Model research of the pig’s microbiome based on “One Health” concept in the light of the shared human and animal health

REVIEW ARTICLE

Model research of the pig’s microbiome based on “One Health” concept in the light of the shared human and animal health

Marta Satora 1 , Anna Rząsa 2 , Krzysztof Rypuła 1 , Katarzyna Płoneczka-Janeczko 1

1. Zakład Chorób Zakaźnych i Administracji Weterynaryjnej, Katedra Epizootiologii z Kliniką Ptaków i Zwierząt Egzotycznych, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy we Wrocławiu,
2. Zakład Immunologii i Prewencji Weterynaryjnej, Katedra Immunologii, Patofizjologii i Prewencji Weterynaryjnej, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy we Wrocławiu,

Published: 2021-05-07
DOI: 10.5604/01.3001.0014.8758
GICID: 01.3001.0014.8758
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2021; 75 : 297-303

 

Abstract

The human microbiome in terms of the number of bacteria exceeds the number of cells in the human body. It is defined as an additional “forgotten organ” and plays a key role in maintaining a high health status, which is conditioned by the maintenance of certain proportions and natural relations between bacteria and cells of the host organism. New diagnostic methods can enable profiling not only the human microbiome, but also livestock. An innovative analytical method, which is next generation sequencing (NGS), is increasingly used in the study of the microbiome. Many bacteria are referred to as “uncultivated” or “non-culturable” and metagenomics has played an important role in detecting these bacteria and has contributed to the development of new media for their cultivation. The main application of NGS in microbiology is to replace the conventional characterization of pathogens based on the assessment of morphology, staining properties and metabolic traits with their genome related characteristics. There are several platforms, i.e. “diagnostic tools”, that use a variety of DNA sequencing technologies, among others Ion Torrent Personal Genome Machine (PGM), Pacific Biosciences (PacBio) and Illumina MiSeq. In the case of swine microbiome, studies of the microbiome with the use of modern sequencing technologies seem to be particularly interesting in the aspect of the upcoming, inevitable changes in preventive and therapeutic procedures in animals. Analyses of this type integrate with the concept of the shared human and animal health and enable an in-depth assessment of the impact of specific factors on the population of intestinal microbes and learning how to “form” the composition of the microbiome in order to improve the quality of husbandry and to maintain the pig’s proper health status.

References

  • 1. Aluthge N.D., van Sambeek D.M, Carney-Hinkle E.E., Li Y.S., FernandoS.C., Burkey T.E.: The pig microbiota and the potential for harnessingthe power of the microbiome to improve growth and health.J. Anim. Sci., 2019; 97: 3741–3757
    Google Scholar
  • 2. Behjati S., Tarpey P.S.: What is next generation sequencing? Arch.Dis. Child. Educ. Pract. Ed., 2013; 98: 236–238
    Google Scholar
  • 3. Bergamaschi M., Maltecca C., Schillebeeckx C., McNulty N.P.,Schwab C., Shull C., Fix J., Tiezzi F.: Heritability and genome-wide associationof swine gut microbiome features with growth and fatnessparameters. Sci. Rep., 2020; 10: 10134
    Google Scholar
  • 4. Besser J., Carleton H.A., Gerner-Smidt P., Lindsey R.L., Trees E.:Next-generation sequencing technologies and their application tothe study and control of bacterial infections. Clin. Microbiol. Infect.,2018; 24: 335–341
    Google Scholar
  • 5. Binek M.: Mikrobiom człowieka – zdrowie i choroba. Post. Mikrob.,2012; 51: 27–36
    Google Scholar
  • 6. Bischoff S.C.: Gut health: A new objective in medicine? BMC Med.,2011; 9: 24
    Google Scholar
  • 7. Cao Y., Fanning S., Proos S., Jordan K., Srikumar S.: A review on theapplications of next generation sequencing technologies as appliedto food-related microbiome studies. Front. Microbiol., 2017; 8: 1829
    Google Scholar
  • 8. Crespo-Piazuelo D., Migura-Garcia L., Estellé J., Criado-Mesas L.,Revilla M., Castelló A., Muñoz M., García-Casco J.M., Fernández A.I.,Ballester M., Folch J.M.: Association between the pig genome and itsgut microbiota composition. Sci. Rep., 2019; 9: 8791
    Google Scholar
  • 9. Delia E., Tafaj M., Männer K.: Efficiency of probiotics in farm animals.W: Probiotic in Animals, red.: E. Rigobelo. IntechOpen, 2012,256–267
    Google Scholar
  • 10. Ferris M.J., Muyzer G., Ward D.M.: Denaturing gradient gel electrophoresisprofiles of 16S rRNA-defined populations inhabiting ahot spring microbial mat community. Appl. Environ. Microbiol., 1996;62: 340–346
    Google Scholar
  • 11. Flint H.J., Duncan S.H., Scott K.P., Louis P.: Links between diet,gut microbiota composition and gut metabolism. Proc. Nutr. Soc.,2015; 74: 13–22
    Google Scholar
  • 12. Foo J.L., Ling H., Lee Y.S., Chang M.W.: Microbiome engineering:Current applications and its future. Biotechnol. J., 2017: 12: e1600099
    Google Scholar
  • 13. Guz K., Orzińska A., Michalewska B., Pelc-Kłopotowska M., BrojerE., Łętowska M.: Molecular biology methods for blood cell antigengenotyping in reference laboratories. J. Transf. Med., 2019; 12: 199–205
    Google Scholar
  • 14. Holman D.B., Brunelle B.W., Trachsel J., Allen H.K.: Meta-analysisto define a core microbiota in the swine gut. mSystems., 2017;2: e00004–17
    Google Scholar
  • 15. Hu Y., Yang X., Li J., Lv N., Liu F., Wu J., Lin I.Y., Wu N., WeimerB.C., Gao G.F., Liu Y., Zhu B.: The bacterial mobile resistome transfernetwork connecting the animal and human microbiomes. Appl. Environ.Microbiol., 2016; 82: 6672–6681
    Google Scholar
  • 16. Isaacson R., Kim H.B.: The intestinal microbiome of the pig. Anim.Health. Res. Rev., 2012; 13: 100–109
    Google Scholar
  • 17. Jiang J., Wang J., Wang H., Zhang Y., Kang H., Feng X., Wang J., YinZ., Bao W., Zhang Q., Liu J.F.: Global copy number analyses by next generationsequencing provide insight into pig genome variation. BMCGenomics, 2014; 15: 593
    Google Scholar
  • 18. Kil D.Y., Swanson K.S.: Companion animals symposium: Role ofmicrobes in canine and feline health. J. Anim. Sci., 2011; 89: 1498–1505
    Google Scholar
  • 19. Kim H.B., Borewicz K., White B.A., Singer R.S., Sreevatsan S., TuZ.J., Isaacson R.E.: Longitudinal investigation of the age-related bacterialdiversity in the feces of commercial pigs. Vet. Microbiol., 2011;153: 124–133
    Google Scholar
  • 20. Kim H.B., Borewicz K., White B.A., Singer R.S., Sreevatsan S., TuZ.J., Isaacson R.E.: Microbial shifts in the swine distal gut in responseto the treatment with antimicrobial growth promoter, tylosin. Proc.Natl. Acad. Sci. USA, 2012; 109: 15485–15490
    Google Scholar
  • 21. Kraemer J.G., Ramette A., Aebi S., Oppliger A., Hilty M.: Influenceof pig farming on the human nasal microbiota: Key role of air-bornemicrobial communities. Appl. Environ. Microbiol. 2018; 84: e02470–17
    Google Scholar
  • 22. Lankelma J.M., Nieuwdorp M., de Vos W.M., Wiersinga W.J.: Thegut microbiota in internal medicine: Implications for health and disease.Neth. J. Med., 2015; 73: 61–68
    Google Scholar
  • 23. Li K., Xiao Y., Chen J., Chen J., He X., Yang H.: Microbial compositionin different gut locations of weaning piglets receiving antibiotics.Asian-Australas. J. Anim. Sci., 2017; 30: 78–84
    Google Scholar
  • 24. Li Y., Wang X., Wang X.Q., Wang J., Zhao J.: Life-long dynamics ofthe swine gut microbiome and their implications in probiotics developmentand food safety, Gut Microbes, 2020; 11: 1824–1832
    Google Scholar
  • 25. Lillehoj H., Liu Y., Calsamiglia S., Fernandez Miyakawa M.E., Chi, F.,Cravens R.L., Oh S., Gay C.G.: Phytochemicals as antibiotic alternativesto promote growth and enhance host health. Vet. Res., 2018; 49: 76
    Google Scholar
  • 26. Luise D., Correa F., Bosi P., Trevisi P.: A review of the effect of formicacid and its salts on the gastrointestinal microbiota and performanceof pigs. Animals, 2020; 10: 887
    Google Scholar
  • 27. Marshall B.M., Levy S.B.: Food animals and antimicrobials: Impactson human health. Clin. Microbiol. Rev., 2011; 24: 718–733
    Google Scholar
  • 28. McCarroll S.A., Altshuler D.M.: Copy-number variation and associationstudies of human disease. Nat. Genet., 2007; 39: S37–S42
    Google Scholar
  • 29. Mccormack U.M., Curião T., Wilkinson T., Metzler-Zebeli B.U.,Reyer H., Ryan T., Calderon-Diaz J.A., Crispie F., Cotter P.D., Creevey C.J.,Gardiner G.E., Lawlor P.G.: Fecal microbiota transplantation in gestatingsows and neonatal offspring alters lifetime intestinal microbiotaand growth in offspring. mSystems, 2018; 3: e00134–17
    Google Scholar
  • 30. Miller G.Y., Liu X., Mcnamara P.E., Barber D.A.: Influence of Salmonellain pigs preharvest and during pork processing on humanhealth costs and risks from pork. J. Food Prot., 2005; 68: 1788–1798
    Google Scholar
  • 31. Mizrahi-Man O., Davenport E.R., Gilad Y.: Taxonomic classificationof bacterial 16S rRNA genes using short sequencing reads: Evaluationof effective study designs. PLoS One, 2013; 8: e53608
    Google Scholar
  • 32. Niederwerder M.C., Constance L.A., Rowland R.R., Abbas W., FernandoS.C., Potter M.L., Sheahan M.A., Burkey T.E., Hesse R.A., Cino-Ozuna A.G.: Fecal microbiota transplantation is associated withreduced morbidity and mortality in porcine Circovirus associateddisease. Front. Microbiol., 2018; 9: 1631
    Google Scholar
  • 33. O’Hara A.M., Shanahan F.: The gut flora as a forgotten organ.EMBO Rep., 2006; 7: 688–693
    Google Scholar
  • 34. Pliszczak-Król A., Rząsa A., Gemra M., Król J., Łuczak G., ZyzakA., Zalewski D., Iwaszko-Simonik A., Graczyk S.: Age-related changesof platelet and plasma coagulation parameters in young pigs. J. Vet.Diagn. Invest., 2016; 28: 561–567
    Google Scholar
  • 35. Pluske J.R., Turpin D.L., Kim J.C.: Gastrointestinal tract (gut) healthin the young pig. Anim. Nutr., 2018; 4: 187–196
    Google Scholar
  • 36. Pokrzywnicka P., Gumprecht J.: Intestinal microbiota and its relationshipwith diabetes and obesity. Clin. Diabetol., 2016; 5: 164–172
    Google Scholar
  • 37. Quail M.A., Smith M., Coupland P., Otto T.D., Harris S.R., ConnorT.R., Bertoni A., Swerdlow H.P., Gu Y.: A tale of three next generationsequencing platforms: Comparison of Ion Torrent, Pacific Biosciencesand Illumina MiSeq sequencers. BMC Genomics, 2012; 13: 341
    Google Scholar
  • 38. Rhoads A., Au K.F.: PacBio sequencing and its applications. Genom.Proteom. Bioinf., 2015; 13: 278–289
    Google Scholar
  • 39. Shin D., Chang S.Y., Bogere P., Won K., Choi J.Y., Choi Y.J., Lee H.K.,Hur J., Park B.Y., Kim Y., Heo J.: Beneficial roles of probiotics on themodulation of gut microbiota and immune response in pigs. PLoSOne, 2019; 14: e0220843
    Google Scholar
  • 40. Sirisinha S.: The potential impact of gut microbiota on yourhealth: Current status and future challenges. Asian Pac. J. AllergyImmunol., 2016; 34: 249–264
    Google Scholar
  • 41. Tan S.C., Chong C.W., Yap I.K., Thong K.L., Teh C.S.: Comparitive assessmentof faecal microbial composition and metabonome of swine,farmers and human control. Sci. Rep., 2020; 10: 8997
    Google Scholar
  • 42. Tang K.L., Caffrey N.P., Nóbrega D.B., Cork S.C., Ronksley P.E.,Barkema H.W., Polachek A.J., Ganshorn H., Sharma N., Kellner J.D.,Ghali, W.A.: Restricting the use of antibiotics in food-producing animalsand its associations with antibiotic resistance in food-producinganimals and human beings: A systematic review and meta-analysis.Lancet Planet. Health, 2017; 1: e316–e327
    Google Scholar
  • 43. Trinh P., Zaneveld J.R., Safranek S., Rabinowitz P.M.: One Healthrelationships between human, animal and environmental microbiomes:A mini review. Front. Public Health, 2018; 6: 235
    Google Scholar
  • 44. Truszczyński M., Pejsak Z.: “Jedno zdrowie” – koncepcja łączącadziałalność naukową i praktyczną z zakresu ochrony zdrowia izwierząt. Życie Wet., 2015; 90: 280–283
    Google Scholar
  • 45. Truszczyński M., Pejsak Z.: Chorobotwórczość Clostridium difficileu człowieka i zwierząt w ocenie ewentualnych wzajemnych powiązań.Med. Weter., 2012; 68: 451–455
    Google Scholar
  • 46. Truszczyński M., Pejsak Z.: Rezerwuar Salmonella Typhimuriumu świń i jego znaczenie w wywoływaniu zatruć pokarmowych ludzi.Med Weter., 2009; 65: 439–443
    Google Scholar
  • 47. Turner J.L., Dritz S.S., Minton J.E.: Alternatives to conventionalantimicrobials in swine diets. Profes. Anim. Scien., 2001; 17: 217–226
    Google Scholar
  • 48. Vandeputte D., Falony G., Vieira-Silva S., Tito R.Y., Joossens M.,Raes J.: Stool consistency is strongly associated with gut microbiotarichness and composition, enterotypes and bacterial growth rates.Gut, 2016; 65: 57–62
    Google Scholar
  • 49. Yu D., Zhu W., Hang S.: Effects of long-term dietary protein restrictionon intestinal morphology, digestive enzymes, gut hormones,and colonic microbiota in pigs. Animals, 2019; 9: 180
    Google Scholar
  • 50. Zeineldin M., Aldridge B., Lowe J.: Antimicrobial effects on swinegastrointestinal microbiota and their accompanying antibiotic resistome.Front. Microbiol., 2019; 10: 1035
    Google Scholar
  • 51. Zhao W., Wang Y., Liu S., Huang J., Zhai Z., He C., Ding J., Wang J.,Wang H., Fan W., Zhao J., He M.: The dynamic distribution of porcinemicrobiota across different ages and gastrointestinal tract segments.PLoS One, 2015; 10: e0117441
    Google Scholar

Full text

Skip to content