Molecular diagnostics of periodontitis

COMMENTARY ON THE LAW

Molecular diagnostics of periodontitis

Izabela Korona-Głowniak 1 , Radosław Siwiec 1 , Marcin Berger 2 , Anna Malm 1 , Jolanta Szymańska 3

1. Katedra i Zakład Mikrobiologii Farmaceutycznej z Pracownią Diagnostyki Mikrobiologicznej, Uniwersytet Medyczny w Lublinie, Polska
2. Zakład Zaburzeń Czynnościowych Narządu Żucia, Uniwersytet Medyczny w Lublinie, Polska
3. Katedra i Zakład Stomatologii Wieku Rozwojowego, Uniwersytet Medyczny w Lublinie, Polska

Published: 2017-01-28
DOI: 10.5604/01.3001.0010.3789
GICID: 01.3001.0010.3789
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 47-56

 

Abstract

The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host’s health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.

References

  • 1. Aas J.A., Paster B.J., Stokes L.N., Olsen I., Dewhirst, F.E.: Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol., 2005; 43: 5721-5732
    Google Scholar
  • 2. Bartkowiak J.: Molecular methods in the diagnosis of infectious diseases. Przegląd Epidemiol., 2003; 57: 381-389
    Google Scholar
  • 3. Bartova J., Sommerova P., Lyuya-Mi Y., Mysak J., Prochazkova J., Duskova J., Janatova T., Podzimek S.: Periodontitis as a risk factor of atherosclerosis. J. Immunol. Res., 2014; 2014: 636893
    Google Scholar
  • 4. Bizzarro S., Loos B.G., Laine M.L., Crielaard W., Zaura E.: Subgingival microbiome in smokers and non-smokers in periodontitis: an exploratory study using traditional targeted techniques and a next-generation sequencing. J. Clin. Periodontol., 2013; 40: 483-492
    Google Scholar
  • 5. Call D.R., Borucki M.K., Loge F.J.: Detection of bacterial pathogens in environmental samples using DNA microarrays. J. Microbiol. Methods, 2003; 53: 235-243
    Google Scholar
  • 6. Chiranjeevi T., Prasad O.H., Prasad U.V., Kumar A.K., Chakravarthi V.P., Rao P.B., Sarma P.V., Reddy N.R., Bhaskar M.: Identification of microbial pathogens in periodontal disease and diabetic patients of South Indian population. Bioinformation, 2014; 10: 241-245
    Google Scholar
  • 7. Colombo A.P., Boches S.K., Cotton S.L., Goodson J.M., Kent R., Haffajee A.D., Socransky S.S., Hasturk H., Van Dyke T.E., Dewhirst F., Paster B.J.: Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J. Periodontol., 2009; 80: 1421-1432
    Google Scholar
  • 8. de Ávila E.D., de Molon R.S., de Godoi Gonçalves D.A., Camparis C.M.: Relationship between levels of neuropeptide Substance P in periodontal disease and chronic pain: a literature review. J. Investig. Clin. Dent., 2014; 5: 91-97
    Google Scholar
  • 9. D’Ercole S., Catamo G., Tripodi D., Piccolomini R.: Comparison of culture methods and multiplex PCR for the detection of periodontopathogenic bacteria in biofilm associated with severe forms of periodontitis. New Microbiol., 2008; 31: 383-391
    Google Scholar
  • 10. Ding F., Lyu Y., Han X., Zhang H., Liu D., Hei W., Liu Y.: Detection of periodontal pathogens in the patients with aortic aneurysm. Chin. Med. J., 2014; 127: 4114-4118
    Google Scholar
  • 11. Do T., Devine D., Marsh P.D.: Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin. Cosmet. Investig. Dent., 2013; 5: 11-19
    Google Scholar
  • 12. Do T., Jolley K.A., Maiden M.C., Gilbert S.C., Clark D., Wade W.G., Beighton, D.: Population structure of Streptococcus oralis. Microbiology, 2009; 155: 2593-2602
    Google Scholar
  • 13. Drancourt M., Bollet C., Carlioz A., Martelin R., Gayral J.P., Raoult, D.: 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol., 2000; 38: 3623-3630
    Google Scholar
  • 14. Eick S., Pfister W.: Comparison of microbial cultivation and a commercial PCR based method for detection of periodontopathogenic species in subgingival plaque samples. J. Clin. Periodontol., 2002; 29: 638-644
    Google Scholar
  • 15. Elabdeen H.R., Mustafa M., Hasturk H., Klepac-Ceraj V., Ali R.W., Paster B.J., Van Dyke T., Bolstad A.I.: Subgingival microbial profiles of Sudanese patients with aggressive periodontitis. J. Periodontal Res., 2015; 50: 674-682
    Google Scholar
  • 16. Feres M., Bernal M., Matarazzo F., Faveri M., Duarte P.M., Figueiredo L.C.: Subgingival bacterial recolonization after scaling and root planing in smokers with chronic periodontitis. Aust. Dent. J., 2015; 60: 225-232
    Google Scholar
  • 17. Fox G.E., Stackebrandt E., Hespell R.B., Gibson J., Maniloff J., Dyer T.A., Wolfe R.S., Balch W.E., Tanner R.S., Magrum L.J., Zablen L.B., Blakemore R., Gupta R., Bonen L., Lewis B.J. i wsp.: The phylogeny of prokaryotes. Science, 1980; 209: 457-463
    Google Scholar
  • 18. Frąc M., Jezierska-Tys S.: Różnorodność mikroorganizmów środowiskowych gleby. Post. Mikrobiol., 2010; 40: 47-58
    Google Scholar
  • 19. Fujii R., Muramatsu T., Yamaguchi Y., Asai T., Aida N., Suehara M., Morinaga K., Furusawa M.: An endodontic-periodontal lesion with primary periodontal disease: a case report on its bacterial profile. Bull. Tokyo Dent. Coll., 2014; 55: 33-37
    Google Scholar
  • 20. Fujinaka H., Takeshita T., Sato H., Yamamoto T., Nakamura J., Hase T., Yamashita Y.: Relationship of periodontal clinical parameters with bacterial composition in human dental plaque. Arch. Microbiol., 2013; 195: 371-383
    Google Scholar
  • 21. Gatto M.R., Montevecchi M., Paolucci M., Landini M.P., Checchi, L.: Prevalence of six periodontal pathogens in subgingival samples of Italian patients with chronic periodontitis. New Microbiol., 2014; 37: 517-524
    Google Scholar
  • 22. Griffen A.L., Beall C.J., Firestone N.D., Gross E.L., Difranco J.M., Hardman J.H., Vriesendorp B., Faust R.A., Janies D.A., Leys E.J.: CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One, 2011; 6: e19051
    Google Scholar
  • 23. Haffajee A.D., Cugini M.A., Tanner A., Pollack R.P., Smith C., Kent R.L.Jr., Socransky S.S.: Subgingival microbiota in healthy, well-maintained elder and periodontitis subjects. J. Clin. Periodontol., 1998; 25: 346-353
    Google Scholar
  • 24. Hajishengallis G., Darveau R.P., Curtis M.A.: The keystone pathogen hypothesis. Nat. Rev. Microbiol., 2012; 10: 717-725
    Google Scholar
  • 25. Hanage W.P., Fraser C., Spratt B.G.: Fuzzy species among recombinogenic bacteria. BMC Biol., 2005; 3: 6
    Google Scholar
  • 26. He X.S., Shi W.Y.: Oral microbiology: past, present and future. Int. J. Oral Sci., 2009; 1: 47-58
    Google Scholar
  • 27. Heller M.J.: DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng., 2002; 4: 129-153
    Google Scholar
  • 28. Hommez G.M., Verhelst R., Claeys G., Vaneechoutte M., De Moor R.J.: Investigation of the effect of the coronal restoration quality on the composition of the root canal microflora in teeth with apical periodontitis by means of T-RFLP analysis. Int. Endod. J., 2004; 37: 819-827
    Google Scholar
  • 29. Janda J.M., Abbott S.L.: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol., 2007; 45: 2761-2764
    Google Scholar
  • 30. Karczmarczyk M., Bartoszcze M.: DNA microarrays – new tool in the identification of biological agents. Przegl. Epidemiol., 2006; 60: 803-811
    Google Scholar
  • 31. Kroes I., Lepp P.W., Relman D.A.: Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA, 1999; 96: 14547-14552
    Google Scholar
  • 32. Kumar M., Mishra L., Mohanty R., Nayak R.: Diabetes and gum disease: The diabolic duo. Diabetes Metab. Syndr., 2014; 8: 255-258
    Google Scholar
  • 33. Kumar P.S.: Oral microbiota and systemic disease. Anaerobe, 2013; 24: 90-93
    Google Scholar
  • 34. Kuramitsu H.K., He X., Lux R., Anderson M.H., Shi W.: Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev., 2007; 71: 653-670
    Google Scholar
  • 35. Ledder R.G., Gilbert P., Huws S.A., Aarons L., Ashley M.P., Hull P.S., McBain A.J.: Molecular analysis of the subgingival microbiota in health and disease. Appl. Environ. Microbiol., 2007; 73: 516-523
    Google Scholar
  • 36. Le Pecq J.B., Paoletti C.: A new fluorometric method for RNA and DNA determination. Anal. Biochem., 1966: 17: 100-107
    Google Scholar
  • 37. Liczbańska A., Woźniak A., Wawrocka A., Krawczyk M.R.: Techniki wykorzystywane w diagnostyce molekularnej chorób jednogenowych. Now. Lek., 2006; 75: 486-490
    Google Scholar
  • 38. Ly M., Abeles S.R., Boehm T.K., Robles-Sikisaka R., Naidu M., Santiago-Rodriguez T., Pride D.T.: Altered oral viral ecology in association with periodontal disease. MBio, 2014; 5: e01133-14
    Google Scholar
  • 39. Mager D.L., Ximenez-Fyvie L.A., Haffajee A.D., Socransky S.S.: Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol., 2003; 30: 644-654
    Google Scholar
  • 40. Marsh P.D.: Dental plaque as a microbial biofilm. Caries Res., 2004; 38: 204-211
    Google Scholar
  • 41. Moffatt, C.E., Lamont R.J.: Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect. Immun., 2011; 79: 2632-2637
    Google Scholar
  • 42. Moon J.H., Lee J.H., Lee J.Y.: Subgingival microbiome in smokers and non-smokers in Korean chronic periodontitis patients. Mol. Oral Microbiol., 2015; 30: 227-241
    Google Scholar
  • 43. Moon J.H., Lee J.H., Lee J.Y.: Microarray analysis of the transcriptional responses of Porphyromonas gingivalis to polyphosphate. BMC Microbiol., 2014; 14: 218
    Google Scholar
  • 44. Mullis K.B.: The unusual origin of the polymerase chain reaction. Sci. Am., 1990; 262: 56-61, 64-65
    Google Scholar
  • 45. Muyzer G., de Waal E.C., Uitterlinden A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 1993; 59: 695-700
    Google Scholar
  • 46. Ono T., Hirota K., Nemoto K., Fernandez E.J., Ota F., Fukui K.: Detection of Streptococcus mutans by PCR amplification of spaP gene. J. Med. Microbiol., 1994; 41: 231-235
    Google Scholar
  • 47. Papapostolou A., Kroffke B., Tatakis D.N., Nagaraja H.N., Kumar P.S.: Contribution of host genotype to the composition of health-associated supragingival and subgingival microbiomes. J. Clin. Periodontol., 2011; 38: 517-524
    Google Scholar
  • 48. Paster B.J., Bartoszyk I.M., Dewhirst F.E.: Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci., 1998; 20: 223-231
    Google Scholar
  • 49. Paster B.J., Russell M.K., Alpagot T., Lee A.M., Boches S.K., Galvin J.L., Dewhirst F.E.: Bacterial diversity in necrotizing ulcerative periodontitis in HIV-positive subjects. Ann. Periodontol., 2002; 7: 8-16
    Google Scholar
  • 50. Pendyala G., Joshi S., Chaudhari S., Gandhage D.: Links demystified: periodontitis and cancer. Dent. Res. J., 2013; 10: 704-712
    Google Scholar
  • 51. Pihlstrom B.L., Michalowicz B.S., Johnson N.W.: Periodontal diseases. Lancet, 2005; 366: 1809-1820
    Google Scholar
  • 52. Pozhitkov A.E., Beikler T., Flemmig T., Noble P.A.: High-throughput methods for analysis of the human oral microbiome. Periodontol. 2000, 2011; 55: 70-86
    Google Scholar
  • 53. Preus H.R., Dahlen G., Gjermo P., Baelum V.: Microbiological observations after four treatment strategies among periodontitis patients maintaining a high standard of oral hygiene: a secondary analysis of a randomized controlled clinical trial. J. Periodontol., 2015; 86: 856-865
    Google Scholar
  • 54. Queiroz A.C., Suaid F.A., de Andrade P.F., Novaes A.B.Jr., Taba M.Jr., Palioto D.B., Grisi M.F., Souza S.L.: Antimicrobial photodynamic therapy associated to nonsurgical periodontal treatment in smokers: microbiological results. J. Photochem. Photobiol. B, 2014; 141: 170-175
    Google Scholar
  • 55. Radford A.D., Chapman D., Dixon L., Chantrey J., Darby A.C., Hall N.: Application of next-generation sequencing technologies in virology. J. Gen. Virol., 2012: 93; 1853-1868
    Google Scholar
  • 56. Ramich T., Schacher B., Scharf S., Röllke L., Arndt R., Eickholz P., Nickles K.: Subgingival plaque sampling after combined mechanical and antibiotic nonsurgical periodontal therapy. Clin. Oral Investig., 2015; 19: 27-34
    Google Scholar
  • 57. Riggio M.P., Macfarlane T.W., Mackenzie D., Lennon A., Smith A.J., Kinane D.: Comparison of polymerase chain reaction and culture methods for detection of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in subgingival plaque samples. J. Periodontal Res., 1996; 31, 496-501
    Google Scholar
  • 58. Rosier B.T., De Jager M., Zaura E., Krom B.P.: Historical and contemporary hypotheses on the development of oral diseases: are we there yet? Front. Cell. Infect. Microbiol., 2014; 4: 92
    Google Scholar
  • 59. Sakamoto M., Takeuchi Y., Umeda M., Ishikawa I., Benno Y.: Rapid detection and quantification of five periodontopathic bacteria by real-time PCR. Microbiol. Immunol., 2001; 45; 39-44
    Google Scholar
  • 60. Sakamoto M., Takeuchi Y., Umeda M., Ishikawa I., Benno Y.: Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J. Med. Microbiol., 2003; 52: 79-89
    Google Scholar
  • 61. Sarkar J., McHardy I.H., Simanian E.J., Shi W., Lux R.: Transcriptional responses of Treponema denticola to other oral bacterial species. PLoS One, 2014; 9: e88361
    Google Scholar
  • 62. Schaumann S., Staufenbiel I., Scherer R., Schilhabel M., Winkel A., Stumpp S.N., Eberhard J., Stiesch M.: Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites. BMC Oral Health, 2014; 14: 157
    Google Scholar
  • 63. Schwarzberg K., Le R., Bharti B., Lindsay S., Casaburi G., Salvatore F., Saber M.H., Alonaizan F., Slots J., Gottlieb R.A., Caporaso J.G., Kelley S.T.: The personal human oral microbiome obscures the effects of treatment on periodontal disease. PLoS One, 2014; 9: e86708
    Google Scholar
  • 64. Shokralla S., Spall J.L., Gibson J.F., Hajibabaei M.: Next-generation sequencing technologies for environmental DNA research. Mol. Ecol., 2012; 21: 1794-1805
    Google Scholar
  • 65. Small J., Call D.R., Brockman F.J., Straub T.M., Chandler D.P.: Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol., 2001; 67: 4708-4716
    Google Scholar
  • 66. Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent R.L.: Microbial complexes in subgingival plaque. J. Clin. Periodontol., 1998; 25; 134-144
    Google Scholar
  • 67. Socransky S.S., Smith C., Martin L., Paster B.J., Dewhirst F.E., Levin A.E.: “Checkerboard” DNA-DNA hybridization. BioTechniques, 1994; 17: 788-792
    Google Scholar
  • 68. Somma F., Castagnola R., Bollino D., Marigo L.: Oral inflammatory process and general health. Part 1: The focal infection and the oral inflammatory lesion. Eur. Rev. Med. Pharmacol. Sci., 2010; 14; 1085-1095
    Google Scholar
  • 69. Staley J.T., Konopka A.: Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol., 1985; 39: 321-346
    Google Scholar
  • 70. Studzińska A., Tyburski J., Daca P., Tretyn A.: Real time PCR. The idea of the method and strategies of reaction monitoring. Biotechnologia, 2008; 80: 71-85
    Google Scholar
  • 71. Suzuki N., Yoshida A., Nakano Y.: Quantitative analysis of multi-species oral biofilms by TaqMan Real-Time PCR. Clin. Med. Res., 2005; 3: 176-185
    Google Scholar
  • 72. Tomita S., Komiya-Ito A., Imamura K., Kita D., Ota K., Takayama S., Makino-Oi A., Kinumatsu T., Ota M., Saito A.: Prevalence of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in Japanese patients with generalized chronic and aggressive periodontitis. Microb. Pathog., 2013; 61-62: 11-15
    Google Scholar
  • 73. Topcuoglu N., Kulekci G.: 16S rRNA based microarray analysis of ten periodontal bacteria in patients with different forms of periodontitis. Anaerobe, 2015; 35: 35-40
    Google Scholar
  • 74. Trafny E.A.: Jak zdobyć i wykorzystać wiedzę o wielogatunkowych biofilmach? Post. Mikrobiol., 2012; 51: 205-211
    Google Scholar
  • 75. Valasek M.A., Repa J.J.: The power of real-time PCR. Adv. Physiol. Educ., 2005; 29: 151-159
    Google Scholar
  • 76. Wain J., Mavrogiorgou E.: Next-generation sequencing in clinical microbiology. Expert Rev. Mol. Diagn., 2013; 13: 225-227
    Google Scholar
  • 77. Wey J.K., Jürgens K., Weitere M.: Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms. Appl. Environ. Microbiol., 2012; 78: 2013-2024
    Google Scholar
  • 78. Wittwer C.T., Herrmann M.G., Moss A.A., Rasmussen R.P.: Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 1997; 22: 130-131, 134-138
    Google Scholar
  • 79. Xia M., Qi Q.: Bacterial analysis of combined periodontal-endodontic lesions by polymerase chain reaction denaturing-gradient gel electrophoresis. J. Oral Sci., 2013; 55: 287-291
    Google Scholar
  • 80. Zhou X., Liu X., Li J., Aprecio R.M., Zhang W., Li Y.: Real-time PCR quantification of six periodontal pathogens in saliva samples from healthy young adults. Clin. Oral Investig., 2015; 19: 937-946
    Google Scholar
  • 81. Zijnge V., Welling G.W., Degener J.E., van Winkelhoff A.J., Abbas F., Harmsen H.J.: Denaturing gradient gel electrophoresis as a diagnostic tool in periodontal microbiology. J. Clin. Microbiol., 2006; 44: 3628-3633
    Google Scholar

Full text

Skip to content