Mitochondria in brain hypoxia

COMMENTARY ON THE LAW

Mitochondria in brain hypoxia

Jacek Lenart 1

1. Zakład Neurochemii, Instytut Medycyny Doświadczalnej i Klinicznej im. M. Mossakowskiego PAN w Warszawie

Published: 2017-02-15
DOI: 10.5604/01.3001.0010.3796
GICID: 01.3001.0010.3796
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 118-128

 

Abstract

Neurons vary widely in shape, size, type of neurotransmitters and number of synapses. Their common characteristic is a very high sensitivity to changes in oxygen concentration. The consequence of hypoxia is to launch a series of biochemical reactions called the ischemic cascade. The term is a bit misleading, because it suggests that there is a succession of events, in a linear fashion. In fact, the ischemic cascade involves very complex processes that take place simultaneously and interact with each other. The key role in neuronal responses to hypoxia is played by changes related to mitochondria, which occur immediately after hypoxia, at the beginning of the ischemic cascade. Disturbances in the mitochondrial functions are recognized as an essential element not only in acute but also in chronic hypoxia, as well as neurodegenerative diseases.

References

  • 1. Al Rawi S., Louvet-Vallée S., Djeddi A., Sachse M., Culetto E., Hajjar C., Boyd L., Legouis R., Galy V.: Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science, 2011; 334: 1144-1147
    Google Scholar
  • 2. Astrup J., Siesjö B.K., Symon L.: Thresholds in cerebral ischemia – the ischemic penumbra. Stroke, 1981; 12: 723-725
    Google Scholar
  • 3. Azzu V., Brand M.D.: The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem Sci., 2010; 35: 298-307
    Google Scholar
  • 4. Barcikowska M., Członkowska A., Derejczyk J., Gabryelewicz T., Gębska-Kuczerowska A., Herczyńska G., Sienkiewicz-Jarosz H., Jóźwiak A., Naruszewicz M., Opala G., Parnowski T., Pawińska-Proniewska M., Radzikowska M., Rajska-Neumann A., Rószkiewicz M. i wsp.: Problemy zdrowia publicznego w kontekście starzenia się populacji Polski. Raport. Postępy Psychiatrii i Neurologii, 2006; 15: 203-211
    Google Scholar
  • 5. Bazán N.G., Rodríguez de Turco E.B.: Membrane lipids in the pathogenesis of brain edema: phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia. Adv Neurol., 1980; 28: 197-205
    Google Scholar
  • 6. Bickler P.E., Buck L.T.: Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations. J. Exp. Biol., 1998; 201: 1141-1152
    Google Scholar
  • 7. Bolaños J.P., Almeida A.: The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 2010; 62: 14-18
    Google Scholar
  • 8. Bolaños J.P., Almeida A., Moncada S.: Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci., 2010; 35: 145-149
    Google Scholar
  • 9. Brown A.M.: Brain glycogen re-awakened. J. Neurochem., 2004; 89: 537-552
    Google Scholar
  • 10. Burnstock G., Krügel U., Abbracchio M.P., Illes P.: Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol., 2011; 95: 229-274
    Google Scholar
  • 11. Collins G.H., Cowden R.R., Nevis A.H.: Myoclonus epilepsy with Lafora bodies. An ultrastructural and cytochemical study. Arch Pathol., 1968; 86: 239-254
    Google Scholar
  • 12. Das D.K., Maulik N.: Cardiac genomic response following preconditioning stimulus. Cardiovasc. Res., 2006; 70: 254-263
    Google Scholar
  • 13. Daw J.C., Wenger D.P., Berne R.M.: Relationship between cardiac glycogen and tolerance to anoxia in the western painted turtle, Chrysemys picta bellii. Comp. Biochem. Physiol., 1967; 22: 69-73
    Google Scholar
  • 14. Diener H.C., Foerch C., Riess H., Röther J., Schroth G., Weber R.: Treatment of acute ischaemic stroke with thrombolysis or thrombectomy in patients receiving anti-thrombotic treatment. Lancet Neurol., 2013; 12: 677-688
    Google Scholar
  • 15. Domańska-Janik K., Zalewska T.: Effect of brain ischemia on protein kinase C. J. Neurochem., 1992; 58: 1432-1439
    Google Scholar
  • 16. Duchen M.R.: Mitochondria and calcium: from cell signalling to cell death. J. Physiol., 2000; 529: 57-68
    Google Scholar
  • 17. Dudkina N.V., Kouril R., Peters K., Braun H.P., Boekema E.J.: Structure and function of mitochondrial supercomplexes. Biochim. Biophys. Acta, 2010; 1797: 664-670
    Google Scholar
  • 18. Dumollard R., Ward Z., Carroll J., Duchen M.R.: Regulation of redox metabolism in the mouse oocyte and embryo. Development, 2007; 134: 455-465
    Google Scholar
  • 19. Duran J., Gruart A., García-Rocha M., Delgado-García J.M., Guinovart J.J.: Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet., 2014; 23: 3147-3156
    Google Scholar
  • 20. Duran J., Tevy M.F., Garcia-Rocha M., Calbó J., Milán M., Guinovart J.J.: Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol. Med., 2012; 4: 719-729
    Google Scholar
  • 21. Erecińska M., Silver I.A.: Ions and energy in mammalian brain. Prog. Neurobiol., 1994; 43: 37-71
    Google Scholar
  • 22. Erecińska M., Silver I.A.: Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol., 2001; 128: 263-276
    Google Scholar
  • 23. Folbergrová J., Minamisawa H., Ekholm A., Siesjö B.K.: Phosphorylase alpha and labile metabolites during anoxia: correlation to membrane fluxes of K+ and Ca2+. J. Neurochem., 1990; 55: 1690-1696
    Google Scholar
  • 24. Folmes C.D., Nelson T.J., Martinez-Fernandez A., Arrell D.K., Lindor J.Z., Dzeja P.P., Ikeda Y., Perez-Terzic C., Terzic A.: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab., 2011; 14: 264-271
    Google Scholar
  • 25. García-Rivas Gde J., Carvajal K., Correa F., Zazueta C.: Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo. Br. J. Pharmacol., 2006; 149: 829-837
    Google Scholar
  • 26. Genova M.L., Bianchi C., Lenaz G.: Supercomplex organization of the mitochondrial respiratory chain and the role of the Coenzyme Q pool: pathophysiological implications. Biofactors, 2005; 25: 5-20
    Google Scholar
  • 27. Gouriou Y., Demaurex N., Bijlenga P., De Marchi U.: Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie, 2011; 93: 2060-2067
    Google Scholar
  • 28. Green D.R., Galluzzi L., Kroemer G.: Cell biology. Metabolic control of cell death. Science, 2014; 345: 1250256
    Google Scholar
  • 29. Grenda A., Budzyński M., Filip A.A.: Biogenesis of microRNAs and their role in the development and course of selected hematologic disorders. Postępy Hig. Med. Dośw., 2013; 67: 174-185
    Google Scholar
  • 30. Gross E.R., Gross G.J.: Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res., 2006; 70: 212-221
    Google Scholar
  • 31. Hansen A.J.: Effect of anoxia on ion distribution in the brain. Physiol. Rev., 1985; 65: 101-148
    Google Scholar
  • 32. Hawkins B.J., Levin M.D., Doonan P.J., Petrenko N.B., Davis C.W., Patel V.V., Madesh M.: Mitochondrial complex II prevents hypoxic but not calcium – and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J. Biol. Chem., 2010; 285: 26494-26505
    Google Scholar
  • 33. Hermes-Lima M., Zenteno-Savín T.: Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2002; 133: 537-556
    Google Scholar
  • 34. Herrero-Mendez A., Almeida A., Fernández E., Maestre C., Moncada S., Bolanos J.P.: The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat. Cell Biol., 2009; 11: 747-752
    Google Scholar
  • 35. Hinckelmann M.V., Zala D., Saudou F.: Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Trends Cell Biol., 2013; 23: 634-643
    Google Scholar
  • 36. Insel T.R., Landis S.C., Collins F.S.: Research priorities. The NIH BRAIN Initiative. Science, 2013; 340: 687-688
    Google Scholar
  • 37. Ke Q., Costa M.: Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol., 2006; 70: 1469-1480
    Google Scholar
  • 38. Kelso G.F., Porteous C.M., Coulter C.V., Hughes G., Porteous W.K., Ledgerwood E.C., Smith R.A., Murphy M.P.: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem., 2001; 276: 4588-4596
    Google Scholar
  • 39. Kim H.K., Kang S.W., Jeong S.H., Kim N., Ko J.H., Bang H., Park W.S., Choi T.H., Ha Y.R., Lee Y.S., Youm J.B., Ko K.S., Rhee B.D., Han J.: Identification of potential target genes of cardioprotection against ischemia-reperfusion injury by express sequence tags analysis in rat hearts. J Cardiol., 2012; 60: 98-110
    Google Scholar
  • 40. Kirino T.: Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res., 1982; 239: 57-69
    Google Scholar
  • 41. Kirino T., Sano K.: Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol., 1984; 62: 201-208
    Google Scholar
  • 42. Krab K., Kempe H., Wikström M.: Explaining the enigmatic KM for oxygen in cytochrome c oxidase: a kinetic model. Biochim. Biophys. Acta, 2011; 1807: 348-358
    Google Scholar
  • 43. Lenaz G., Genova M.L.: Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid. Redox Signal., 2010; 12: 961-1008
    Google Scholar
  • 44. Lill R., Mühlenhoff U.: Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem., 2008; 77: 669-700
    Google Scholar
  • 45. Lindahl S.G.: Oxygen and life on earth: an anesthesiologist’s views on oxygen evolution, discovery, sensing, and utilization. Anesthesiology, 2008; 109: 7-13
    Google Scholar
  • 46. Lukyanova L.D., Dudchenko A.M., Tsybina T.A., Germanova E.L., Tkachuk E.N., Erenburg I.V.: Effect of intermittent normobaric hypoxia on kinetic properties of mitochondrial enzymes. Bull. Exp. Biol. Med., 2007; 144: 795-801
    Google Scholar
  • 47. Lukyanova L.D., Kirova Y.I.: Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Front. Neurosci., 2015; 9: 320
    Google Scholar
  • 48. Magistretti P.J., Allaman I.: Glycogen: a Trojan horse for neurons. Nat Neurosci., 2007; 10: 1341-1342
    Google Scholar
  • 49. Marchi S., Pinton P.: The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol., 2014; 592: 829-839
    Google Scholar
  • 50. Marriage B.J., Clandinin M.T., Macdonald I.M., Glerum D.M.: Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Mol. Genet. Metab., 2004; 81: 263-272
    Google Scholar
  • 51. Mazurek M.: Umieralność z powodu udarów mózgu w Polsce – rola badań obserwacyjnych opartych na danych z baz informatycznych. Wiad. Lek., 2005; 58: 397-402
    Google Scholar
  • 52. Mizumura K., Choi A.M., Ryter S.W.: Emerging role of selective autophagy in human diseases. Front. Pharmacol., 2014; 5: 244
    Google Scholar
  • 53. Mortensen M., Ferguson D.J., Simon A.K.: Mitochondrial clearance by autophagy in developing erythrocytes: clearly important, but just how much so? Cell Cycle, 2010; 9: 1901-1906
    Google Scholar
  • 54. Müller M., Mentel M., van Hellemond J.J., Henze K., Woehle C., Gould S.B., Yu R.Y., van Der Giezen M., Tielens A.G., Martin W.F.: Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev., 2012; 76: 444-495
    Google Scholar
  • 55. Nilsson G.E., Ostlund-Nilsson S.: Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. Proc. Biol. Sci., 2004; 271, Suppl. 3: S30-S33
    Google Scholar
  • 56. Nilsson G.E., Renshaw G.M.: Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J. Exp. Biol., 2004; 207: 3131-3139
    Google Scholar
  • 57. Panopoulos A.D., Yanes O., Ruiz S., Kida Y.S., Diep D., Tautenhahn R., Herrerías A., Batchelder E.M., Plongthongkum N., Lutz M., Berggren W.T., Zhang K., Evans R.M., Siuzdak G., Izpisua Belmonte J.C.: The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res., 2012; 22: 168-177
    Google Scholar
  • 58. Paschal B.M., Shpetner H.S., Vallee R.B.: MAP1C is a microtubuleactivated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol., 1987; 105: 1273-1282
    Google Scholar
  • 59. Piwońska M., Szewczyk A.: Mitochondrial neuroprotection. Postępy Biochem., 2008; 54: 169-178
    Google Scholar
  • 60. Przyklenk K., Whittaker P.: Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J. Cardiovasc. Pharmacol. Ther., 2011; 16: 255-259
    Google Scholar
  • 61. Ran R., Xu H., Lu A., Bernaudin M., Sharp F.R.: Hypoxia preconditioning in the brain. Dev. Neurosci., 2005; 27: 87-92
    Google Scholar
  • 62. Reid E., Kloos M., Ashley-Koch A., Hughes L., Bevan S., Svenson I.K., Graham F.L., Gaskell P.C., Dearlove A., Pericak-Vance M.A., Rubinsztein D.C., Marchuk D.A.: A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet., 2002; 71: 1189-1194
    Google Scholar
  • 63. Rolett E.L., Azzawi A., Liu K.J., Yongbi M.N., Swartz H.M., Dunn J.F.: Critical oxygen tension in rat brain: a combined (31)P-NMR and EPR oximetry study. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000; 279: R9-R16
    Google Scholar
  • 64. Saez I., Duran J., Sinadinos C., Beltran A., Yanes O., Tevy M.F., Martínez-Pons C., Milán M., Guinovart J.J.: Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J. Cereb. Blood Flow Metab., 2014; 34: 945-955
    Google Scholar
  • 65. Semenza G.L., Jiang B.H., Leung S.W., Passantino R., Concordet J.P., Maire P., Giallongo A.: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem., 1996; 271: 32529-32537
    Google Scholar
  • 66. Shen G., Li X., Jia Y.F., Piazza G.A., Xi Y.: Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol. Sin., 2013; 34: 336-341
    Google Scholar
  • 67. Shin D.S., Wilkie M.P., Pamenter M.E., Buck L.T.: Calcium and protein phosphatase 1/2A attenuate N-methyl-D-aspartate receptor activity in the anoxic turtle cortex. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2005; 142: 50-57
    Google Scholar
  • 68. Stamati K., Mudera V., Cheema U.: Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J. Tissue Eng., 2011; 2: 2041731411432365
    Google Scholar
  • 69. Stanley I.A., Ribeiro S.M., Giménez-Cassina A., Norberg E., Danial N.N.: Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol., 2014; 24: 118-127
    Google Scholar
  • 70. Tielens A.G., Rotte C., van Hellemond J.J., Martin W.: Mitochondria as we don’t know them. Trends Biochem. Sci., 2002; 27: 564-572
    Google Scholar
  • 71. Tielens A.G., Van Hellemond J.J.: The electron transport chain in anaerobically functioning eukaryotes. Biochim. Biophys. Acta, 1998; 1365: 71-78
    Google Scholar
  • 72. Truettner J., Busto R., Zhao W., Ginsberg M.D., Pérez-Pinzón M.A.: Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain. Brain Res. Mol. Brain Res., 2002; 103: 106-115
    Google Scholar
  • 73. Ultsch G.R.: The viability of nearctic freshwater turtles submerged in anoxia and normoxia at 3 and 10 degrees C. Comp. Biochem. Physiol. A Comp. Physiol., 1985; 81: 607-611
    Google Scholar
  • 74. Vadlakonda L., Dash A., Pasupuleti M., Anil Kumar K., Reddanna P.: Did we get Pasteur, Warburg, and Crabtree on a right note? Front. Oncol., 2013; 3: 186
    Google Scholar
  • 75. Vanderkooi J.M., Erecińska M., Silver I.A.: Oxygen in mammalian tissue: methods of measurement and affinities of various reactions. Am. J. Physiol., 1991; 260: C1131-C1150
    Google Scholar
  • 76. Vangeison G., Carr D., Federoff H.J., Rempe D.A.: The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1α in neurons and astrocytes. J. Neurosci., 2008; 28: 1988-1993
    Google Scholar
  • 77. Vilchez D., Ros S., Cifuentes D., Pujadas L., Vallès J., García-Fojeda B., Criado-García O., Fernández-Sánchez E., Medraño-Fernández I., Domínguez J., García-Rocha M., Soriano E., Rodríguez De Córdoba S., Guinovart J.J.: Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci., 2007; 10: 1407-1413
    Google Scholar
  • 78. Vinten-Johansen J., Shi W.: Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J. Cardiovasc. Pharmacol. Ther., 2011; 16: 260-266
    Google Scholar
  • 79. Xing C., Arai K., Lo E.H., Hommel M.: Pathophysiologic cascades in ischemic stroke. Int. J. Stroke, 2012; 7: 378-385
    Google Scholar
  • 80. Yokota M., Saido T.C., Kamitani H., Tabuchi S., Satokata I., Watanabe T.: Calpain induces proteolysis of neuronal cytoskeleton in ischemic gerbil forebrain. Brain Res., 2003; 984: 122-132
    Google Scholar
  • 81. Yoshii S.R., Mizushima N.: Autophagy machinery in the context of mammalian mitophagy. Biochim. Biophys. Acta, 2015; 1853: 2797-2801
    Google Scholar
  • 82. Zemke D., Smith J.L., Reeves M.J., Majid A.: Ischemia and ischemic tolerance in the brain: an overview. Neurotoxicology, 2004; 25: 895-904
    Google Scholar
  • 83. Zhang L., Marsboom G., Glick D., Zhang Y., Toth P.T., Jones N., Malik A.B., Rehman J.: Bioenergetic shifts during transitions between stem cell states (2013 Grover Conference series). Pulm. Circ., 2014; 4: 387-394
    Google Scholar
  • 84. Zhao C., Takita J., Tanaka Y., Setou M., Nakagawa T., Takeda S., Yang H.W., Terada S., Nakata T., Takei Y., Saito M., Tsuji S., Hayashi Y., Hirokawa N.: Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell, 2001; 105: 587-597
    Google Scholar

Full text

Skip to content