Mitochondria: Target organelles for estrogen action

COMMENTARY ON THE LAW

Mitochondria: Target organelles for estrogen action

Małgorzata Chmielewska 1 , Izabela Skibińska 1 , Małgorzata Kotwicka 1

1. Katedra i Zakład Biologii Komórki, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu

Published: 2017-06-08
DOI: 10.5604/01.3001.0010.3828
GICID: 01.3001.0010.3828
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 454-465

 

Abstract

Estrogens belong to a group of sex hormones, which have been shown to act in multidirectional way. Estrogenic effects are mediated by two types of intracellular receptors: estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2). There are two basic mechanisms of estrogen action: 1) classical-genomic, in which the ligand-receptor complex acts as a transcriptional factor and 2) a nongenomic one, which is still not fully understood, but has been seen to lead to distinct biological effects, depending on tissue and ligand type. It is postulated that nongenomic effects may be associated with membrane signaling and the presence of classical nuclear receptors within the cell membrane. Estrogens act in a multidirectional way also within cell organelles. It is assumed that there is a mechanism which manages the migration of ESR into the mitochondrial membrane, wherein the exogenous estrogen affect the morphology of mitochondria. Estrogen, through its receptor, can directly modulate mitochondrial gene expression. Moreover, by regulating the level of reactive oxygen species, estrogens affect the biology of mitochondria. The considerations presented in this paper indicate the pleiotropic effects of estrogens, which represent a multidirectional pathway of signal transduction.

References

  • 1. Ábrahám I.M., Todman M.G., Korach K.S., Herbison A.E.: Criticalin vivo roles for classical estrogen receptors in rapid estrogenactions on intracellular signaling in mouse brain. Endocrinology,2004; 145: 3055-3061
    Google Scholar
  • 2. Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., TrentalanceA., Visca P., Marino M.: Palmitoylation-dependent estrogen receptorα membrane localization: regulation by 17bβ-estradiol. Mol. Biol.Cell., 2005; 16: 231-237
    Google Scholar
  • 3. Acconcia F., Ascenzi P., Fabozzi G., Visca P., Marino M.: S-palmitoylationmodulates human estrogen receptor-α functions. Biochem.Biophys. Res. Commun., 2004; 316: 878-883
    Google Scholar
  • 4. Acconcia F., Bocedi A., Ascenzi P., Marino M.: Does palmitoylationtarget estrogen receptors to plasma membrane caveolae? IUBMBLife, 2003; 55: 33-35
    Google Scholar
  • 5. Alkhalaf M., Chaminadas G., Propper A.Y., Adessi G.L.: Ultrastructuralchanges induced by oestradiol-17 β, progesterone and oestrone-3-sulphatein guinea-pig endometrial glandular cells grownin primary culture. J. Endocrinol., 1989; 122: 439-444
    Google Scholar
  • 6. Araújo G.W., Beyer C., Arnold S.: Oestrogen influences on mitochondrialgene expression and respiratory chain activity in corticaland mesencephalic astrocytes. J. Neuroendocrinol., 2008; 20: 930-941 7 Arnold S., Victor M.B., Beyer C.: Estrogen and the regulation ofmitochondrial structure and function in the brain. J. Steroid Biochem.Mol. Biol., 2012; 131: 2-9
    Google Scholar
  • 7. cell mitochondrial proteins and recombinant human estrogenreceptors α and β to human mitochondrial DNA estrogen responseelements. J. Cell. Biochem., 2004; 93: 358-373
    Google Scholar
  • 8. Bettini E., Maggi A.: Estrogen induction of cytochrome c oxidasesubunit III in rat hippocampus. J. Neurochem., 1992; 58: 1923-1929
    Google Scholar
  • 9. Boonyaratanakornkit V.: Scaffolding proteins mediating membrane-initiatedextra-nuclear actions of estrogen receptor. Steroids,2011; 76: 877-884
    Google Scholar
  • 10. Cammarata P.R., Chu S., Moor A., Wang Z., Yang S.H., SimpkinsJ.W.: Subcellular distribution of native estrogen receptor α and βsubtypes in cultured human lens epithelial cells. Exp. Eye Res., 2004;78: 861-871
    Google Scholar
  • 11. Cammarata P.R., Flynn J., Gottipati S., Chu S., Dimitrijevich S.,Younes M., Skliris G., Murphy L.C.: Differential expression and comparativesubcellular localization of estrogen receptor β isoforms invirally transformed and normal cultured human lens epithelial cells.Exp. Eye Res., 2005; 81: 165-175
    Google Scholar
  • 12. Celojevic D., Petersen A., Karlsson J.O., Behndig A., ZetterbergM.: Effects of 17β-estradiol on proliferation, cell viability and intracellularredox status in native human lens epithelial cells. Mol.Vis., 2011; 17: 1987–1996
    Google Scholar
  • 13. Chambliss K.L., Shaul P.W.: Rapid activation of endothelial NOsynthase by estrogen: Evidence for a steroid receptor fast-actioncomplex (SRFC) in caveolae. Steroids, 2002; 67: 413-419
    Google Scholar
  • 14. Chambliss K.L., Simon L., Yuhanna I.S., Mineo C., Shaul P.W.:Dissecting the basis of nongenomic activation of endothelial nitricoxide synthase by estradiol: role of ERα domains with known nuclearfunctions. Mol. Endocrinol., 2005; 19: 277-289
    Google Scholar
  • 15. Chambliss K.L., Yuhanna I.S., Anderson R.G., Mendelsohn M.E.,Shaul P.W.: ERβ has nongenomic action in caveolae. Mol. Endocrinol.,2002; 16: 938-946
    Google Scholar
  • 16. Chang C.Y., Norris J.D., Grøn H., Paige L.A., Hamilton P.T., KenanD.J., Fowlkes D., McDonnell D.P.: Dissection of the LXXLL nuclearreceptor-coactivator interaction motif using combinatorial peptidelibraries: discovery of peptide antagonists of estrogen receptors αand β. Mol. Cell. Biol., 1999; 19: 8226-8239
    Google Scholar
  • 17. Chen J.Q., Cammarata P.R., Baines C.P., Yager J.D.: Regulation ofmitochondrial respiratory chain biogenesis by estrogens/estrogenreceptors and physiological, pathological and pharmacological implications.Biochim. Biophys. Acta, 2009; 1793: 1540-1570
    Google Scholar
  • 18. Chen J.Q., Delannoy M., Cooke C., Yager J.D.: Mitochondrial localizationof ERα and ERβ in human MCF7 cells. Am. J. Physiol. Endocrinol.Metab., 2004; 286: E1011-E1022
    Google Scholar
  • 19. Chen J.Q., Eshete M., Alworth W.L., Yager J.D.: Binding of MCF-
    Google Scholar
  • 20. Chen J., Gokhale M., Li Y., Trush M.A., Yager J.D.: Enhanced levelsof several mitochondrial mRNA transcripts and mitochondrialsuperoxide production during ethinyl estradiol-induced hepatocarcinogenesisand after estrogen treatment of HepG2 cells. Carcinogenesis,1998; 19: 2187-2193
    Google Scholar
  • 21. Chen Z., Yuhanna I.S., Galcheva-Gargova Z., Karas R.H., MendelsohnM.E., Shaul P.W.: Estrogen receptor α mediates the nongenomicactivation of endothelial nitric oxide synthase by estrogen.J. Clin. Invest., 1999; 103: 401-406
    Google Scholar
  • 22. Christensen A., Micevych P.: CAV1 siRNA reduces membraneestrogen receptor-α levels and attenuates sexual receptivity. Endocrinology,2012; 153: 3872-3877
    Google Scholar
  • 23. Ciucci A., Zannoni G.F., Travaglia D., Scambia G., Gallo D.: Mitochondrialestrogen receptor β2 drives antiapoptotic pathways inadvanced serous ovarian cancer. Hum. Pathol., 2015; 46: 1138-1146
    Google Scholar
  • 24. Davis P.J., Lin H.Y., Mousa S.A., Luidens M.K., Hercbergs A.A.,Wehling M., Davis F.B.: Overlapping nongenomic and genomic actionsof thyroid hormone and steroids. Steroids, 2011; 76: 829-833
    Google Scholar
  • 25. Deng H., Zhang X.T., Wang M.L., Zheng H.Y., Liu L.J., Wang Z.Y.:ER-α36-mediated rapid estrogen signaling positively regulates ERpositivebreast cancer stem/progenitor cells. PLoS One, 2014; 9:e88034
    Google Scholar
  • 26. Denger S., Reid G., Kos M., Flouriot G., Parsch D., Brand H., KorachK.S., Sonntag-Buck V., Gannon F.: ERα gene expression in humanprimary osteoblasts: evidence for the expression of two receptorproteins. Mol. Endocrinol., 2001; 15: 2064-2077
    Google Scholar
  • 27. Dufy B., Vincent J.D., Fleury H., Du Pasquier P., Gourdji D., TixierVidalA.: Membrane effects of thyrotropin-releasing hormone andestrogen shown by intracellular recording from pituitary cells. Science,1979; 204: 509-511
    Google Scholar
  • 28. Endo T., Yamano K.: Transport of proteins across or into themitochondrial outer membrane. Biochim. Biophys. Acta, 2010; 1803:706-714
    Google Scholar
  • 29. Endo T., Yamano K., Kawano S.: Structural insight into the mitochondrialprotein import system. Biochim. Biophys. Acta, 2011;1808: 955-970
    Google Scholar
  • 30. Falkenstein E., Norman A.W., Wehling M.: Mannheim classificationof nongenomically initiated (rapid) steroid action(s). J. Clin.Endocrinol. Metab., 2000; 85: 2072-2075
    Google Scholar
  • 31. Felty Q., Roy D.: Estrogen, mitochondria, and growth of cancerand non-cancer cells. J. Carcinog., 2005; 4: 1
    Google Scholar
  • 32. Ferramosca A., Zara V.: Biogenesis of mitochondrial carrier proteins:molecular mechanisms of import into mitochondria. Biochim.Biophys. Acta, 2013; 1833: 494-502
    Google Scholar
  • 33. Figtree G.A., McDonald D., Watkins H., Channon K.M.: Truncatedestrogen receptor α 46-kDa isoform in human endothelial cells: relationshipto acute activation of nitric oxide synthase. Circulation,2003; 107: 120-126
    Google Scholar
  • 34. Flouriot G., Brand H., Denger S., Metivier R., Kos M., Reid G.,Sonntag-Buck V., Gannon F.: Identification of a new isoform of the human estrogen receptor-α (hER-α) that is encoded by distinct transcriptsand that is able to repress hER-α activation function 1. EMBOJ., 2000; 19: 4688-4700
    Google Scholar
  • 35. Fox E.M., Andrade J., Shupnik M.A.: Novel actions of estrogento promote proliferation: integration of cytoplasmic and nuclearpathways. Steroids, 2009; 74: 622-627
    Google Scholar
  • 36. Galluzzo P., Caiazza F., Moreno S., Marino M.: Role of ERβ palmitoylationin the inhibition of human colon cancer cell proliferation.Endocr. Relat. Cancer, 2007; 14: 153-167
    Google Scholar
  • 37. Gilad L.A., Schwartz B.: Association of estrogen receptor β withplasma-membrane caveola components: Implication in control ofvitamin D receptor. J. Mol. Endocrinol., 2007; 38: 603-618
    Google Scholar
  • 38. Girard B.J., Daniel A.R., Lange C.A., Ostrander J.H.: PELP1: a reviewof PELP1 interactions, signaling, and biology. Mol. Cell. Endocrinol.,2014; 382: 642-651
    Google Scholar
  • 39. Goffart S., Wiesner R.J.: Regulation and co-ordination of nucleargene expression during mitochondrial biogenesis. Exp. Physiol.,2003; 88: 33-40
    Google Scholar
  • 40. Gonugunta V.K., Miao L., Sareddy G.R., Ravindranathan P., VadlamudiR., Raj G.V.: The social network of PELP1 and its implications inbreast and prostate cancers. Endocr. Relat. Cancer, 2014; 21: T79-T86
    Google Scholar
  • 41. Grossman A., Oppenheim J., Grondin G., St Jean P., BeaudoinA.R.: Immunocytochemical localization of the [3H]estradiol-bindingprotein in rat pancreatic acinar cells. Endocrinology, 1989; 124:2857-2866
    Google Scholar
  • 42. Guido C, Perrotta I, Panza S, Middea E, Avena P, Santoro M,Marsico S, Imbrogno P, Ando S, Aquila S.: Human sperm physiology:estrogen receptor α (ERα) and estrogen receptor β (ERβ) influencesperm metabolism and may be involved in the pathophysiologyof varicocele-associated male infertility. J. Cell. Physiol., 2011;226: 3403-3412
    Google Scholar
  • 43. Hall A.R., Burke N., Dongworth R.K., Hausenloy D.J.: Mitochondrialfusion and fission proteins: novel therapeutic targets for combatingcardiovascular disease. Br. J. Pharmacol., 2014; 171: 1890-1906
    Google Scholar
  • 44. Hammes S.R., Levin E.R.: Minireview: Recent advances in extranuclearsteroid receptor actions. Endocrinology, 2011; 152: 4489-4495
    Google Scholar
  • 45. Herrick S.P., Waters E.M., Drake C.T., McEwen B.S., Milner T.A.:Extranuclear estrogen receptor β immunoreactivity is on doublecortin-containingcells in the adult and neonatal rat dentate gyrus.Brain Res., 2006; 1121: 46-58
    Google Scholar
  • 46. Higuchi T., Gohno T., Nagatomo T., Tokiniwa H., Niwa T., HoriguchiJ., Oyama T., Takeyoshi I., Hayashi S.I.: Variation in use of estrogenreceptor-α gene promoters in breast cancer compared byquantification of promoter-specific messenger RNA. Clin. BreastCancer, 2014; 14: 249-257
    Google Scholar
  • 47. Horvat A., Petrović S., Nedeljković N., Martinović J.V., NikezićG.: Estradiol affect Na-dependent Ca2+ efflux from synaptosomalmitochondria. Gen. Physiol. Biophys., 2000; 19: 59-71
    Google Scholar
  • 48. Ishii H., Kobayashi M., Sakuma Y: Alternative promoter usageand alternative splicing of the rat estrogen receptor α gene generatenumerous mRNA variants with distinct 5’-ends. J. Steroid Biochem.Mol. Biol., 2010; 118: 59-69
    Google Scholar
  • 49. Johann S., Dahm M., Kipp M., Beyer C., Arnold S.: Oestrogenregulates mitochondrial respiratory chain enzyme transcription inthe mouse spinal cord. J. Neuroendocrinol., 2010; 22: 926-935
    Google Scholar
  • 50. Kelly M.J., Levin E.R.: Rapid actions of plasma membrane estrogenreceptors. Trends Endocrinol. Metab., 2001; 12: 152-156
    Google Scholar
  • 51. Kim H.P., Lee J.Y., Jeong J.K., Bae S.W., Lee H.K., Jo I.: Nongenomicstimulation of nitric oxide release by estrogen is mediatedby estrogen receptor α localized in caveolae. Biochem. Biophys. Res.Commun., 1999; 263: 257-262
    Google Scholar
  • 52. Kim K.H., Toomre D., Bender J.R.: Splice isoform estrogen receptors as integral transmembrane proteins. Mol. Biol. Cell, 2011;22: 4415-4423
    Google Scholar
  • 53. Kim K.H., Young B.D., Bender J.R.: Endothelial estrogen receptorisoforms and cardiovascular disease. Mol. Cell. Endocrinol., 2014;389: 65-70
    Google Scholar
  • 54. Kiss A.L., Turi Á., Müllner N., Kovács E., Botos E., Greger A.:Oestrogen-mediated tyrosine phosphorylation of caveolin-1 and itseffect on the oestrogen receptor localisation: an in vivo study. Mol.Cell. Endocrinol., 2005; 245: 128-137
    Google Scholar
  • 55. Klinge C.M.: Estrogenic control of mitochondrial function andbiogenesis. J. Cell. Biochem., 2008; 105: 1342-1351
    Google Scholar
  • 56. Kumar S., Lata K., Mukhopadhyay S., Mukherjee T.K.: Role ofestrogen receptors in pro-oxidative and anti-oxidative actions of estrogens:a perspective. Biochim. Biophys. Acta, 2010; 1800: 1127-1135
    Google Scholar
  • 57. Lee H., Yoon Y.: Mitochondrial fission: regulation and ER connection.Mol. Cells, 2014; 37: 89-94
    Google Scholar
  • 58. Lee L.M., Cao J., Deng H., Chen P., Gatalica Z., Wang Z.Y.: ER-α36,a novel variant of ER-α, is expressed in ER-positive and – negativehuman breast carcinomas. Anticancer Res., 2008; 28: 479-483
    Google Scholar
  • 59. Levin E.R.: Extranuclear steroid receptors are essential for steroidhormone actions. Annu. Rev. Med., 2015; 66: 271-280
    Google Scholar
  • 60. Levin E.R.: Plasma membrane estrogen receptors. Trends Endocrinol.Metab., 2009; 20: 477-482
    Google Scholar
  • 61. Li L., Haynes M.P., Bender J.R.: Plasma membrane localizationand function of the estrogen receptor α variant (ER46) in humanendothelial cells. Proc. Natl. Acad. Sci. USA, 2003; 100: 4807-4812
    Google Scholar
  • 62. Liao T.L., Tzeng C.R., Yu C.L., Wang Y.P., Kao S.H.: Estrogenreceptor-β in mitochondria: implications for mitochondrial bioenergeticsand tumorigenesis. Ann. NY Acad. Sci., 2015; 1350: 52-60
    Google Scholar
  • 63. Liu P., Rudick M., Anderson R.G.: Multiple functions of caveolin-1.J. Biol. Chem., 2002; 277: 41295-41298
    Google Scholar
  • 64. Long J., He P., Shen Y., Li R.: New evidence of mitochondriadysfunction in the female Alzheimer’s brain: deficiency of estrogenreceptor-β. J. Alzheimer’s Dis., 2012; 30: 545-558
    Google Scholar
  • 65. Luconi M., Francavilla F., Porazzi I., Macerola B., Forti G., Baldi E.:Human spermatozoa as a model for studying membrane receptorsmediating rapid nongenomic effects of progesterone and estrogens.Steroids, 2004; 69: 553-559
    Google Scholar
  • 66. Marino M., Ascenzi P.: Membrane association of estrogen receptorα and β influences 17β-estradiol-mediated cancer cell proliferation.Steroids, 2008; 73: 853-858
    Google Scholar
  • 67. Marino M., Ascenzi P., Acconcia F.: S-palmitoylation modulatesestrogen receptor α localization and functions. Steroids, 2006; 71:298-303
    Google Scholar
  • 68. Márquez D.C., Pietras R.J.: Membrane-associated binding sitesfor estrogen contribute to growth regulation of human breast cancercells. Oncogene, 2001; 20: 5420-5430
    Google Scholar
  • 69. Maselli A., Pierdominici M., Vitale C., Ortona E.: Membrane lipidrafts and estrogenic signalling: a functional role in the modulationof cell homeostasis. Apoptosis, 2015; 20: 671-678
    Google Scholar
  • 70. Mattingly K.A., Ivanova M.M., Riggs K.A., Wickramasinghe N.S.,Barch M.J., Klinge C.M.: Estradiol stimulates transcription of nuclearrespiratory factor-1 and increases mitochondrial biogenesis. Mol.Endocrinol., 2008; 22: 609-622
    Google Scholar
  • 71. Milanesi L., Vasconsuelo A., de Boland A.R., Boland R.: Expressionand subcellular distribution of native estrogen receptor β in murineC2C12 cells and skeletal muscle tissue. Steroids, 2009; 74: 489-497
    Google Scholar
  • 72. Milner T.A., Ayoola K., Drake C.T., Herrick S.P., Tabori N.E., McEwenB.S., Warrier S., Alves S.E.: Ultrastructural localization of estrogenreceptor β immunoreactivity in the rat hippocampal formation.J. Comp. Neurol., 2005; 491: 81-95
    Google Scholar
  • 73. Moats R.K., Ramirez V.D.: Electron microscopic visualizationof membrane-mediated uptake and translocation of estrogenBSA:colloidalgold by Hep G2 cells. J. Endocrinol., 2000; 166: 631-647
    Google Scholar
  • 74. Monje P., Boland R.: Subcellular distribution of native estrogenreceptor α and β isoforms in rabbit uterus and ovary. J. Cell. Biochem.,2001; 82: 467-479
    Google Scholar
  • 75. Morley P., Whitfield J.F., Vanderhyden B.C., Tsang B.K., SchwartzJ.L.: A new, nongenomic estrogen action: the rapid release of intracellularcalcium. Endocrinology, 1992; 131: 1305-1312
    Google Scholar
  • 76. Nadal-Serrano M., Pons D.G., Sastre-Serra J., Blanquer-RossellóM.M, Roca P., Oliver J.: Genistein modulates oxidative stress in breastcancer cell lines according to ERα/ERβ ratio: effects on mitochondrialfunctionality, sirtuins, uncoupling protein 2 and antioxidantenzymes. Int. J. Biochem. Cell Biol., 2013; 45: 2045-2051
    Google Scholar
  • 77. Norfleet A.M., Thomas M.L., Gametchu B., Watson C.S.: Estrogenreceptor-α detected on the plasma membrane of aldehyde-fixedGH3/B6/F10 rat pituitary tumor cells by enzyme-linked immunocytochemistry.Endocrinology, 1999; 140: 3805-3814
    Google Scholar
  • 78. Noteboom W.D., Gorski J.: Stereospecific binding of estrogens inthe rat uterus. Arch. Biochem. Biophys., 1965; 111: 559-568
    Google Scholar
  • 79. Pappas T.C., Gametchu B., Watson C.S.: Membrane labeling estrogenreceptors identified by multiple antibody and impeded-ligandbinding. FASEB J., 1995; 9: 404-410
    Google Scholar
  • 80. Patel H.H., Insel P.A.: Lipid rafts and caveolae and their rolein compartmentation of redox signaling. Antioxid. Redox Signal.,2009; 11: 1357-1372
    Google Scholar
  • 81. Pedram A., Razandi M., Deschenes R.J., Levin E.R.: DHHC-7 and– 21 are palmitoylacyltransferases for sex steroid receptors. Mol.Biol. Cell, 2012; 23: 188-199
    Google Scholar
  • 82. Pedram A., Razandi M., Levin E.R.: Nature of functional estrogen receptorsat the plasma membrane. Mol. Endocrinol., 2006; 20: 1996-2009
    Google Scholar
  • 83. Pedram A., Razandi M., Lewis M., Hammes S., Levin E.R.: Membrane-localizedestrogen receptor α is required for normal organdevelopment and function. Dev. Cell, 2014; 29: 482-490
    Google Scholar
  • 84. Pedram A., Razandi M., Sainson R.C., Kim J.K., Hughes C.C., LevinE.R.: A conserved mechanism for steroid receptor translocation tothe plasma membrane. J. Biol. Chem., 2007; 282: 22278-22288
    Google Scholar
  • 85. Pietras R.J., Szego C.M.: Specific binding sites for oestrogen at theouter surfaces of isolated endometrial cells. Nature, 1977; 265: 69-72
    Google Scholar
  • 86. Pons D.G., Nadal-Serrano M., Blanquer-Rossello M.M., SastreSerraJ., Oliver J., Roca P.: Genistein modulates proliferation and mitochondrialfunctionality in breast cancer cells depending on ERα/ERβ ratio. J. Cell. Biochem., 2014; 115: 949-958
    Google Scholar
  • 87. Pratt W.B., Toft D.O.: Regulation of signaling protein functionand trafficking by the hsp90/hsp70-based chaperone machinery.Exp. Biol. Med., 2003; 228: 111-133
    Google Scholar
  • 88. Psarra A.M., Solakidi S., Sekeris C.E.: The mitochondrion as a primarysite of action of steroid and thyroid hormones: presence andaction of steroid and thyroid hormone receptors in mitochondriaof animal cells. Mol. Cell. Endocrinol., 2006; 246: 21-33
    Google Scholar
  • 89. Rao J., Jiang X., Wang Y., Chen B.: Advances in the understandingof the structure and function of ER-α36, a novel variant of humanestrogen receptor-α. J. Steroid Biochem. Mol. Biol., 2011; 127: 231-237
    Google Scholar
  • 90. Razandi M., Alton G., Pedram A., Ghonshani S., Webb P., LevinE.R.: Identification of a structural determinant necessary for the localizationand function of estrogen receptor α at the plasma membrane.Mol. Cell. Biol., 2003; 23: 1633-1646
    Google Scholar
  • 91. Razandi M., Oh P., Pedram A., Schnitzer J., Levin E.R.: ERs associatewith and regulate the production of caveolin: implications forsignaling and cellular actions. Mol. Endocrinol., 2002; 16: 100-115
    Google Scholar
  • 92. Razandi M., Pedram A., Greene G.L., Levin E.R.: Cell membraneand nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERα and ERβ expressed in Chinese hamster ovarycells. Mol. Endocrinol., 1999; 13: 307-319
    Google Scholar
  • 93. Razandi M., Pedram A., Levin E.R.: Heat shock protein 27 is requiredfor sex steroid receptor trafficking to and functioning at theplasma membrane. Mol. Cell. Biol., 2010; 30: 3249-3261
    Google Scholar
  • 94. Razandi M., Pedram A., Merchenthaler I., Greene G.L., Levin E.R.:Plasma membrane estrogen receptors exist and functions as dimers.Mol. Endocrinol., 2004; 18: 2854-2865
    Google Scholar
  • 95. Sanchez M.I., Shearwood M.J., Chia T., Davies S.M., Rackham O.,Filipovska A.: Estrogen-mediated regulation of mitochondrial geneexpression. Mol. Endocrinol., 2015; 29: 14-27
    Google Scholar
  • 96. Sarkar S., Jun S., Simpkins J.W.: Estrogen amelioration of Aβ-induced defects in mitochondria is mediated by mitochondrial signalingpathway involving ERβ, AKAP and Drp1. Brain Res., 2015;1616: 101-111
    Google Scholar
  • 97. Sastre-Serra J., Nadal-Serrano M., Pons D.G., Roca P., Oliver J.:Mitochondrial dynamics is affected by 17β-estradiol in the MCF-7breast cancer cell line. Effects on fusion and fission related genes.Int. J. Biochem. Cell Biol., 2012; 44: 1901-1905
    Google Scholar
  • 98. Sastre-Serra J., Nadal-Serrano M., Pons D.G., Roca P., Oliver J.:The over-expression of ERβ modifies estradiol effects on mitochondrialdynamics in breast cancer cell line. Int. J. Biochem. Cell Biol.,2013; 45: 1509-1515
    Google Scholar
  • 99. Schmidt B.M., Gerdes D., Feuring M., Falkenstein E., Christ M.,Wehling M.: Rapid, nongenomic steroid actions: a new age? Front.Neuroendocrinol., 2000; 21: 57-94
    Google Scholar
  • 100. Sheldahl L.C., Shapiro R.A., Bryant D.N., Koerner I.P., DorsaD.M.: Estrogen induces rapid translocation of estrogen receptor β,but not estrogen receptor α, to the neuronal plasma membrane.Neuroscience, 2008; 153: 751-761
    Google Scholar
  • 101. Simpkins J.W., Yang S.H., Sarkar S.N., Pearce V.: Estrogen actionson mitochondria – physiological and pathological implications.Mol. Cell. Endocrinol., 2008; 290: 51-59
    Google Scholar
  • 102. Solakidi S., Psarra A.M., Nikolaropoulos S., Sekeris C.E.: Estrogenreceptors α and β (ERα and ERβ) and androgen receptor (AR) inhuman sperm: Localization of ERβ and AR in mitochondria of themidpiece. Hum. Reprod., 2005; 20: 3481-3487
    Google Scholar
  • 103. Solakidi S., Psarra A.M., Sekeris C.E.: Differential subcellulardistribution of estrogen receptor isoforms: localization of ERα inthe nucleoli and ERβ in the mitochondria of human osteosarcomaSaOS-2 and hepatocarcinoma HepG2 cell lines. Biochim. Biophys.Acta – Mol. Cell Res., 2005; 1745: 382-392
    Google Scholar
  • 104. Stirone C., Duckles S.P., Krause D.N., Procaccio V.: Estrogenincreases mitochondrial efficiency and reduces oxidative stress incerebral blood vessels. Mol. Pharmacol., 2005; 68: 959-965
    Google Scholar
  • 105. Su X., Xu X., Li G., Lin B., Cao J., Teng L.: ER-α36: a novel biomarkerand potential therapeutic target in breast cancer. Onco TargetsTher., 2014; 7: 1525-1533
    Google Scholar
  • 106. Szego C.M., Davis J.S.: Adenosine 3’,5›-monophosphate in ratuterus: acute elevation by estrogen. Proc. Natl. Acad. Sci. USA, 1967;58: 1711-1718
    Google Scholar
  • 107. Tesarik J., Mendoza C.: Nongenomic effects of 17 β-estradiolon maturing human oocytes: relationship to oocyte developmentalpotential. J. Clin. Endocrinol. Metab., 1995; 80: 1438-1443
    Google Scholar
  • 108. Toda K., Takeda K., Okada T., Akira S., Saibara T., Kaname T.,Yamamura K., Onishi S., Shizuta Y.: Targeted disruption of the aromataseP450 gene (Cyp19) in mice and their ovarian and uterine responsesto 17β-oestradiol. J. Endocrinol., 2001; 170: 99-111
    Google Scholar
  • 109. Toran-Allerand C.D., Guan X., MacLusky N.J., Horvath T.L., DianoS., Singh M., Connolly E.S., Nethrapalli I.S., Tinnikov A.A.: ER-X:a novel, plasma membrane-associated, putative estrogen receptorthat is regulated during development and after ischemic brain injury.J. Neurosci., 2002; 22: 8391-8401
    Google Scholar
  • 110. Vadlamudi R.K., Kumar R.: Functional and biological propertiesof the nuclear receptor coregulator PELP1/MNAR. Nucl. Recept.Signal., 2007; 5: e004
    Google Scholar
  • 111. Van Itallie C.M., Dannies P.S.: Estrogen induces accumulationof the mitochondrial ribonucleic acid for subunit II of cytochromeoxidase in pituitary tumor cells. Mol. Endocrinol., 1988; 2: 332-337
    Google Scholar
  • 112. Vic P., Vignon F., Derocq D., Rochefort H.: Effect of estradiol onthe ultrastructure of the MCF7 human breast cancer cells in culture.Cancer Res., 1982; 42: 667-673
    Google Scholar
  • 113. Walter P., Green S., Greene G., Krust A., Bornert J.M., JeltschJ.M., Staub A., Jensen E., Scrace G., Waterfield M., Chambon P.: Cloningof the human estrogen receptor cDNA. Proc. Natl. Acad. Sci. USA,1985; 82: 7889-7893
    Google Scholar
  • 114. Wang Z., Zhang X., Shen P., Loggie B.W., Chang Y., DeuelT.F.: Identification, cloning, and expression of human estrogenreceptor-α36, a novel variant of human estrogen receptor-α66. Biochem.Biophys. Res. Commun., 2005; 336: 1023-1027
    Google Scholar
  • 115. Warner M., Gustafsson J.Å.: Nongenomic effects of estrogen:why all the uncertainty? Steroids, 2006; 71: 91-95
    Google Scholar
  • 116. Watanabe T., Inoue S., Hiroi H., Orimo A., Kawashima H., MuramatsuM.: Isolation of estrogen-responsive genes with a CpG island library. Mol. Cell. Biol., 1998; 18: 442-449
    Google Scholar
  • 117. Yang S.H., Liu R., Perez E.J., Wen Y., Stevens S.M., Valencia T.,Brun-Zinkernagel A.M., Prokai L., Will Y., Dykens J., Koulen P., SimpkinsJ.W.: Mitochondrial localization of estrogen receptor β. Proc.Natl. Acad. Sci. USA, 2004; 101: 4130-4135
    Google Scholar
  • 118. Zhai P., Eurell T.E., Cooke P.S., Lubahn D.B., Gross D.R.: Myocardialischemia-reperfusion injury in estrogen receptor-α knockoutand wild-type mice. Am. J. Physiol. Heart Circ. Physiol., 2000; 278:H1640-H1647
    Google Scholar
  • 119. Zhai P., Eurell T.E., Cotthaus R., Jeffery E.H., Bahr J.M., GrossD.R.: Effect of estrogen on global myocardial ischemia-reperfusioninjury in female rats. Am. J. Physiol. Heart Circ. Physiol., 2000; 279:H2766-H2775
    Google Scholar
  • 120. Zhai P., Eurell T.E., Cotthaus R.P., Jeffery E.H., Bahr J.M., GrossD.R.: Effects of dietary phytoestrogen on global myocardial ischemiareperfusioninjury in isolated female rat hearts. Am. J. Physiol. HeartCirc. Physiol., 2001; 281: H1223-H1232
    Google Scholar

Full text

Skip to content