Mitochondrial functionality in female reproduction
Łukasz Gąsior 1 , Regina Daszkiewicz 2 , Mateusz Ogórek 1 , Zbigniew Polański 1Abstract
In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.
References
- 1. Acton B.M., Jurisicova A., Jurisica I., Casper R.F.: Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol. Hum. Reprod., 2004; 10: 23-32
Google Scholar - 2. Alexeyev M., Shokolenko I., Wilson G., LeDoux S.: The maintenance of mitochondrial DNA integrity – critical analysis and update. Cold Spring Harb. Perspect. Biol., 2013; 5: a012641
Google Scholar - 3. Amaral A., Lourenço B., Marques M., Ramalho-Santos J.: Mitochondria functionality and sperm quality. Reproduction, 2013; 146: R163-R174
Google Scholar - 4. Ameur A., Stewart J.B., Freyer C., Hagström E., Ingman M., Larsson N.G., Gyllensten U.: Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins. PLoS Genet., 2011; 7: e1002028
Google Scholar - 5. Ankel-Simons F., Cummins J.M.: Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc. Natl. Acad. Sci. USA, 1996; 93: 13859-13863
Google Scholar - 6. Assou S., Haouzi D., De Vos J., Hamamah S.: Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol. Hum. Reprod., 2010; 16: 531-538
Google Scholar - 7. Baumann C.G., Morris D.G., Sreenan J.M., Leese H.J.: The quiet embryo hypothesis: molecular characteristics favoring viability. Mol. Reprod. Dev., 2007; 74: 1345-1353
Google Scholar - 8. Bavister B.D., Squirrell J.M.: Mitochondrial distribution and function in oocytes and early embryos. Hum. Reprod., 2000; 15: 189-198
Google Scholar - 9. Ben-Meir A., Yahalomi S., Moshe B., Shufaro Y., Reubinoff B., Saada A.: Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil. Steril., 2015; 104: 724-727
Google Scholar - 10. Bentov Y., Casper R.F.: The aging oocyte – can mitochondrial function be improved? Fertil. Steril, 2013; 99: 18-22
Google Scholar - 11. Boucret L., Chao de la Barca J.M., Morinière C., Desquiret V., Ferré-L’Hôtellier V., Descamps P., Marcaillou C., Reynier P., Procaccio V., May-Panloup P.: Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod., 2015; 30: 1653-1664
Google Scholar - 12. Bratic I., Hench J., Henriksson J., Antebi A., Bürglin T.R., Trifunovic A.: Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Res., 2009; 37: 1817-1828
Google Scholar - 13. Brown D.T., Herbert M., Lamb V.K., Chinnery P.F., Taylor R.W., Lightowlers R.N., Craven L., Cree L., Gardner J.L., Turnbull D.M.: Transmission of mitochondrial DNA disorders: possibilities for the future. Lancet, 2006; 368: 87-89
Google Scholar - 14. Cam H., Balciunaite E., Blais A., Spektor A., Scarpulla R.C., Young R., Kluger Y., Dynlacht B.D.: A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell., 2004; 16: 399-411
Google Scholar - 15. Carroll J., Marangos P.: The DNA damage response in mammalian oocytes. Front. Genet., 2013; 4: 117
Google Scholar - 16. Cetica P.D., Pintos L.N., Dalvit G.C., Beconi M.T.: Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life, 2001; 51: 57-64
Google Scholar - 17. Chen X., Prosser R., Simonetti S., Sadlock J., Jagiello G., Schon E.A.: Rearranged mitochondrial genomes are present in human oocytes. Am. J. Hum. Genet., 1995; 57: 239-247
Google Scholar - 18. Cheng Y., Yata A., Klein C., Cho J.H., Deguchi M., Hsueh A.J.: Oocyte-expressed interleukin 7 suppresses granulosa cell apoptosis and promotes oocyte maturation in rats. Biol. Reprod., 2011; 84: 707-714
Google Scholar - 19. Chinnery P.F., Hudson G.: Mitochondrial genetics. Br. Med. Bull., 2013; 106: 135-159
Google Scholar - 20. Cotterill M., Harris S.E., Collado Fernandez E., Lu J., Huntriss J.D., Campbell B.K., Picton H.M.: The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro. Mol. Hum. Reprod., 2013; 19: 444-450
Google Scholar - 21. Cree L.M., Hammond E.R., Shelling A.N., Berg M.C., Peek J.C., Green M.P.: Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones. Hum. Reprod., 2015; 30: 1410-1420
Google Scholar - 22. Cree L.M., Samuels D.C., Chinnery P.F.: The inheritance of pathogenic mitochondrial DNA mutations. Biochim. Biophys. Acta, 2009; 1792: 1097-1102
Google Scholar - 23. Cummins J.M.: Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum. Reprod. Update, 2001; 7: 217-228
Google Scholar - 24. Dal-Cim T., Molz S., Egea J., Parada E., Romero A., Budni J., Martín de Saavedra M.D., del Barrio L., Tasca C.I., López M.G.: Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem. Int., 2012; 61: 397-404
Google Scholar - 25. Dalton C.M., Carroll J.: Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci., 2013; 126: 2955–2964
Google Scholar - 26. Dalton C.M., Szabadkai G., Carroll J.: Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J. Cell. Physiol., 2014; 229: 353–361
Google Scholar - 27. de Paula W.B., Agip A.N., Missirlis F., Ashworth R., Vizcay-Barrena G., Lucas C.H., Allen J.F.: Female and male gamete mitochondria are distinct and complementary in transcription, structure, and genome function. Genome Biol. Evol., 2013; 5: 1969-1977
Google Scholar - 28. de Paula W.B., Lucas C.H., Agip A.N., Vizcay-Barrena G., Allen J.F.: Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2013; 368: 20120263
Google Scholar - 29. Eiachenlaub-Ritter U.: Oocyte ageing and its cellular basis. Int. J. Dev. Biol., 2012; 56: 841-852
Google Scholar - 30. Eichenlaub-Ritter U., Wieczorek M., Lüke S., Seidel T.: Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions. Mitochondrion, 2011; 11: 783-796
Google Scholar - 31. El Shourbagy S.H., Spikings E.C., Freitas M., St John J.C.: Mitochondria directly influence fertilisation outcome in the pig. Reproduction, 2006; 131: 233-245
Google Scholar - 32. Elson J.L., Samuels D.C., Turnbull D.M., Chinnery P.F.: Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet., 2001; 68: 802-806
Google Scholar - 33. Faddy M.J., Gosden R.G., Gougeon A., Richardson S.J., Nelson J.F.: Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum. Reprod., 1992; 7: 1342-1346
Google Scholar - 34. Fischer B., Bavister B.D.: Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil., 1993; 99: 673-679
Google Scholar - 35. Ge H.S., Zhang F., Li X.H., Chen H., Xi H.T., Huang J.Y., Zhu C.F., Lü J.Q.: Effects of controlled ovarian hyperstimulation on mitochondria copy number and functions in murine oocytes. Zhonghua Fu Chan Ke Za Zhi, 2013; 48: 858-861
Google Scholar - 36. Ghaffari Novin M., Noruzinia M., Allahveisi A., Saremi A., Fadaei Fathabadi F., Mastery Farahani R., Dehghani Fard A., Pooladi A., Mazaherinezhad Fard R., Yousefian E.: Comparison of mitochondrial- -related transcriptional levels of TFAM, NRF1 and MT-CO1 genes in single human oocytes at various stages of the oocyte maturation. Iran. Biomed. J., 2015; 19: 23-28
Google Scholar - 37. Ghiselli F., Milani L., Guerra D., Chang P.L., Breton S., Nuzhdin S.V., Passamonti M.: Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol. Evol., 2013; 5: 1535-1554
Google Scholar - 38. Gibson T.C., Kubisch H.M., Brenner C.A.: Mitochondrial DNA deletions in rhesus macaque oocytes and embryos. Mol. Hum. Reprod., 2005; 11: 785-789
Google Scholar - 39. Goo C.K., Lim H.Y., Ho Q.S., Too H.P., Clement M.V., Wong K.P.: PTEN/Akt signaling controls mitochondrial respiratory capacity through 4E-BP1. PLoS One, 2012; 7: e45806
Google Scholar - 40. Grindler N.M., Moley K.H.: Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol. Hum. Reprod., 2013; 19: 486-494
Google Scholar - 41. Grupen C.G., Armstrong D.T.: Relationship between cumulus cell apoptosis, progesterone production and porcine oocyte developmental competence: temporal effects of follicular fluid during IVM. Reprod. Fertil. Dev., 2010; 22: 1100-1109
Google Scholar - 42. Haas R.H., Parikh S., Falk M.J., Saneto R.P., Wolf N.I., Darin N., Cohen B.H.: Mitochondrial disease: a practical approach for primary care physicians. Pediatrics, 2007; 120: 1326-1333
Google Scholar - 43. Hagström E., Freyer C., Battersby B.J., Stewart J.B., Larsson N.G.: No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline. Nucleic Acids Res., 2014; 42: 1111- 1116
Google Scholar - 44. Harris S.E., Leese H.J., Gosden R.G., Picton H.M.: Pyruvate and oxygen consumption throughout the growth and development of murine oocytes. Mol. Reprod. Dev., 2009; 76: 231-238
Google Scholar - 45. Holt I.J., Harding A.E., Morgan-Hughes J.A.: Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature, 1988; 331: 717-719
Google Scholar - 46. Holt J.E., Jones K.T.: Control of homologous chromosome division in the mammalian oocyte. Mol. Hum. Reprod., 2009; 15: 139-147
Google Scholar - 47. Hussein T.S., Froiland D.A., Amato F., Thompson J.G., Gilchrist R.B.: Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci., 2005; 118: 5257-5268
Google Scholar - 48. Igosheva N., Abramov A.Y., Poston L., Eckert J.J., Fleming T.P., Duchen M.R., McConnell J.: Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One, 2010; 5: e10074
Google Scholar - 49. Inoue K., Nakada K., Ogura A., Isobe K., Goto Y., Nonaka I., Hayashi J.I.: Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat. Genet., 2000; 26: 176-181
Google Scholar - 50. Iwata H., Goto H., Tanaka H., Sakaguchi Y., Kimura K., Kuwayama T., Monji Y.: Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod. Fertil. Dev., 2011; 23: 424-432
Google Scholar - 51. Kaneko T., Saito H., Takahashi T., Ohta N., Saito T., Hiroi M.: Effects of controlled ovarian hyperstimulation on oocyte quality in terms of the incidence of apoptotic granulosa cells. J. Assist. Reprod. Genet., 2000; 17: 580-585
Google Scholar - 52. Kimura N., Tsunoda S., Iuchi Y., Abe H., Totsukawa K., Fujii J.: Intrinsic oxidative stress causes either 2-cell arrest or cell death depending on developmental stage of the embryos from SOD1-deficient mice. Mol. Hum. Reprod., 2010; 16: 441-451
Google Scholar - 53. Kitagawa T., Suganuma N., Nawa A., Kikkawa F., Tanaka M., Ozawa T., Tomoda Y.: Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol. Reprod., 1993; 49: 730-736
Google Scholar - 54. Kogo N., Tazaki A., Kashino Y., Morichika K., Orii H., Mochii M., Watanabe K.: Germ-line mitochondria exhibit suppressed respiratory activity to support their accurate transmission to the next generation. Dev. Biol., 2011; 349: 462-469
Google Scholar - 55. Kujjo L.L., Perez G.I.: Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction, 2012; 143: 1-10
Google Scholar - 56. Kushnir V.A., Ludaway T., Russ R.B., Fields E.J., Koczor C., Lewis W.: Reproductive aging is associated with decreased mitochondrial abundance and altered structure in murine oocytes. J. Assist. Reprod. Genet., 2012; 29: 637-642
Google Scholar - 57. Larsson N.G.: Somatic mitochondrial DNA mutations in mammalian aging. Annu. Rev. Biochem., 2010; 79: 683-706
Google Scholar - 58. Leese H.J., Baumann C.G., Brison D.R., McEvoy T.G., Sturmey R.G.: Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod., 2008; 14: 667-672
Google Scholar - 59. Li R., Albertini D.F.: The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol., 2013; 14: 141-152
Google Scholar - 60. Lim J., Luderer U.: Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol. Reprod., 2011; 84: 775-782
Google Scholar - 61. Lin F., Ma X.S., Wang Z.B., Wang Z.W., Luo Y.B., Huang L., Jiang Z.Z., Hu M.W., Schatten H., Sun Q.Y.: Different fates of oocytes with DNA double-strand breaks in vitro and in vivo. Cell Cycle, 2014; 13: 2674-2680
Google Scholar - 62. Liu P., Demple B.: DNA repair in mammalian mitochondria: much more than we thought? Environ. Mol. Mutagen., 2010; 51: 417-426
Google Scholar - 63. Lord T., Aitken R.J.: Oxidative stress and ageing of the post-ovulatory oocyte. Reproduction, 2013; 146: R217-R227
Google Scholar - 64. Luo S.M., Ge Z.J., Wang Z.W., Jiang Z.Z., Wang Z.B., Ouyang Y.C., Hou Y., Schatten H., Sun Q.Y.: Unique insights into maternal mitochondrial inheritance in mice. Proc. Natl. Acad. Sci. USA, 2013; 110: 13038-13043
Google Scholar - 65. Luzzo K.M., Wang Q., Purcell S.H., Chi M., Jimenez P.T., Grindler N., Schedl T., Moley K.H.: High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One, 2012; 7: e49217
Google Scholar - 66. Mahrous E., Yang Q., Clarke H.J.: Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse. Reproduction, 2012; 144: 177-185
Google Scholar - 67. Mao J., Whitworth K.M., Spate L.D., Walters E.M., Zhao J., Prather R.S.: Regulation of oocyte mitochondrial DNA copy number by follicular fluid, EGF, and neuregulin 1 during in vitro maturation affects embryo development in pigs. Theriogenology, 2012; 78: 887-897
Google Scholar - 68. Matsuda F., Inoue N., Manabe N., Ohkura S.: Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. J. Reprod. Dev., 2012; 58: 44-50
Google Scholar - 69. McGinnis L.K., Limback S.D., Albertini D.F.: Signaling modalities during oogenesis in mammals. Curr. Top. Dev. Biol., 2013; 102: 227-242
Google Scholar - 70. McInnes J.: Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr. Metab., 2013; 10: 63
Google Scholar - 71. Ménézo Y., Dale B., Cohen M.: DNA damage and repair in human oocytes and embryos: a review. Zygote, 2010; 18: 357-365
Google Scholar - 72. Miao Y., Liu X., Qiao T.W., Miao D.Q., Luo M.J., Tan J.H.: Cumulus cells accelerate aging of mouse oocytes. Biol. Reprod., 2005; 73: 1025-1031
Google Scholar - 73. Motta P.M., Nottola S.A., Makabe S., Heyn R.: Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod., 2000; 15: 129-147
Google Scholar - 74. Muftuoglu M., Mori M.P., de Souza-Pinto N.C.: Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion, 2014; 17: 164-181
Google Scholar - 75. Nagano M., Katagiri S., Takahashi Y.: Relationship between bovine oocyte morphology and in vitro developmental potential. Zygote, 2006; 14: 53-61
Google Scholar - 76. Nakada K., Hayashi J.I.: Transmitochondrial mice as models for mitochondrial DNA-based diseases. Exp. Anim., 2011; 60: 421-431
Google Scholar - 77. Niu X., Trifunovic A., Larsson N.G., Canlon B.: Somatic mtDNA mutations cause progressive hearing loss in the mouse. Exp. Cell Res., 2007; 313:3924-3934
Google Scholar - 78. Opiela J., Lipiński D., Słomski R., Katska-Ksiazkiewicz L.: Transcript expression of mitochondria related genes is correlated with bovine oocyte selection by BCB test. Anim. Reprod. Sci., 2010; 118: 188-193
Google Scholar - 79. Palmer C.S., Osellame L.D., Stojanovski D., Ryan M.T.: The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell. Signal., 2011; 23: 1534-1545
Google Scholar - 80. Perez G.I., Jurisicova A., Wise L., Lipina T., Kanisek M., Bechard A., Takai Y., Hunt P., Roder J., Grynpas M., Tilly J.L.: Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice. Proc. Natl. Acad. Sci. USA, 2007; 104: 5229-5234
Google Scholar - 81. Piganeau G., Gardner M., Eyre-Walker A.: A broad survey of recombination in animal mitochondria. Mol. Biol. Evol., 2004; 21: 2319-2325
Google Scholar - 82. Prasad S., Tiwari M., Koch B., Chaube S.K.: Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J. Biomed. Sci., 2015; 22: 36
Google Scholar - 83. Qiao T.W., Liu N., Miao D.Q., Zhang X., Han D., Ge L., Tan J.H.: Cumulus cells accelerate aging of mouse oocytes by secreting a soluble factor (s). Mol. Reprod. Dev., 2007; 75: 521-528
Google Scholar - 84. Ramalho-Santos J.: A sperm’s tail: the importance of getting it right. Hum. Reprod., 2011; 26: 2590-2591
Google Scholar - 85. Reynier P., May-Panloup P., Chrétien M.F., Morgan C.J., Jean M., Savagner F., Barrière P., Malthièry Y.: Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod., 2001; 7: 425-429
Google Scholar - 86. Rieger D., Luciano A.M., Modina S., Pocar P., Lauria A., Gandolfi F.: The effects of epidermal growth factor and insulin-like growth factor I on the metabolic activity, nuclear maturation and subsequent development of cattle oocytes in vitro. J. Reprod. Fertil, 1998; 112: 123-130
Google Scholar - 87. Ross J.M., Coppotelli G., Hoffer B.J., Olson L.: Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci. Rep., 2014; 4: 6569
Google Scholar - 88. Ruder E.H., Hartman T.J., Goldman M.B.: The role of mitochondria from mature oocyte to viable blastocyst. Curr. Opin. Obstet. Gynecol., 2009; 21: 219-222
Google Scholar - 89. Ruder E.H., Hartman T.J., Goldman M.B.: Impact of oxidative stress on female fertility. Curr. Opin. Obstet. Gynecol., 2009; 21: 219- 222
Google Scholar - 90. Russell O., Turnbull D.: Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp. Cell Res., 2014; 325: 38-43
Google Scholar - 91. Santos T.A., El Shourbagy S., St John J.C.: Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril., 2006; 85: 584-591
Google Scholar - 92. Sathananthan A.H., Trounson A.O.: Mitochondrial morphology during preimplantational human embryogenesis. Hum. Reprod., 2000; 15: 148-159
Google Scholar - 93. Shkolnik K., Tadmor A., Ben-Dor S., Nevo N., Galiani D., Dekel N.: Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. USA, 2011; 108: 1462-1467
Google Scholar - 94. Soleimani R., Heytens E., Darzynkiewicz Z., Oktay K.: Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging, 2011; 3: 782-793
Google Scholar - 95. St. John J.C., Facucho-Oliveira J., Jiang Y., Kelly R., Salah R.: Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update, 2010; 16: 488-509
Google Scholar - 96. Stojkovic M., Machado S.A., Stojkovic P., Zakhartchenko V., Hutzler P., Gonçalves P.B., Wolf E.: Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod., 2001; 64: 904-909
Google Scholar - 97. Sutton-McDowall M.L., Gilchrist R.B., Thompson J.G.: The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, 2010; 139: 685-695
Google Scholar - 98. Tatemoto H., Sakurai N., Muto N.: Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod., 2000; 63: 805-810
Google Scholar - 99. Tatone C., Eichenlaub-Ritter U., Amicarelli F.: Dicarbonyl stress and glyoxalases in ovarian function. Biochem. Soc. Trans., 2014; 42: 433-438
Google Scholar - 100. Tiwari M., Chaube S.K.: Moderate increase of reactive oxygen species triggers meiotic resumption in rat follicular oocytes. J. Obstet. Gynaecol. Res., 2016; 42: 536-546
Google Scholar - 101. Tiwari M., Prasad S., Tripathi A., Pandey A.N., Ali I., Singh A.K., Shrivastav T.G., Chaube S.K.: Apoptosis in mammalian oocytes: a review. Apoptosis, 2015; 20: 1019-1025
Google Scholar - 102. Trifunovic A., Wredenberg A., Falkenberg M., Spelbrink J.N., Rovio A.T., Bruder C.E., Bohlooly-Y. M., Gidlöf S., Oldfors A., Wibom R., Törnell J., Jacobs H.T., Larsson N.G.: Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 2004; 429: 417-423
Google Scholar - 103. Tsai H.D., Hsieh Y.Y., Hsieh J.N., Chang C.C., Yang C.Y., Yang J.G., Cheng W.L., Tsai F.J., Liu C.S.: Mitochondria DNA deletion and copy numbers of cumulus cells associated with in vitro fertilization outcomes. J. Reprod. Med., 2010; 55: 491-497
Google Scholar - 104. Van Blerkom J.: Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod. Biomed. Online, 2008; 16: 553-569
Google Scholar - 105. Van Blerkom J.: Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction, 2004; 128: 269-280
Google Scholar - 106. Van Blerkom J., Davis P.: Mitochondrial signaling and fertilization. Mol. Hum. Reprod., 2007; 13: 759-770
Google Scholar - 107. Van Blerkom J., Davis P., Alexander S.: Inner mitochondrial membrane potential (∆Ψm), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum. Reprod., 2003; 18: 2429- 2440
Google Scholar - 108. Van Blerkom J., Davis P.W., Lee J.: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod., 1995; 10: 415-424
Google Scholar - 109. Van Blerkom J., Davis P., Thalhammer V.: Regulation of mitochondrial polarity in mouse and human oocytes: the influence of cumulus derived nitric oxide. Mol. Hum. Reprod., 2008; 14: 431-444
Google Scholar - 110. Venkatesh S., Kumar M., Sharma A., Kriplani A., Ammini A.C., Talwar P., Agarwal A., Dada R.: Oxidative stress and ATPase6 mutation is associated with primary ovarian insufficiency. Arch. Gynecol. Obstet, 2010; 282: 313-318
Google Scholar - 111. Wai T., Ao A., Zhang X., Cyr D., Dufort D., Shoubridge E.A.: The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod., 2010; 83: 52-62
Google Scholar - 112. Wakefield S.L., Lane M., Mitchell M.: Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol. Reprod., 2011; 84: 572-580
Google Scholar - 113. Wang L.Y., Wang D.H., Zou X.Y., Xu C.M.: Mitochondrial functions on oocytes and preimplantation embryos. J. Zhejiang Univ. Sci. B, 2009; 10: 483-492
Google Scholar - 114. Wang R.S., Chang H.Y., Kao S.H., Kao C.H., Wu Y.C., Yeh S., Tzeng C.R., Chang C.: Abnormal mitochondrial function and impaired granulosa cell differentiation in androgen receptor knockout mice. Int. J. Mol. Sci., 2015; 16: 9831-9849
Google Scholar - 115. Wu Y., Wang X., Liu J., Bao Z., Tang D., Wu Y., Zeng S.: BIMEL- -mediated apoptosis in cumulus cells contributes to degenerative changes in aged porcine oocytes via a paracrine action. Theriogenology, 2011; 76: 1487-1495
Google Scholar - 116. Yeon Lee J., Baw C.K., Gupta S., Aziz N., Agarwal A.: Role of oxidative stress in polycystic ovary syndrome. Curr. Womens. Health Rev., 2010; 6: 96-107
Google Scholar - 117. Yesodi V., Yaron Y., Lessing J.B., Amit A., Ben-Yosef D.: The mitochondrial DNA mutation (ΔmtDNA 5286) in human oocytes : correlation with age and IVF outcome. J. Assist. Reprod. Genet., 2002; 19: 60-66
Google Scholar - 118. Yu Y., Dumollard R., Rossbach A., Lai F.A., Swann K.: Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J. Cell. Physiol., 2010; 224: 672-680
Google Scholar - 119. Zeng H.T., Richani D., Sutton-McDowall M.L., Ren Z., Smitz J.E., Stokes Y., Gilchrist R.B., Thompson J.G.: Prematuration with cyclic adenosine monophosphate modulators alters cumulus cell and oocyte metabolism and enhances developmental competence of in vitro-matured mouse oocytes. Biol. Reprod., 2014; 91: 47
Google Scholar - 120. Zheng W., Khrapko K., Coller H.A., Thilly W.G., Copeland W.C.: Origins of human mitochondrial point mutations as DNA polymerase g-mediated errors. Mutat. Res., 2006; 599: 11-20
Google Scholar