Molecular actions of 17β-estradiol and progesterone and their relationship with cellular signaling pathways

COMMENTARY ON THE LAW

Molecular actions of 17β-estradiol and progesterone and their relationship with cellular signaling pathways

Katarzyna Zielniok 1 , Małgorzata Gajewska 1 , Tomasz Motyl 1

1. Katedra Nauk Fizjologicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Published: 2014-06-09
DOI: 10.5604/17322693.1108390
GICID: 01.3001.0003.1252
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 777-792

 

Abstract

Sex steroids: 17β-estradiol and progesterone play a major role in modulation of reproductive functions of the organism and participate in regulation of a broad spectrum of cellular processes in target cells via their specific receptors. Our understanding of molecular mechanisms of sex steroid action has significantly developed over the last years. Apart from the well-established effect of sex steroids on regulation of gene expression, some rapid nongenomic mechanisms have been identified, which are involved in modulation of the activity of several cellular, membrane-bound and cytoplasmic regulatory proteins. 17β-estradiol and progesterone regulate several signal transduction pathways, which involve activation of enzymes such as mitogen-activated protein kinases (MAPK), phosphatidylinositol 3-kinase and tyrosine kinases. Biological effects of sex steroids action constitute a complex interplay of genomic and nongenomic mechanisms, and depend on the physiological and genetic context of the target cell. Understanding the molecular mechanisms of sex steroids action is therefore important and may broaden our knowledge about their role in both physiological and pathological processes. This review provides a comprehensive insight into the molecular actions of 17β-estradiol and progesterone, aiming to present the role of these sex steroids in regulation of cellular signaling pathways.

References

  • 1. Acconcia F., Ascenzi P., Bocedi A., Spisni E., Tomasi V., TrentalanceA., Visca P., Marino M.: Palmitoylation-dependent estrogen receptorα membrane localization: regulation by 17β-estradiol. Mol. Biol.Cell., 2005; 16: 231-237
    Google Scholar
  • 2. Albanese C., Johnson J., Watanabe G., Eklund N., Vu D., Arnold A.,Pestell R.G.: Transforming p21ras mutants and c-Ets-2 activate thecyclin D1 promoter through distinguishable regions. J. Biol. Chem.,1995; 270: 23589-23597
    Google Scholar
  • 3. Ascenzi P., Bocedi A., Marino M.: Structure-function relationshipof estrogen receptor α and β: impact on human health. Mol. AspectsMed., 2006; 27: 299-402
    Google Scholar
  • 4. Beato M., Eisfeld K.: Transcription factor access to chromatin.Nucleic Acids Res., 1997; 25: 3559-3563
    Google Scholar
  • 5. Beato M., Klug J.: Steroid hormone receptors: an update. Hum.Reprod. Update, 2000; 6: 225-236
    Google Scholar
  • 6. Beyer C., Karolczak M.: Estrogenic stimulation of neurite growthin midbrain dopaminergic neurons depends on cAMP/protein kinaseA signalling. J. Neurosci. Res., 2000; 59: 107-116
    Google Scholar
  • 7. Beyer C., Raab H.: Nongenomic effects of oestrogen: Embryonicmouse midbrain neurones respond with a rapid release of calciumfrom intracellular stores. Eur. J. Neurosci., 1998; 10: 255-262
    Google Scholar
  • 8. Biscardi J.S., Maa M.C., Tice D.A., Cox M.E., Leu T.H., Parsons S.J.:c-Src-mediated phosphorylation of the epidermal growth factorreceptor on Tyr845 and Tyr1101 is associated with modulation ofreceptor function. J. Biol. Chem., 1999; 274: 8335-8343
    Google Scholar
  • 9. Bjornstrom L., Sjoberg M.: Signal transducers and activators oftranscription as downstream targets of nongenomic estrogen receptoractions. Mol. Endocrinol., 2002; 16: 2202-2214
    Google Scholar
  • 10. Bjornstrom L., Sjoberg M.: Estrogen receptor-dependent activationof AP-1 via non-genomic signalling. Nucl. Recept., 2004; 2: 3
    Google Scholar
  • 11. Brosens J.J., Tullet J., Varshochi R., Lam E.W.: Steroid receptoraction. Best Pract. Res. Clin. Obstet. Gynaecol., 2004; 18: 265-283
    Google Scholar
  • 12. Bunone G., Briand P.A., Miksicek R.J., Picard D.: Activation ofthe unliganded estrogen receptor by EGF involves the MAP kinasepathway and direct phosphorylation. EMBO J., 1996; 15: 2174-2183
    Google Scholar
  • 13. Castoria G., Barone M. V., Di Domenico M., Bilancio A., AmetranoD., Migliaccio A., Auricchio F.: Non-transcriptional actionof estrogen and progestin triggers DNA synthesis. EMBO J., 1999;18: 2500-2510
    Google Scholar
  • 14. Catalano M.G., Frairia R., Boccuzzi G., Fortunati N.: Sex hormonebindingglobulin antagonizes the antiapoptotic effect of estradiol inbreast cancer cells. Mol. Cell. Endocrinol., 2005; 230: 31-37
    Google Scholar
  • 15. Chambliss K.L., Yuhanna I.S., Anderson R.G., Mendelsohn M.E.,Shaul P.W.: ERβ has non-genomic action in caveolae. Mol. Endocrinol.,2002; 16: 938-946
    Google Scholar
  • 16. Chang L., Karin M.: Mammalian MAP kinase signalling cascades.Nature, 2001; 410: 37-40
    Google Scholar
  • 17. Chen J.D., Evans R.M.: A transcriptional co-repressor that interactswith nuclear hormone receptors. Nature, 1995; 377: 454-457
    Google Scholar
  • 18. Di Croce L., Koop R., Venditti P., Westphal H.M., Nightingale K.P.,Corona D.F., Becker P.B., Beato M.: Two-step synergism between theprogesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. Mol. Cell, 1999; 4: 45-54
    Google Scholar
  • 19. Dinda S., Sanchez A., Moudgil V.: Estrogen-like effects of thyroidhormone on the regulation of tumor suppressor proteins, p53 andretinoblastoma, in breast cancer cells. Oncogene, 2002; 21: 761-768
    Google Scholar
  • 20. Endoh H., Sasaki H., Maruyama K., Takeyama K., Waga I., ShimizuT., Kato S., Kawashima H.: Rapid activation of MAP kinase by estrogenin the bone cell line. Biochem. Biophys. Res. Commun., 1997;235: 99-102
    Google Scholar
  • 21. Faivre E.J., Lange C.A.: Progesterone receptors upregulate Wnt- 1 to induce epidermal growth factor receptor transactivation andc-Src-dependent sustained activation of Erk1/2 mitogen-activatedprotein kinase in breast cancer cells. Mol. Cell. Biol., 2007; 27: 466-480
    Google Scholar
  • 22. Falkenstein E., Norman A.W., Wehling M.: Mannheim classificationof nongenomically initiated (rapid) steroid action(s). J. Clin.Endocrinol. Metab., 2000; 85: 2072-2075
    Google Scholar
  • 23. Falkenstein E., Tillmann H.C., Christ M., Feuring M., Wehling M.:Multiple actions of steroid hormones-a focus on rapid, nongenomiceffects. Pharmacol. Rev., 2000: 52; 513-556
    Google Scholar
  • 24. Fan P., Wang J., Santen R.J., Yue W.: Long-term treatment withtamoxifen facilitates translocation of estrogen receptor alpha out ofthe nucleus and enhances its interaction with EGFR in MCF-7 breastcancer cells. Cancer Res., 2007; 67: 1352-1360
    Google Scholar
  • 25. Figtree G.A., McDonald D., Watkins H., Channon K.M.: Truncatedestrogen receptor α 46-kDa isoform in human endothelial cells: relationshipto acute activation of nitric oxide synthase. Circulation,2003; 107: 120-126
    Google Scholar
  • 26. Filardo E.J., Quinn J.A., Frackelton A.R.Jr., Bland K.I.: Estrogenaction via the G protein coupled receptor, GPR30: stimulation ofadenylyl cyclase and cAMP-mediated attenuation of the epidermalgrowth factor receptor-to-MAPK signaling axis. Mol. Endocrinol.,2002; 16: 70-84
    Google Scholar
  • 27. Fortunati N., Catalano M.G., Boccuzzi G., Frairia R.: Sex hormonebindingglobulin (SHBG), estradiol and breast cancer. Mol. Cell. Endocrinol.,2010; 316: 86-92
    Google Scholar
  • 28. Fortunati N., Fissore F., Fazzari A., Becchis M., Comba A., CatalanoM.G., Berta L., Frairia R.: Sex steroid binding protein exertsa negative control on estradiol action in MCF-7 cells (human breastcancer) through cyclic adenosine 3’,5’-monophosphate and proteinkinase A. Endocrinology, 1996; 137: 686-692
    Google Scholar
  • 29. Fox E.M., Andrade J., Shupnik M.A.: Novel actions of estrogento promote proliferation: integration of cytoplasmic and nuclearpathways. Steroids, 2009; 74: 622-627
    Google Scholar
  • 30. Fuller P.J.: The steroid receptor superfamily: mechanisms ofdiversity. FASEB J., 1991; 5: 3092-3099
    Google Scholar
  • 31. Furukawa T., Kurokawa J.: Regulation of cardiac ion channelsvia non-genomic action of sex steroid hormones: implication forthe gender difference in cardiac arrhythmias. Pharmacol. Ther.,2007; 115: 106-115
    Google Scholar
  • 32. Garcia Dos Santos E., Dieudonne M.N., Pecquery R., Le MoalV., Giudicelli Y., Lacasa D.: Rapid nongenomic E2 effects on p42/p44 MAPK, activator protein-1, and cAMP response element bindingprotein in rat white adipocytes. Endocrinol., 2002; 143: 930-940
    Google Scholar
  • 33. Gee J.M., Robertson J.F., Gutteridge E., Ellis I.O., Pinder S.E., RubiniM., Nicholson R.I.: Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signaling and oestrogen receptoractivity in clinical breast cancer. Endocr. Relat. Cancer, 2005;12: S99-S111
    Google Scholar
  • 34. Grosse B., Kachkache M., Le Mellay V., Lieberherr M.: Membranesignalling and progesterone in female and male osteoblasts. Involvementof intracellular Ca2+, inositol trisphosphate, and diacylglycerol,but not cAMP. J. Cell. Biochem., 2000; 79: 334-345
    Google Scholar
  • 35. Guiochon-Mantel A., Lescop P., Christin-Maitre S., Loosfelt H.,Perrot-Applanat M., Milgrom E.: Nucleocytoplasmic shuttling of theprogesterone receptor. EMBO J., 1991; 10: 3851-3859
    Google Scholar
  • 36. Harrison D.A., Carr D.W., Meizel S.: Involvement of protein kinaseA and A kinase anchoring protein in the progesterone-initiatedhuman sperm acrosome reaction. Biol. Reprod., 2000; 62: 811-820
    Google Scholar
  • 37. Haynes M.P., Li L., Sinha D., Russell K.S., Hisamoto K., Baron R.,Collinge M., Sessa W.C., Bender J.R.: Src kinase mediates phosphatidylinositol3-kinase/Akt-dependent rapid endothelial nitric-oxidesynthase activation by estrogen. J. Biol. Chem., 2003; 278: 2118-2123
    Google Scholar
  • 38. Helsen C., Kerkhofs S., Clinckemalie L., Spans L., Laurent M.,Boonen S., Vanderschueren D., Claessens F.: Structural basis for nuclearhormone receptor DNA binding. Mol. Cell. Endocrinol., 2012;348: 411-417
    Google Scholar
  • 39. Hennessy B.A., Harvey B.J., Healy V.: 17β-Estradiol rapidly stimulatesc-fos expression via the MAPK pathway in T84 cells. Mol. Cell.Endocrinol., 2005; 229: 39-47
    Google Scholar
  • 40. Hewitt S.C., Korach K.S.: Oestrogen receptor knockout mice:roles for oestrogen receptors alpha and beta in reproductive tissues.Reproduction, 2003; 125: 143-149
    Google Scholar
  • 41. Hsieh Y.C., Frink M., Thobe B.M., Hsu J.T., Choudhry M.A.,Schwacha M.G., Bland K.I., Chaudry I.H.:17β-estradiol downregulatesKupffer cell TLR4-dependent p38 MAPK pathway and normalizesinflammatory cytokine production following trauma-hemorrhage.Mol. Immunol., 2007; 44: 2165-2172
    Google Scholar
  • 42. Ing N.H., Beekman J.M., Tsai S.Y., Tsai M.J., O’Malley B.W.: Membersof the steroid hormone receptor superfamily interact with TFIIB(S300-II). J. Biol. Chem., 1992; 267: 17617-17623
    Google Scholar
  • 43. Jakacka M., Ito M., Martinson F., Ishikawa T., Lee E.J., Jameson J.L.:An estrogen receptor (ER)α deoxyribonucleic acid-binding domainknock-in mutation provides evidence for nonclassical ER pathwaysignaling in vivo. Mol. Endocrinol., 2002; 16: 2188-2201
    Google Scholar
  • 44. Jensen E.V., Jacobson H.I., Walf A.A., Frye C.A.: Estrogen action:a historic perspective on the implications of considering alternativeapproaches. Physiol Behav., 2010; 99: 151-162
    Google Scholar
  • 45. Jensen E.V., Suzuki T., Kawashima T., Stumpf W.E., Jungblut P.W.,DeSombre E.R.: A two-step mechanism for the interaction of estradiolwith rat uterus. Proc. Natl. Acad. Sci. USA, 1968; 59: 632-638
    Google Scholar
  • 46. Kato S., Endoh H., Masuhiro Y., Kitamoto T., Uchiyama S., SasakiH.,Masushige S., Gotoh Y., Nishida E., Kawashima H., Metzger D., ChambonP.: Activation of the estrogen receptor through phosphorylationby mitogen-activated protein kinase. Science, 1995; 270: 1491-1494
    Google Scholar
  • 47. Kelly M.J., Lagrange A.H., Wagner E.J., Ronnekleiv O.K.: Rapideffects of estrogen to modulate G protein-coupled receptors viaactivation of protein kinase A and protein kinase C pathways. Steroids,1999; 64: 64-75
    Google Scholar
  • 48. Klein–Hitpass L., Schwerk C., Kahmann S., Vassen L.: Targetsof activated steroid hormone receptors: basal transcription factorsand receptor interacting proteins. J. Mol. Med., 1998; 76: 490-496
    Google Scholar
  • 49. Klinge C.M.: Estrogen receptor interaction with estrogen responseelements.: Nucleic Acids Res., 2001; 29: 2905-2919
    Google Scholar
  • 50. Klinge C.M., Blankenship K.A., Risinger K.E., Bhatnagar S., NoisinE.L., Sumanasekera W.K., Zhao L., Brey D.M., Keynton R.S.: Resveratroland estradiol rapidly activate MAPK signaling through estrogenreceptor α and β in endothelial cells. J. Biol. Chem., 2005;280: 7460-7468
    Google Scholar
  • 51. Kousteni S., Bellido T., Plotkin L.I., O’Brien C.A., Bodenner D.L.,Han L., Han K., DiGregorio G.B., Katzenellenbogen J.A., KatzenellenbogenB.S., Roberson P.K., Weinstein R.S., Jilka R.L., Manolagas S.C.:Nongenotropic, sex-nonspecific signaling through the estrogen orandrogen receptors, dissociation from transcriptional activity. Cell,2001; 104: 719-730
    Google Scholar
  • 52. Kousteni S., Han L., Chen J.R., Almeida M., Plotkin L.I., Bellido T.,Manolagas S.C.: Kinase-mediated regulation of common transcriptionfactors accounts for the bone-protective effects of sex steroids.J. Clin. Invest., 2003; 111: 1651-1664
    Google Scholar
  • 53. Lange C.A.: Integration of progesterone receptor action withrapid signaling events in breast cancer models. J. Steroid Biochem.Mol. Biol., 2008; 108: 203-212
    Google Scholar
  • 54. Lange C.A.: Making sense of cross-talk between steroid hormonereceptors and intracellular signaling pathways: who will have thelast word? Mol. Endocrinol., 2004; 18: 269-278
    Google Scholar
  • 55. Le Mellay V., Grosse B., Lieberherr M.: Phospholipase C beta andmembrane action of calcitriol and estradiol. J. Biol. Chem., 1997;272: 11902-11907
    Google Scholar
  • 56. Levin E.R.: Cellular functions of the plasma membrane estrogenreceptor. Trends Endocrinol. Metab., 1999; 10: 374-377
    Google Scholar
  • 57. Lu Q., Ebling H., Mittler J., Baur W.E., Karas R.H.: MAP kinasemediates growth factor-induced nuclear translocation of estrogenreceptor alpha. FEBS Lett., 2002; 516: 1-8
    Google Scholar
  • 58. Luo M., Koh M., Feng J., Wu Q., Melamed P.: Cross talk in hormonallyregulated gene transcription through induction of estrogenreceptor ubiquitylation. Mol. Cell. Biol., 2005; 25: 7386-7398
    Google Scholar
  • 59. Macedo L.F., Sabnis G., Brodie A.: Preclinical modeling of endocrineresponse and resistance: focus on aromatase inhibitors.Cancer, 2008; 112: 679-688
    Google Scholar
  • 60. Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schütz G.,Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., EvansR.M.: The nuclear receptor superfamily: the second decade. Cell,1995; 83: 835-839
    Google Scholar
  • 61. Martinez F., Tesarik J., Martin C.M., Soler A., Mendoza C.: Stimulationof tyrosine phosphorylation by progesterone and its 11-OHderivatives: Dissection of a Ca2+-dependent and a Ca2+-independentmechanism. Biochem. Biophys. Res. Commun., 1999; 255: 23-27
    Google Scholar
  • 62. McKenna N.J., O’Malley B.W.: Combinatorial control of geneexpression by nuclear receptors and coregulators. Cell, 2002; 108:465-474
    Google Scholar
  • 63. Migliaccio A., Castoria G., Auricchio F.: Src-dependent signallingpathway regulation by sex-steroid hormones: therapeutic implications.Int. J. Biochem. Cell Biol., 2007; 39: 1343-1348
    Google Scholar
  • 64. Migliaccio A., Di Domenico M., Castoria G., de Falco A., BontempoP., Nola E., Auricchio F.: Tyrosine kinase/p21ras/MAPkinasepathway activation by estradiol-receptor complex in MCF-7 cells.EMBO J., 1996; 15: 1292-1300
    Google Scholar
  • 65. Migliaccio A., Piccolo D., Castoria G., Di Domenico M., BilancioA., Lombardi M., Gong W., Beato M., Auricchio F.: Activation of theSrc/p21ras/Erk pathway by progesterone receptor via cross-talkwith estrogen receptor. EMBO J., 1998; 17: 2008-2018
    Google Scholar
  • 66. Morley P., Whitfield J.F., Vanderhyden B.C, Tsang B.K., SchwartzJ.L.: A new, nongenomic estrogen action: the rapid release of intracellularcalcium. Endocrinology, 1992; 131: 1305-1312
    Google Scholar
  • 67. Morrill G.A., Kostellow A.B.: Progesterone induces meiotic divisionin the amphibian oocyte by releasing lipid second messengersfrom the plasma membrane. Steroids, 1999; 64: 157-167
    Google Scholar
  • 68. Nakajima T., Kitazawa T., Hamada E., Hazama H., Omata M.,Kurachi Y.: 17beta-Estradiol inhibits the voltage-dependent L-typeCa2+ currents in aortic smooth muscle cells. Eur. J. Pharmacol., 1995;294: 625-635
    Google Scholar
  • 69. Neves S.R., Ram P.T., Iyengar R.: “G protein pathways”. Science,2002; 296: 1636-1639
    Google Scholar
  • 70. Nuclear Receptors Nomenclature Committee: A unified nomenclaturesystem for the nuclear receptor superfamily. Cell, 1999;97: 161-163
    Google Scholar
  • 71. Oñate S.A., Tsai S.Y., Tsai M.J., O’Malley B.W.: Sequence andcharacterization of a coactivator for the steroid hormone receptorsuperfamily. Science, 1995; 270: 1354-1357
    Google Scholar
  • 72. O’Lone R., Frith M.C., Karlsson E.K., Hansen U.: Genomic targetsof nuclear estrogen receptors. Mol. Endocrinol., 2004; 18: 1859-1875
    Google Scholar
  • 73. Osborne C.K., Schiff R.: Growth factor receptor cross-talk withestrogen receptor as a mechanism for tamoxifen resistance in breastcancer. Breast, 2003; 12: 362-367
    Google Scholar
  • 74. Pearson G., Robinson F., Beers Gibson T., Xu B.E., KarandikarM., Berman K., Cobb M.H.: Mitogen-activated protein (MAP) kinasepathways: regulation and physiological functions. Endocr. Rev., 2001;22: 153-183
    Google Scholar
  • 75. Picotto G., Vazquez G., Boland R.: 17β-estradiol increases intracellularCa2+ concentration in rat enterocytes. Potential role ofphospholipase C-dependent store-operated Ca2+ influx. Biochem.J., 1999; 339: 71-77
    Google Scholar
  • 76. Pietras R.J., Szego C.M.: Partial purification and characterizationof oestrogen receptors in subfractions of hepatocyte plasmamembranes. Biochem. J., 1980; 191: 743-760
    Google Scholar
  • 77. Pike A.C., Brzozowski A.M., Hubbard R.E., Bonn T., Thorsell A.G.,Engstrom O., Ljunggren J., Gustafsson J.A., Carlquist M.: Structure ofthe ligand-binding domain of oestrogen receptor beta in the presenceof a partial agonist and a full antagonist. EMBO J., 1999; 18:4608-4618
    Google Scholar
  • 78. Piña B., Brüggemeier U., Beato M.: Nucleosome positioningmodulates accessibility of regulatory proteins to the mouse mammarytumor virus promoter. Cell, 1990; 60: 719-731
    Google Scholar
  • 79. Powell E., Wang Y., Shapiro D.J., Xu W.: Differential requirementsof Hsp90 and DNA for the formation of estrogen receptor homodimersand heterodimers. J. Biol. Chem., 2010; 285: 16125-16134
    Google Scholar
  • 80. Pratt W.B., Toft D.O.: Steroid receptor interactions with heatshock protein and immunophilin chaperones. Endocr. Rev., 1997;18: 306-360
    Google Scholar
  • 81. Proietti C., Salatino M., Rosemblit C., Carnevale R., Pecci A.,Kornblihtt A.R., Molinolo A.A., Frahm I., Charreau E.H., Schillaci R.,Elizalde P.V.: Progestins induce transcriptional activation of signaltransducer and activator of transcription 3 (Stat3) via a Jak- andSrc-dependent mechanism in breast cancer cells. Mol. Cell. Biol.,2005; 25: 4826-4840
    Google Scholar
  • 82. Razandi M., Alton G., Pedram A., Ghonshani S., Webb P., LevinE.R.: Identification of a structural determinant necessary for thelocalization and function of estrogen receptor alpha at the plasmamembrane. Mol. Cell. Biol., 2003; 23: 1633-1646
    Google Scholar
  • 83. Razandi M., Pedram A., Levin E.R.: Estrogen signals to the preservationof endothelial cell form and function. J. Biol. Chem., 2000;275: 38540-38546
    Google Scholar
  • 84. Razandi M., Pedram A., Levin E.R.: Plasma membrane estrogenreceptors signal to antiapoptosis in breast cancer. Mol Endocrinol.,2000; 14: 1434-1447
    Google Scholar
  • 85. Revankar C.M., Cimino D.F., Sklar L.A., Arterburn J.B., ProssnitzE.R.: A transmembrane intracellular estrogen receptor mediatesrapid cell signaling. Science, 2005; 307: 1625-1630
    Google Scholar
  • 86. Richer J.K., Lange C.A., Manning N.G., Owen G., Powell R., HorwitzK.B.: Convergence of progesterone with growth factor and cytokinesignaling in breast cancer. Progesterone receptors regulate signaltransducers and activators of transcription expression and activity.J. Biol. Chem., 1998; 273: 31317-31326
    Google Scholar
  • 87. Riggins R.B., Thomas K.S., Ta H.Q., Wen J., Davis R.J., Schuh N.R.,Donelan S.S., Owen K.A., Gibson M.A., Shupnik M.A., Silva C.M., ParsonsS.J., Clarke R., Bouton A.H.: Physical and functional interactionsbetween Cas and c-Src induce tamoxifen resistance of breast cancercells through pathways involving epidermal growth factor receptorand signal transducer and activator of transcription 5b. CancerRes., 2006; 66: 7007-7015
    Google Scholar
  • 88. Rosner W.: The functions of corticosteroid-binding globulinand sex hormonebinding globulin: recent advances. Endocr. Rev.,1990; 11: 80-91
    Google Scholar
  • 89. Rosner W., Hryb D.J., Khan M.S., Nakhla A.M., Romas N.A.: Sexhormone-binding globulin mediates steroid hormone signal transductionat the plasma membrane. J. Steroid. Biochem. Mol. Biol.,1999; 69: 481-485
    Google Scholar
  • 90. Russell K.S., Haynes M.P., Sinha D., Clerisme E., Bender J.R.: Humanvascular endothelial cells contain membrane binding sites forestradiol, which mediate rapid intracellular signaling. Proc. Natl.Acad. Sci. USA, 2000; 97: 5930-5935
    Google Scholar
  • 91. Sentis S., Le Romancer M., Bianchin C., Rostan M.C., Corbo L.:Sumoylation of the estrogen receptor α hinge region regulates itstranscriptional activity. Mol. Endocrinol., 2005; 19: 2671-2684
    Google Scholar
  • 92. Shen T., Horwitz K.B., Lange C.A.: Transcriptional hyperactivityof human progesterone receptors is coupled to their liganddependentdown-regulation by mitogenactivated protein kinasedependentphosphorylation of serine 294. Mol. Cell. Biol., 2001; 21:6122-6131
    Google Scholar
  • 93. Silva C.M., Shupnik M.A.: Integration of steroid and growth factorpathways in breast cancer: focus on signal transducers and activatorsof transcription and their potential role in resistance. Mol.Endocrinol., 2007; 21: 1499-1512
    Google Scholar
  • 94. Simoncini T., Genazzani A.R.: Non-genomic actions of sex steroidhormones. Eur. J. Endocrinol., 2003; 148: 281-292
    Google Scholar
  • 95. Simoncini T., Hafezi-Moghadam A., Brazil D. P., Ley K., Chin W.W.,Liao J. K.: Interaction of ER with the regulatory subunit of phosphatidylinositol-3-OHkinase. Nature, 2000; 407: 538-541
    Google Scholar
  • 96. Singh S., Shaul P.W., Gupta P.D.: Conventional estrogen receptorsare found in the plasma membrane of vaginal epithelial cellsof the rat. Steroids, 2002; 67: 757-764
    Google Scholar
  • 97. Smith C.L.: Cross-talk between peptide growth factor and estrogenreceptor signaling pathways. Biol. Reprod., 1998; 58: 627-632
    Google Scholar
  • 98. Smith D.F., Toft D.O.: Steroid receptors and their associated proteins.Mol. Endocrinol., 1993; 7: 4-11
    Google Scholar
  • 99. Smith J.L., Kupchak B.R., Garitaonandia I., Hoang L.K., MainaA.S., Regalla L.M., Lyons T.J.: Heterologous expression of humanmPRα, mPRβ and mPRγ in yeast confirms their ability to functionas membrane progesterone receptors. Steroids, 2008; 73: 1160-1173
    Google Scholar
  • 100. Spencer T.E., Jenster G., Burcin M.M., Allis C.D., Zhou J., MizzenC.A., McKenna N.J., Onate S.A., Tsai S.Y., Tsai M.J., O›Malley B.W.:Steroid receptor coactivator-1 is a histone acetyltransferase. Nature,1997; 389: 194-198
    Google Scholar
  • 101. Srivastava S., Weitzmann M.N., Cenci S., Ross F.P., Adler S.,Pacifici R.: Estrogen decreases TNF gene expression by blockingJNK activity and the resulting production of c-Jun and JunD. J. Clin.Invest., 1999; 104: 503-513
    Google Scholar
  • 102. Stenoien D.L., Mancini M.G., Patel K., Allegretto E.A., SmithC.L., Mancini M.A.: Subnuclear trafficking of estrogen receptor-α andsteroid receptor coactivator-1. Mol. Endocrinol., 2000; 14: 518-534
    Google Scholar
  • 103. Tesarik J., Mendoza C.: Nongenomic effects of 17 β-estradiolon maturing human oocytes: Relationship to oocyte developmentalpotential. J. Clin. Endocrinol. Metab., 1995; 80: 1438-1443
    Google Scholar
  • 104. Thomas P., Pang Y., Dong J., Groenen P., Kelder J., De Vlieg J.,Zhu Y., Tubbs C.: Steroid and G protein binding characteristics of theseatrout and human progestin membrane receptor-alpha subtypesand their evolutionary origins. Endocrinology, 2007; 148: 705-718
    Google Scholar
  • 105. Toran-Allerand C.D., Guan X., MacLusky N.J., Horvath T.L., DianoS., Singh M., Connolly E.S.Jr, Nethrapalli I.S., Tinnikov A.A.: ER-X:a novel, plasma membrane-associated, putative estrogen receptorthat is regulated during development and after ischemic brain injury.J. Neurosci., 2002; 22: 8391-8401
    Google Scholar
  • 106. Valverde M.A., Rojas P., Amigo J., Cosmelli D., Orio P., BahamondeM.I., Mann G.E., Vergara C., Latorre R.: Acute activation ofMaxi-K channels (hSlo) by estradiol binding to the β subunit. Science,1999; 285: 1929-1931
    Google Scholar
  • 107. van der Flier S., Brinkman A., Look M.P., Kok E.M., Meijer-vanGelder M.E., Klijn J.G., Dorssers L.C., Foekens J.A.: Bcar1/p130Cas proteinand primary breast cancer: prognosis and response to tamoxifentreatment. J. Natl. Cancer Inst., 2000; 92: 120-127
    Google Scholar
  • 108. Wade C.B., Dorsa D.M.: Estrogen activation of cyclic adenosine5′- monophosphate response element-mediated transcriptionrequires the extracellularly regulated kinase/mitogen-activatedprotein kinase pathway. Endocrinology, 2003; 144: 832-838
    Google Scholar
  • 109. Wang C., Shi X., Chen X., Wu H., Zhang H., Xie J., Yang X., GouZ., Ye J.: 17-β-estradiol inhibits hyperosmolarity-induced proinflammatorycytokine elevation via the p38 MAPK pathway in humancorneal epithelial cells. Mol. Vis., 2012; 18: 1115-1122
    Google Scholar
  • 110. Watters J.J., Campbell J.S., Cunningham M.J., Krebs E.G., DorsaD.M.: Rapid membrane effects of steroids in neuroblastoma cells:effects of estrogen on mitogen activated protein kinase signallingcascade and c-fos immediate early gene transcription. Endocrinology,1997; 138: 4030-4033
    Google Scholar
  • 111. Watters J.J., Dorsa D.M.: Transcriptional effects of estrogen onneuronal neurotensin gene expression involve cAMP/protein kinaseA-dependent signaling mechanisms. J. Neurosci., 1998; 18: 6672-6680
    Google Scholar
  • 112. Weigel N.L., Zhang Y.: Ligand-independent activation of steroidhormone receptors. J. Mol. Med., 1998; 76: 469-479
    Google Scholar
  • 113. White R.E., Darkow D.J., Lang J.L.: Estrogen relaxes coronary arteriesby opening BKCa channels through a cGMP-dependent mechanism.Circ. Res., 1995; 77: 936-942
    Google Scholar
  • 114. Wierman M.E.: Sex steroid effects at target tissues: mechanismsof action. Adv. Physiol. Educ., 2007; 31: 26-33
    Google Scholar
  • 115. Xu Y., Traystman R.J., Hurn P.D., Wang M.M.: Membrane restraintof estrogen receptor alpha enhances estrogen-dependentnuclear localization and genomic function. Mol. Endocrinol., 2004;18: 86-96
    Google Scholar
  • 116. Yeatman T.: A renaissance for Src. Nat. Rev., 2004; 4: 470-480
    Google Scholar
  • 117. Yue W., Wang J.P., Conaway M., Masamura S., Li Y., Santen R.J.:Activation of the MAPK pathway enhances sensitivity of MCF-7breast cancer cells to the mitogenic effect of estradiol. Endocrinol.,2002; 143: 3221-3229
    Google Scholar
  • 118. Zhang D., Trudeau V.L.: Integration of membrane and nuclearestrogen receptor signaling. Comp. Biochem. Physiol. A. Mol. Integr.Physiol., 2006; 144: 306-315
    Google Scholar
  • 119. Zhu W., Smart E.J.: Caveolae, estrogen and nitric oxide. TrendsEndocrinol. Metab., 2003; 14: 114-117
    Google Scholar
  • 120. Zhu Y., Bond J., Thomas P.: Identification, classification andpartial characterization of genes in humans and other vertebrateshomologous to a fish membrane progestin receptor. Proc. Natl. Acad.Sci. USA, 2003; 100: 2237-2242
    Google Scholar

Full text

Skip to content