholar
  • 9. Charlet D., Mostowy S., Alexander D., Sit L., Wiker H.G., BehrM.A.: Reduced expression of antigenic proteins MPB70 and MPB83in Mycobacterium bovis BCG strains due to a start codon mutation insigK. Mol. Microbiol., 2005; 56: 1302‑1313 10 Chen J.M., Islam S.T., Ren H., Liu J.: Differential productions oflipid virulence factors among BCG vaccine strains and implicationson BCG safety. Vaccine, 2007; 25: 8114‑8122
    Google Scholar
  • 10. years later. Lancet Infect. Dis., 2011; 11: 633‑640
    Google Scholar
  • 11. Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D.,Gordon S.V., Eiglmeier K., Gas S., Barry C.E. 3rd, Tekaia F., Badcock K.,Basham D., Brown D., Chillingworth T., Connor R. i wsp.: Decipheringthe biology of Mycobacterium tuberculosis from the complete genomesequence. Nature, 1998; 393: 537‑544
    Google Scholar
  • 12. Collins D.M., Kawakami R.P., Buddle B.M., Wards B.J., de LisleG.W.: Different susceptibility of two animal species infected withisogenic mutants of Mycobacterium bovis identifies phoT as havingroles in tuberculosis virulence and phosphate transport. Microbi‑ology, 2003; 149: 3203‑3212
    Google Scholar
  • 13. Frick M.: The TB Vaccines Pipeline. Where are we going, wherehave we been? W: 2013 Pipeline Report, red. T. Horn, S. Morgan. HIVi‑Base/Treatment Action Group, 2013: 263‑283
    Google Scholar
  • 14. Ganguly N., Siddiqui I., Sharma P.: Role of M. tuberculosis RD‑1region encoded secretory proteins in protective response and viru‑lence. Tuberc. Edinb. Scotl., 2008; 88: 510‑517
    Google Scholar
  • 15. Garcia Pelayo M.C., Uplekar S., Keniry A., Mendoza Lopez P.,Garnier T., Nunez Garcia J., Boschiroli L., Zhou X., Parkhill J., SmithN., Hewinson R.G., Cole S.T., Gordon S.V.: A comprehensive surveyof single nucleotide polymorphisms (SNPs) across Mycobacteriumbovis strains and M. bovis BCG vaccine strains refines the genealogyand defines a minimal set of SNPs that separate virulent M. bovisstrains and M. bovis BCG strains. Infect. Immun., 2009; 77: 2230‑2238
    Google Scholar
  • 16. Garnier T., Eiglmeier K., Camus J.‑C., Medina N., Mansoor H.,Pryor M., Duthoy S., Grondin S., Lacroix C., Monsempe C., SimonS., Harris B., Atkin R., Doggett J., Mayes R. i wsp.: The complete ge‑nome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA,2003; 100: 7877‑7882Piśmiennictwo
    Google Scholar
  • 17. Gomes L.H.F., Otto T.D., Vasconcellos É.A., Ferrão P.M., MaiaR.M., Moreira A.S., Ferreira M.A., Castello‑Branco L.R.R., DegraveW.M., Mendonca‑Lima L.: Genome sequence of Mycobacterium bovisBCG Moreau, the Brazilian vaccine strain against tuberculosis. J.Bacteriol., 2011; 193: 5600‑5601
    Google Scholar
  • 18. Hotter G.S., Wards B.J., Mouat P., Besra G.S., Gomes J., Singh M.,Bassett S., Kawakami P., Wheeler P.R., de Lisle G.W., Collins D.M.:Transposon mutagenesis of Mb0100 at the ppe1‑nrp locus in Myco‑bacterium bovis disrupts phthiocerol dimycocerosate (PDIM) andglycosylphenol‑PDIM biosynthesis, producing an avirulent strainwith vaccine properties at least equal to those of M. bovis BCG. J.Bacteriol., 2005; 187: 2267‑2277
    Google Scholar
  • 19. Instytut Gruźlicy i Chorób Płuc: Biuletyn Instytutu Gruźlicyi Chorób Płuc 2014, http://www.igichp.edu.pl/(18.08.2015)
    Google Scholar
  • 20. Kaufmann S.H.: Fact and fiction in tuberculosis vaccine research:
    Google Scholar
  • 21. Kaufmann S.H., Hussey G., Lambert P.H.: New vaccines for tu‑berculosis. Lancet, 2010; 375: 2110‑2119
    Google Scholar
  • 22. Keating L.A., Wheeler P.R., Mansoor H., Inwald J.K., Dale J., He‑winson R.G., Gordon S.V.: The pyruvate requirement of some mem‑bers of the Mycobacterium tuberculosis complex is due to an inactivepyruvate kinase: implications for in vivo growth. Mol. Microbiol.,2005; 56: 163‑174
    Google Scholar
  • 23. Krysztopa‑Grzybowska K., Brzezińska S., Augustynowicz‑KopećE., Polak M., Augustynowicz E., Lutyńska A.: Descendant of daugh‑ter Brazilian BCG Moreau substrain in Poland. Vaccine, 2012; 30:5512‑5518
    Google Scholar
  • 24. Krysztopa‑Grzybowska K., Lutyńska A.: Advances in the devel‑opment of new vaccines against tuberculosis. 100 years after theintroduction of BCG. Postępy Hig. Med. Dośw., 2014; 68: 768‑776
    Google Scholar
  • 25. Lawn S.D., Zumla A.I.: Tuberculosis. Lancet, 2011; 378: 57‑72
    Google Scholar
  • 26. Leung A.S., Tran V., Wu Z., Yu X., Alexander D.C., Gao G.F., ZhuB., Liu J.: Novel genome polymorphisms in BCG vaccine strains andimpact on efficacy. BMC Genomics, 2008; 9: 413
    Google Scholar
  • 27. Lewis K.N., Liao R., Guinn K.M., Hickey M.J., Smith S., Behr M.A.,Sherman D.R.: Deletion of RD1 from Mycobacterium tuberculosis mim‑ics bacille Calmette‑Guérin attenuation. J. Infect. Dis., 2003; 187:117‑123
    Google Scholar
  • 28. Liu J., Tran V., Leung A.S., Alexander D.C., Zhu B.: BCG vaccines:their mechanisms of attenuation and impact on safety and protec‑tive efficacy. Hum. Vaccin., 2009; 5: 70‑78
    Google Scholar
  • 29. MacGurn J.A., Cox J.S.: A genetic screen for Mycobacterium tu‑berculosis mutants defective for phagosome maturation arrest iden‑tifies components of the ESX‑1 secretion system. Infect. Immun.,2007; 75: 2668‑2678
    Google Scholar
  • 30. Mahairas G.G., Sabo P.J., Hickey M.J., Singh D.C., Stover C.K.:Molecular analysis of genetic differences between Mycobacteriumbovis BCG and virulent M. bovis. J. Bacteriol., 1996; 178: 1274‑1282
    Google Scholar
  • 31. Mattow J., Jungblut P.R., Schaible U.E., Mollenkopf H.J., LamerS., Zimny‑Arndt U., Hagens K., Müller E.C., Kaufmann S.H.: Identi‑fication of proteins from Mycobacterium tuberculosis missing in at‑tenuated Mycobacterium bovis BCG strains. Electrophoresis, 2001;22: 2936‑2946
    Google Scholar
  • 32. Olinto M.: The Brazilian experience in prevention of tuber‑culosis with a concurrent method of BCG vaccination. Pediatrics,1957; 19: 833‑843
    Google Scholar
  • 33. Onwueme K.C., Vos C.J., Zurita J., Ferreras J.A., Quadri L.E.: Thedimycocerosate ester polyketide virulence factors of mycobacteria.Prog. Lipid Res., 2005; 44: 259‑302
    Google Scholar
  • 34. Ottenhoff T.H., Kaufmann S.H.: Vaccines against tuberculosis:where are we and where do we need to go? PLoS Pathog., 2012; 8:e1002607
    Google Scholar
  • 35. Parish T., Smith D.A., Kendall S., Casali N., Bancroft G.J., StokerN.G.: Deletion of two‑component regulatory systems increases thevirulence of Mycobacterium tuberculosis. Infect. Immun., 2003; 71:1134‑1140
    Google Scholar
  • 36. Reed M.B., Domenech P., Manca C., Su H., Barczak A.K., Kre‑iswirth B.N., Kaplan G., Barry C.E. 3rd.: A glycolipid of hyperviru‑lent tuberculosis strains that inhibits the innate immune response.Nature, 2004; 431: 84‑87
    Google Scholar
  • 37. Rousseau C., Winter N., Pivert E., Bordat Y., Neyrolles O., Avé P.,Huerre M., Gicquel B., Jackson M.: Production of phthiocerol dimyco‑cerosates protects Mycobacterium tuberculosis from the cidal activityof reactive nitrogen intermediates produced by macrophages andmodulates the early immune response to infection. Cell. Microbiol.,2004; 6: 277‑287
    Google Scholar
  • 38. Rowland R., McShane H.: Tuberculosis vaccines in clinical trials.Expert Rev. Vaccines, 2011; 10: 645‑658
    Google Scholar
  • 39. Singh A., Guidry L., Narasimhulu K.V., Mai D., Trombley J., Red‑ding K.E., Giles G.I., Lancaster J.R. Jr, Steyn A.J.: Mycobacterium tuber‑culosis WhiB3 responds to O2 and nitric oxide via its [4Fe‑4S] clusterand is essential for nutrient starvation survival. Proc. Natl. Acad.Sci. USA, 2007; 104: 11562‑11567
    Google Scholar
  • 40. Smith K.C., Orme I.M., Starke J.R.: Tuberculosis vaccine. W: S.Plotkin, W. Orenstein, P. Offit (red.) Vaccines. UK, Elsevier Saunders,Oxford, 2008; 857‑886
    Google Scholar
  • 41. Soto C.Y., Menéndez M.C., Pérez E., Samper S., Gómez A.B., GarcíaM.J., Martin C.: IS6110 mediates increased transcription of the phoPvirulence gene in a multidrug‑resistant clinical isolate responsiblefor tuberculosis outbreaks. J. Clin. Microbiol., 2004; 42: 212‑219
    Google Scholar
  • 42. Stanley S.A., Raghavan S., Hwang W.W., Cox J.S.: Acute infectionand macrophage subversion by Mycobacterium tuberculosis requirea specialized secretion system. Proc. Natl. Acad. Sci. USA, 2003; 100:13001‑13006
    Google Scholar
  • 43. Steyn A.J., Collins D.M., Hondalus M.K., Jacobs W.R., KawakamiR.P., Bloom B.R.: Mycobacterium tuberculosis WhiB3 interacts withRpoV to affect host survival but is dispensable for in vivo growth.Proc. Natl. Acad. Sci. USA, 2002; 99: 3147‑3152
    Google Scholar
  • 44. Teo S.S., Shingadia D.: BCG vaccine. Adv. Exp. Med. Biol., 2005;568: 117‑134
    Google Scholar
  • 45. Vrba A., Kwiatkowska S.: Mycobacterium tuberculosis jako przy‑kład patogenu wewnątrzkomórkowego. Wzajemne relacje międzymikro‑ i makroorganizmem. Pol. Merkur. Lekarski, 2009; 27: 508‑513
    Google Scholar
  • 46. World Health Organization: Global tuberculosis report 2012. http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf (18.08.2015)
    Google Scholar
  • 47. Zhang W., Zhang Y., Zheng H., Pan Y., Liu H., Du P., Wan L., Liu J.,Zhu B., Zhao G., Chen C., Wan K.: Genome sequencing and analysisof BCG vaccine strains. PLoS One, 2013; 8: e71243
    Google Scholar

Full text

Skip to content