Molecular fundamentals of drug interactions in the therapy of colorectal cancer

REVIEW ARTICLE

Molecular fundamentals of drug interactions in the therapy of colorectal cancer

Katarzyna Regulska 1 , Beata Stanisz 2 , Miłosz Regulski 3 , Paulina Gieremek 1

1. Wielkopolskie Centrum Onkologii im. Marii Curie-Skłodowskiej w Poznaniu
2. Katedra i Zakład Chemii Farmaceutycznej Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu
3. Katedra i Zakład Toksykologii Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu

Published: 2014-03-04
DOI: 10.5604/17322693.1092701
GICID: 01.3001.0003.1196
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 209-218

 

Abstract

Rapid advances in the field of chemotherapy have resulted in the introduction of numerous antineoplastic drugs into clinical practice, which increased the efficiency of patient management. Also the prevalent use of combination treatment based on drug action synergy contributed to the improved clinical effect associated with cytotoxic drug administration. It seems, however, obvious that the multidirectional pharmacotherapy in oncology requires a thorough knowledge of drugs’ pharmaceutical behavior in order to maximize their collective action and prevent the occurrence of unintended drug interactions that could potentially impair treatment effectiveness. In fact, drug interactions constitute a serious problem for current oncology primarily resulting from a narrow therapeutic index specific for the majority of anticancer drugs. This, in turn, indicates that even slight deviations of their pharmacokinetics could cause significant clinical consequences, manifested by alteration of the toxicological profile or reduction of therapeutic efficiency. Hence, the investigation of molecular aspects underlying the mechanisms of various drug interactions seems to be essential for proper and safe patient management. The present article is devoted to the extensive subject of drug interactions occurring in the therapy of colorectal cancer. It presents the available literature data on both positive and negative effects of interactions and it discusses their mechanisms complying with their classification into pharmacokinetic and pharmacodynamic ones.

References

  • 1. Advani R., Fisher G.A., Lum B.L., Hausdorff J., Halsey J., LitchmanM, Sikic B.I.: A phase I trial of doxorubicin, paclitaxel and valspodar(PSC833), a modulator of multidrug resistance. Clin. Cancer Res., 2001;7: 1221-1229
    Google Scholar
  • 2. Akasu T., Moriya Y., Ohashi Y., Yoshida S., Shirao K., Kodaira S.: Adjuvantchemotherapy with uracil-tegafur for pathological stage III rectalcancer after mesorectal excision with selective lateral pelvic lymphadenectomy:a multicenter randomized controlled trial. Jpn. J. Clin. Oncol.,2006; 36: 237-244
    Google Scholar
  • 3. Anastasio G.D., Cornell K.O., Menscer D.: Drug interactions: keepingit straight. Clin. Pharm., 1997; 56: 883-894
    Google Scholar
  • 4. Avastin 25 mg/ml koncentrat do sporządzania roztworu do infuzji.Charakterystyka produktu leczniczego, Roche Registration Limited
    Google Scholar
  • 5. Balin-Gauthier D., Delord J.P., Pillaire M.J., Rochaix P., Hoffman J.S.,Bugat R., Cazaux C., Canal P., Allal B.C.: Cetuximab potentiates oxaliplatincytotoxic effect through a defect in NER and DNA replication initiation.Br. J. Cancer, 2008; 98: 120-128
    Google Scholar
  • 6. Bardakji Z., Jolivet J., Langelier Y., Besner J.G., Ayoub J.: 5-Fluorouracil-metronidazolecombination therapy in metastatic colorectal cancer.Clinical, pharmacokinetic and in vitro cytotoxicity studies. CancerChemother. Pharmacol., 1986; 18: 140-144
    Google Scholar
  • 7. Beijnen J.H., Schellens J.H.: Drug interactions in oncology. LancetOncol., 2004; 5: 489-496
    Google Scholar
  • 8. Bhagavan N.V.: Protein and amino acid metabolism in medical biochemistry,fourth edition, eds.: Hayhurst J. Academic Press, London2002, 331-363
    Google Scholar
  • 9. Bharate S.S., Bharateb S.B., Bajajc A.N.: Interactions and incompatibilitiesof pharmaceutical excipients with active pharmaceutical ingredients:a comprehensive review. J. Excipients Food Chem., 2010; 1: 3-26
    Google Scholar
  • 10. Blower P., de Wit R., Goodin S., Aapro M.: Drug-drug interactionsin oncology: why are they important and can they be minimized? Crit.Rev. Oncol. Hematol., 2005; 55: 117-142
    Google Scholar
  • 11. Brown M.C.: An adverse interaction between warfarin and 5-fluorouracil:a case report and review of the literature. Chemotherapy,1999; 45: 392-395
    Google Scholar
  • 12. Campto, koncentrat do sporządzania roztworu do infuzji. Charakterystykaproduktu leczniczego, Pfizer Enterprises SARL, data zatwierdzenia:13.06.2008
    Google Scholar
  • 13. Chen J., Raymond K.: Roles of rifampicin in drug-drug interactions:underlying molecular mechanisms involving the nuclear pregnane Xreceptor. Ann. Clin. Microbiol. Antimicrob., 2006; 5: 3
    Google Scholar
  • 14. Clarke S.J., Beale P.J., Rivory L.P.: Clinical and preclinical pharmacokineticsof raltitrexed. Clin. Pharmacokinet., 2000; 39: 429-443
    Google Scholar
  • 15. Cohen S.J., Leichman C.G., Yeslow G., Beard M., Proefrock A., RoedigB., Damle B., Letrent S.P., DeCillis A.P., Meropol N.J.: Phase I and pharmacokineticstudy of once daily oral administration of S-1 in patientswith advanced cancer. Clin. Cancer Res., 2002; 8: 2116
    Google Scholar
  • 16. Copur M.S., Ledakis P., Bolton M., Morse A.K., Werner T., NorvellM., Muhvic J., Chu E.: An adverse interaction between warfarin and capecitabine:a case report and review of the literature. Clin. ColorectalCancer, 2001; 1: 182-184
    Google Scholar
  • 17. Dai C.L., Liang Y.J., Chen L.M., Zhang X., Deng W.J., Su X.D., Shi Z.,Wu C.P., Ashby C.R.Jr., Akiyama S., Ambudkar S.V., Chen Z.S., Fu L.W.:Sensitization of ABCB1 overexpressing cells to chemotherapeutic agentsby FG020326 via binding to ABCB1 and inhibiting its function. Biochem.Pharmacol., 2009; 78: 355-364
    Google Scholar
  • 18. Dai C.L., Liang Y.J., Wang Y.S., Tiwari A.K., Yan Y.Y., Wang F., ChenZ.S., Tong X.Z., Fu L.W.: Sensitization of ABCG2-overexpressing cellsto conventional chemotherapeutic agent by sunitinib was associatedwith inhibiting the function of ABCG2. Cancer Lett., 2009; 279: 74-83
    Google Scholar
  • 19. Dai C.L., Tiwari A.K., Wu C.P., Su X.D., Wang S.R., Liu D.G., AshbyC.R.Jr, Huang Y., Robey R.W., Liang Y.J., Chen L.M., Shi C.J., Ambudkar S.V.,Chen Z.S., Fu L.W.: Lapatinib (Tykerb, GW572016) reverses multidrug resistancein cancer cells by inhibiting the activity of ATP-binding cassettesubfamily B member 1 and G member 2. Cancer Res., 2008; 68: 7905-7914
    Google Scholar
  • 20. Dębska S., Owecka A., Czernek U., Szydłowska-Pazera K., Habib M.,Potemski P.: Transportery błonowe ABCC – budowa, funkcja i znaczeniew mechanizmach wytwarzania oporności wielolekowej w komórkachnowotworów złośliwych. Postępy Hig. Med. Dośw., 2011; 65: 552-561
    Google Scholar
  • 21. DeVane C.L.: Clinical significance of drug binding, protein binding,and binding displacement drug interactions. Psychopharmacol. Bull.,2002; 36: 5-21
    Google Scholar
  • 22. Diasio R.B., Johnson M.R.: Dihydropyrimidine dehydrogenase: itsrole in 5-fluorouracil clinical toxicity and tumor resistance. Clin. CancerRes., 1999; 5: 2672-2673
    Google Scholar
  • 23. Dodds H.M., Bishop J.F., Rivory L.P.: More about: Irinotecan-relatedcholinergic syndrome induced by coadministration of oxaliplatin. J.Natl. Cancer Inst., 1999; 91: 91a-92
    Google Scholar
  • 24. Donato M.T., Viitala P., Rodriguez-Antona C., Lindfors A., Castell J.V.,Raunio H., Gómez-Lechón M.J., Pelkonen O.: CYP2A5/CYP2A6 expressionin mouse and human hepatocytes treated with various in vivo inducers.Drug Metab. Dispos., 2000; 28: 1321-1326
    Google Scholar
  • 25. Draper A.J., Madan A., Parkinson A.: Inhibition of coumarin 7-hydroxylaseactivity in human liver microsomes. Arch. Biochem. Biophys.,1997; 341: 47-61
    Google Scholar
  • 26. Eloxatin, koncentrat do sporządzania roztworu do infuzji. Charakterystykaproduktu leczniczego, Aventis Pharma Limited, data zatwierdzenia:27.05.2011
    Google Scholar
  • 27. Epanutin parenteral, roztwór do wstrzykiwań. Charakterystykaproduktu leczniczego, Parke-Davis GmbH, Pfizer, data zatwierdzenia:22.03.2010
    Google Scholar
  • 28. Erbitux 5 mg/ml roztwór do infuzji. Charakterystyka produktuleczniczego, Merck KGaA
    Google Scholar
  • 29. Falcone A., Di Paolo A., Masi G., Allegrini G., Danesi R., LencioniM., Pfanner E., Comis S., Del Tacca M., Conte P.: Sequence effect of irinotecanand fluorouracil treatment on pharmacokinetics and toxicityin chemotherapy-naive metastatic colorectal cancer patients. J. Clin.Oncol., 2001; 19: 3456-3462
    Google Scholar
  • 30. Fluorouracyl 5000 medac, roztwór do wstrzykiwań. Charakterystykaproduktu leczniczego, Medac GmbH, data zatwierdzenia: 10.12.2008
    Google Scholar
  • 31. Forman B.M., Tzameli I., Choi H.S., Chen J., Simha D., Seol W., EvansR.M., Moore D.D.: Androstane metabolites bind to and deactivate thenuclear receptor CAR-β. Nature, 1998; 395: 612-615
    Google Scholar
  • 32. Furosemidum Polpharma, tabletki. Charakterystyka produktu leczniczego,Zakłady Farmaceutyczne Polpharma SA, data zatwierdzenia:31.07.2008
    Google Scholar
  • 33. Glass C.K., Rosenfeld M.G.: The coregulator exchange in transcriptionalfunctions of nuclear receptors. Genes Dev., 2000; 14: 121-141
    Google Scholar
  • 34. Grogan L., Sotos G.A., Allegra C.J.: Leucovorin modulation of fluorouracil.Oncology, 1993; 7: 63-72
    Google Scholar
  • 35. Gunes A., Coskun U., Boruban C., Gunel N., Babaoglu M.O., SencanO., Bozkurt A., Rane A., Hassan M., Zengil H., Yasar U.: Inhibitory effectof 5-fluorouracil on cytochrome P450 2C9 activity in cancer patients.Basic Clin. Pharmacol. Toxicol., 2006; 98: 197-200
    Google Scholar
  • 36. Gupta E., Safa A.R., Wang X., Ratain M.J.: Pharmacokinetic modulationof irinotecan and metabolites by cyclosporin A. Cancer Res.,1996; 56: 1309-1314
    Google Scholar
  • 37. Gupta E., Wang X., Ramirez J., Ratain M.J.: Modulation of glucuronidationof SN-38, the active metabolite of irinotecan, by valproic acidand phenobarbital. Cancer Chemother. Pharmacol., 1997; 39: 440-444
    Google Scholar
  • 38. Haaz M.C., Rivory L., Riché C., Vernillet L., Robert J.: Metabolism ofirinotecan (CPT-11) by human hepatic microsomes: Participation of cytochromeP-450 3A and drug interactions. Cancer Res., 1998; 58: 468-472
    Google Scholar
  • 39. Harvey V.J., Slevin M.L., Dilloway M.R., Clark P.I., Johnston A., LantA.F.: The influence of cimetidine on the pharmacokinetics of 5-fluorouracil.Br. J. Clin. Pharmacol., 1984; 18: 421-430
    Google Scholar
  • 40. Herben V.M., Ten Bokkel Huinink W.W., Schellens J.H., Beijnen J.H.:Clinical pharmacokinetics of camptothecin topoisomerase I inhibitors.Pharm. World Sci., 1998; 20: 161-172
    Google Scholar
  • 41. Hicks C., Gulick R.M.: Raltegravir: the first HIV type 1 integrase inhibitor.Clin. Infect. Dis., 2009; 48: 931-939
    Google Scholar
  • 42. Honkakoski P., Negishi M.: Regulation of cytochrome P450 (CYP)genes by nuclear receptors. Biochem. J., 2000; 347: 321-337
    Google Scholar
  • 43. Horikawa M., Kato Y., Tyson C.A., Sugiyama Y.: The potential foran interaction between MRP2 (ABCC2) and various therapeutic agents:probenecid as a candidate inhibitor of the biliary excretion of irinotecanmetabolites. Drug Metab. Pharmacokinet., 2002; 17: 23-33
    Google Scholar
  • 44. Hu Z., Yang X., Ho P.C., Chan E., Chan S.Y., Xu C., Li X., Zhu Y.Z., DuanW., Chen X., Huang M., Yang H., Zhou S.: St. John’s wort modulates thetoxicities and pharmacokinetics of CPT-11 (irinotecan) in rats. Pharm.Res., 2005; 22: 902-914
    Google Scholar
  • 45. Hukkanen J., Jacob P.3rd, Benowitz N.L.: Effect of grapefruit juice oncytochrome P450 2A6 and nicotine renal clearance. Clin. Pharmacol.Ther., 2006; 80: 522-530
    Google Scholar
  • 46. Ismael G.F., Rosa D.D., Mano M.S., Awada A.: Novel cytotoxic drugs:old challenges, new solutions. Cancer Treat. Rev., 2008; 34: 81-91
    Google Scholar
  • 47. Jankel C.A., Speedie S.M.: Detecting drug interactions: a review ofliterature. Ann. Pharmacoter., 1990; 24: 982-989
    Google Scholar
  • 48. Jansman F.G., Idzinga F.S., Smit W.M., de Graaf J.C., Coenen J.L., SleijferD.T., Brouwers J.R.: Classification and occurrence of clinically significantdrug interactions with irinotecan and oxaliplatin in patients withmetastatic colorectal cancer. Clin. Ther., 2005; 27: 327-335
    Google Scholar
  • 49. Kast H.R., Goodwin B., Tarr P.T. Jones S.A., Anisfeld A.M., Stoltz C.M.,Tontonoz P., Kliewer S., Willson T.M., Edwards P.A.: Regulation of multidrugresistance-associated protein 2 (ABCC2) by the nuclear receptorspregnane X receptor, farnesoid X-activated receptor, and constitutiveandrostane receptor. J. Biol. Chem., 2002; 277: 2908-2915
    Google Scholar
  • 50. Katayama R., Koike S., Sato S., Sugimoto Y., Tsuruo T., Fujita N.:Dofequidar fumarate sensitizes cancer stem-like side population cellsto chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drugexport. Cancer Sci., 2009; 100: 2060-2068
    Google Scholar
  • 51. Kawabata S., Oka M., Shiozawa K., Tsukamoto K., Nakatomi K., SodaH., Fukuda M., Ikegami Y., Sugahara K., Yamada Y., Kamihira S., DoyleL.A., Ross D.D., Kohno S.: Breast cancer resistance protein directlyconfers SN-38 resistance of lung cancer cells. Biochem. Biophys. Res.Commun., 2001; 280: 1216-1223
    Google Scholar
  • 52. Kehrer D.F., Mathijssen R.H., Verweij J., de Bruijn P., SparreboomA.: Modulation of irinotecan metabolism by ketoconazole. J. Clin. Oncol.,2002; 20: 3122-3129
    Google Scholar
  • 53. Kerb R.: Implications of genetic polymorphism in drug transportersfor pharmacotherapy. Cancer Lett., 2006; 234: 4-33
    Google Scholar
  • 54. Ketokonazol Polfarmex, tabletki. Charakterystyka produktu leczniczego,Polfarmex SA, data zatwierdzenia: 31.03.2008
    Google Scholar
  • 55. Kliewer S.A., Goodwin B., Willson T.M.: The nuclear pregnane Xreceptor: a key regulator of xenobiotic metabolism Endocr. Rev., 2002;23: 687-702
    Google Scholar
  • 56. Kobayashi K., Sueyoshi T., Inoue K., Moore R., Negishi M.: Cytoplasmicaccumulation of the nuclear receptor CAR by a tetratricopeptiderepeat protein in HepG2 cells. Mol. Pharmacol., 2003; 64: 1069-1075
    Google Scholar
  • 57. Köhler G.I., Bode-Böger S.M., Busse R., Hoopmann M., Welte T.,Böger R.H.: Drug-drug interactions in medical patients: effects on in–hospital treatment and relation to multiple drug use. Int. J. Clin. Pharmacol.Ther., 2000; 38: 504-513
    Google Scholar
  • 58. Kopij M., Rapak A.: Rola receptorów jądrowych w prociese śmiercikomórek. Postępy Hig. Med. Dośw., 2008; 62: 571-581
    Google Scholar
  • 59. Kruijtzer C.M., Beijnen J.H., Rosing H., ten Bokkel Huinink W.W.,Schot M., Jewell R.C., Paul E.M., Schellens J.H.: Increased oral bioavailabilityof topotecan in combination with the breast cancer resistanceprotein and P-glycoprotein inhibitor GF120918. J Clin. Oncol., 2002;20: 2943-2950
    Google Scholar
  • 60. Kruijtzer C.M., Beijnen J.H., Schellens J.H.: Improvement of oraldrug treatment by temporary inhibition of drug transporters and/orcytochrome P450 in the gastrointestinal tract and liver: an overview.Oncologist, 2002; 7: 516-530
    Google Scholar
  • 61. Krzakowski M.: Postępy w zakresie systemowego leczenia rakajelita grubego w stadium zaawansowanym. Onkologia w Praktyce Klinicznej,2005; 1: 27-39
    Google Scholar
  • 62. Krzakowski M., Bujko K., Drosik K., Jassem J., Krzemieniecki K.,Wojtukiewicz M.: Systemowe leczenie raka okrężnicy i raka odbytnicy— uzgodnienia oparte na wynikach klinicznych badań. Onkologiaw Praktyce Klinicznej, 2007; 3: 267-285
    Google Scholar
  • 63. Kuhlmann J., Mück W.: Clinical-pharmacological strategies to assessdrug interaction potential during drug development. Drug Saf.,2001; 24: 715-725
    Google Scholar
  • 64. Lam M.S., Ignoffo R.J.: A guide to clinically relevant drug interactionsin oncology. J. Oncol. Pharm. Practice, 2003; 9: 45-85
    Google Scholar
  • 65. Lamb D.C., Waterman M.R., Kelly S.L., Guengerich F.P.: CytochromesP450 and drug discovery. Curr. Opin. Biotechnol. 2007; 18: 504-512
    Google Scholar
  • 66. Leitner I., Nemeth J., Feurstein T., Abrahim A., Matzneller P., LaglerH., Erker T., Langer O., Zeitlinger M.: The third-generation P-glycoproteininhibitor tariquidar may overcome bacterial multidrug resistanceby increasing intracellular drug concentration. J. Antimicrob. Chemother.,2011; 66: 834-839
    Google Scholar
  • 67. Lum B.L., Kaubisch S., Yahanda A.M., Adler K.M., Jew L., Ehsan M.N.,Brophy N.A., Halsey J., Gosland M.P., Sikic B.I.: Alternation of etoposidepharmacokinetics and pharmacodynamics by cyclosporine in a phaseI trial to modulate multidrug resistance. J. Clin. Oncol., 1992; 10:1635-1642
    Google Scholar
  • 68. Ma M.K., McLeod H.L., Westervelt P., Fracasso P.M.: Pharmacokineticstudy of infusional valspodar. J. Clin. Pharmacol., 2002;42: 412-418
    Google Scholar
  • 69. Marchetti S., Mazzanti R., Beijnen J.H., Schellens J.H.: Concise review:Clinical relevance of drug-drug and herb-drug interactions mediatedby the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist,2007; 12.: 927-941
    Google Scholar
  • 70. Martínez C., Albet C., Agúndez J.A., Herrero E., Carrillo J.A., MárquezM., Benítez J., Ortiz J.A.: Comparative in vitro and in vivo inhibition ofcytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists.Clin. Pharmacol. Ther., 1999; 65: 369-376
    Google Scholar
  • 71. Mathijssen R.H., Sparreboom A., Dumez H., van Oosterom A.T., deBruijn E.A.: Altered irinotecan metabolism in a patient receiving phenytoin.Anticancer Drugs, 2002; 13: 139-140
    Google Scholar
  • 72. Mathijssen R.H., van Alphen R.J., Verweij J., Loos W.J., Nooter K.,Stoter G., Sparreboom A.: Clinical pharmacokinetics and metabolismof irinotecan (CPT-11). Clin. Cancer Res., 2001; 7: 2182-2194
    Google Scholar
  • 73. Mathijssen R.H., Verweij J., de Bruijn P., Loos W.J., Sparreboom A.:Effects of St. John’s wort on irinotecan metabolism. J. Natl. Cancer Inst.,2002; 94: 1247-1249
    Google Scholar
  • 74. McLeod H.L.: Clinically relevant drug-drug interactions in oncology.Br. J Clin. Pharmacol., 1998; 45: 539-544
    Google Scholar
  • 75. Meijerman I., Beijnen J.H., Schellens J.H.: Herb-drug interactionsin oncology: focus on mechanisms of induction. Oncologist, 2006; 11:742-752
    Google Scholar
  • 76. Mena A., Vázquez P., Castro Á., López S., Bello L., Pedreira J.D.: Clinicalexperience of raltegravir-containing regimens in HIV-infectedpatients during rifampicin-containing treatment of tuberculosis. J. Antimicrob.Chemother., 2011; 66: 951-952
    Google Scholar
  • 77. Milano G., Fischel J.L., Etienne M.C., Renée N., Formento P., Thyss A.,Gaspard M.H., Thill L., Cupissol D.: Inhibition of dihydropyrimidine dehydrogenaseby alpha-interferon: experimental data on human tumorcell lines. Cancer Chemother. Pharmacol., 1994; 34: 147-152
    Google Scholar
  • 78. Mitrus I., Szala S.: Chemioterapia – główne przyczyny niepowodzeń.Nowotwory J. Oncol., 2009; 59: 368-376
    Google Scholar
  • 79. Moran R.G., Keyomarsi K.: Biochemical rationale for the synergismof 5-fluorouracil and folinic acid. NCI Monogr., 1987; 5: 159-163
    Google Scholar
  • 80. Morello K.C., Wurz G.T., DeGregorio M.W.: Pharmacokinetics ofselective estrogen receptor modulators. Clin. Pharmacokinet., 2003;42: 361-372
    Google Scholar
  • 81. Nexavar, tabletki powlekane: Charakterystyka produktu leczniczego,Bayer HealthCare AG, data zatwierdzenia: 21.07.2013
    Google Scholar
  • 82. Nozawa T., Minami H., Sugiura S., Tsuji A., Tamai I.: Role of organicanion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecanand its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitroevidence and effect of single nucleotide polymorphisms. Drug Metab.Dispos., 2005; 33: 434-439
    Google Scholar
  • 83. Okuda H., Nishiyama T., Ogura K., Nagayama S., Ikeda K., YamaguchiS., Nakamura Y., Kawaguchi Y., Watabe T.: Lethal drug interactionsof sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs.Drug Metab. Dispos., 1997; 25: 270-273
    Google Scholar
  • 84. Pal D., Mitra A.K.: MDR- and CYP3A4-mediated drug-drug interactions.J. Neuroimmune Pharmacol., 2006; 1: 323-339
    Google Scholar
  • 85. Panczyk M., Mirowski M.: Farmakogenetyka – znaczenie w chemioterapiiraka jelita grubego. Nowotwory J. Oncology, 2008; 58: 62-69
    Google Scholar
  • 86. Pascussi J.M., Gerbal-Chaloin S., Pichard-Garcia L., Daujat M., FabreJ-M., Maurel P., Vilarem M.J.: Interleukin-6 negatively regulates theexpression of pregnane X receptor and constitutively activated receptorin primary human hepatocytes. Biochem. Biophys. Res. Commun.,2000; 274: 707-713
    Google Scholar
  • 87. Quinney S.K., Sanghani S.P., Davis W.I., Hurley T.D., Sun Z., MurryD.J., Bosron W.F.: Hydrolysis of capecitabine to 5’-deoxy-5-fluorocytidineby human carboxylesterases and inhibition by loperamide. J. Pharmacol.Exp. Ther., 2005; 313: 1011-1016
    Google Scholar
  • 88. Raynal C., Pascussi J.M., Leguelinel G., Breuker C., Kantar J., LallemantB., Poujol S., Bonnans C., Joubert D., Hollande F., Lumbroso S., BrouilletJ.P., Evrard A.: Pregnane X receptor (PXR) expression in colorectalcancer cells restricts irinotecan chemosensitivity through enhancedSN-38 glucuronidation. Mol. Cancer, 2010; 9: 46
    Google Scholar
  • 89. Regulska K., Stanisz B., Regulski M.: Individualization of anticancertherapy; molecular targets of novel drugs in oncology. Postępy Hig.Med. Dośw., 2012; 66: 855-867
    Google Scholar
  • 90. Remesh A.: Toxicities of anticancer drugs and its management. Int.J. Basic Clin. Pharmacol., 2012; 1: 2-12
    Google Scholar
  • 91. Şanli N., Şanli S., Alsancak G.: Determination of dissociation constantsof folinic acid (leucovorin), 5-fluorouracil, and irinotecan in hydro-organicmedia by a spectrophotometric method. J. Chem. Eng.Data, 2010; 55: 2695-2699
    Google Scholar
  • 92. Santoro V., Hartley J.A., Hochhause D.: Interaction between cetuximaband chemotherapy in colon cancer. Cancer Res., 2013; 73, Suppl.1: 5468
    Google Scholar
  • 93. Santos A., Zanetta S., Cresteil T., Deroussent A., Pein F., RaymondE., Vernillet L., Risse M.L., Boige V., Gouyette A., Vassal G.: Metabolismof irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin. CancerRes., 2000; 6: 2012-2020
    Google Scholar
  • 94. Scheife R.T.: Protein binding: what does it mean? DICP, 1989; 23:S27-S31
    Google Scholar
  • 95. Schultheis B., Folprecht G., Kuhlmann J., Ehrenberg R., HackerU.T, Köhne C.H., Kornacker M., Boix O., Lettieri J., Krauss J., FischerR., Hamann S., Strumberg D., Mross K.B.: Regorafenib in combinationwith FOLFOX or FOLFIRI as first- or second-line treatment of colorectalcancer: results of a multicenter, phase Ib study. Ann. Oncol., 2013;24: 1560-1567
    Google Scholar
  • 96. Schwartz P.M., Dunigan J.M., Marsh J.C., Handschumacher R.E.: Allopurinolmodification of the toxicity and antitumor activityof 5-fluorouracil.Cancer Res., 1980; 40: 1885-1889
    Google Scholar
  • 97. Scripture C.D., Figg W.D.: Drug interactions in cancer therapy.Nat. Rev. Cancer, 2006; 6: 546-558
    Google Scholar
  • 98. Seelig A.: A general pattern for substrate recognition by P-glycoprotein.Eur. J. Biochem., 1998; 251: 252-261
    Google Scholar
  • 99. Shin J.G., Kane K., Flockhart D.A.: Potent inhibition of CYP2D6by haloperidol metabolites: stereoselective inhibition by reducedhaloperidol. Br. J. Clin. Pharmacol., 2001; 51: 45-52
    Google Scholar
  • 100. Soars M.G., Petullo D.M., Eckstein J.A., Kasper S.C., WrightonS.A.: An assessment of UDP-glucuronosyltransferase induction usingprimary human hepatocytes. Drug Metab. Dispos., 2004; 32: 140-148
    Google Scholar
  • 101. Sobrero A.F., Aschele C., Bertino J.R.: Fluorouracil in colorectalcancer: a tale of two drugs — implications for biochemical modulation.J. Clin. Oncol. 1997; 15: 368-381
    Google Scholar
  • 102. Stivarga 40 mg tabletki powlekane. Charakterystyka produktuleczniczego, Bayer Pharma AG;
    Google Scholar
  • 103. Szałek E., Korzeniowska K., Szkutnik-Fiedler D., Kamińska A.,Grześkowiak E.: Znaczenie interakcji z lekami roślinnymi w onkologii.Farmacja Współczesna, 2010; 3: 39-43
    Google Scholar
  • 104. Vectibix 20 mg/ml koncentrat do sporządzania roztworu doinfuzji. Charakterystyka produktu leczniczego, Amgen Europe B.V.
    Google Scholar
  • 105. Waxman D.J.: P450 gene induction by structurally diverse xenochemicals:central role of nuclear receptors CAR, PXR, and PPAR.Arch. Biochem. Biophys., 1999; 369: 11-23
    Google Scholar
  • 106. Xeloda, tabletki powlekane. Charakterystyka produktu leczniczego,Roche Registration Limited, data zatwierdzenia: 17.06.2011
    Google Scholar
  • 107. Xu Y., Villalona-Calero M.A.: Irinotecan: mechanisms of tumorresistance and novel strategies for modulating its activity. Ann. Oncol.,2002; 13: 1841-1851
    Google Scholar
  • 108. Yu G.P., Jiang Q.L., Fan Z.P., Zhao J., Wei Q., Sun J., Meng F.Y.,Liu Q.F.: Allogeneic hematopoietic stem cell transplantation for acuteleukemia with Gilbert’s syndrome. J. Hematol. Oncol., 2011; 4: 9
    Google Scholar
  • 109. Zeng H., Chen Z.S., Belinsky M.G., Rea P.A., Kruh G.D.: Transportof methotrexate (MTX) and folates by multidrug resistance protein(MRP) 3 and MRP1: effect of polyglutamylation on MTX transport.Cancer Res., 2001; 61: 7225-7232
    Google Scholar

Full text

Skip to content