Molecular pathogenesis of heart failure in diabetes mellitus – new direction for the therapeutic approach

REVIEW ARTICLE

Molecular pathogenesis of heart failure in diabetes mellitus – new direction for the therapeutic approach

Magdalena Łukawska-Tatarczuk 1 , Beata Mrozikiewicz-Rakowska 2 , Edward Franek 1 , Leszek Czupryniak 2

1. Klinika Chorób Wewnętrznych, Endokrynologii i Diabetologii, CSK MSWiA, Warszawa,
2. Klinika Diabetologii i Chorób Wewnętrznych, Warszawski Uniwersytet Medyczny,

Published: 2020-11-03
DOI: 10.5604/01.3001.0014.4856
GICID: 01.3001.0014.4856
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2020; 74 : 452-463

 

Abstract

As it has been proven, cardiovascular diseases are several times more common in diabetic patients than in the general population. Despite many studies and hypotheses, is still not explained why this happens. Considering the frequent coexistence of cardiovascular risk factors with diabetes, the identification of diabetic cardiomyopathy as an independent complication is controversial, and diagnosis in clinical practice is rare. Nevertheless, the presence of diabetes significantly worsens the course and prognosis of cardiovascular diseases, and a better understanding of the diabetic component in the development of heart failure seems essential in the search for an effective therapy. The pathogenetic factors of the development of heart failure in diabetes include: metabolic disorders related to hyperglycaemia, lipotoxicity, insulin resistance, oxidative stress, immune system dysfunction, genetic predisposition and epigenetic disorders. The clinical pictures of diabetic cardiomyopathy vary depending on the type of diabetes, and dysfunction includes not only the cells of the myocardium, as well as stromal cells, endothelial and nervous system cells. The long-term and asymptomatic course of this complication and its progressive nature shortening the lives of diabetic patients prompt the search for new diagnostic and therapeutic methods. A better understanding of the molecular basis of myocardial dysfunction in diabetes appears essential in the search. Stopping the “cascade” of pathways responsible for activation of inflammation, fibrosis or apoptosis in individual organs could effectively prevent the development of diabetic complications. The paper presents existing pathogenetic concepts and their therapeutic implications, which may be used in the prevention of cardiovascular complications in diabetes and allow individualization of therapy.

References

  • 1. Abd-El Aziz F.M., Abdelghaffar S., Hussien E.M., Fattouh A.M.:Evaluation of cardiac functions in children and adolescents withtype 1 diabetes. J. Cardiovasc. Ultrasound., 2017; 25: 12–19 2 Abdelsamia E.M., Khaleel S.A., Balah A., Abdel Baky N.A.: Curcuminaugments the cardioprotective effect of metformin in anexperimental model of type I diabetes mellitus; Impact of Nrf2/HO-1 and JAK/STAT pathways. Biomed. Pharmacother., 2019; 109:2136–2144
    Google Scholar
  • 2. (AT2) receptors prevents myocardial hypertrophy in Zucker diabeticfatty rats. Acta Diabetol., 2019; 56: 97–104
    Google Scholar
  • 3. Al-Malki W.H., Abdel-Raheem I.T., Dawoud M.Z., Abdou R.F.:6-shogaol protects against diabetic nephropathy and cardiomyopathyvia modulation of oxidative stress/NF-κB pathway. Pak.J. Pharm. Sci., 2018; 31: 2109–2117
    Google Scholar
  • 4. Andersson C., Olesen J.B., Hansen P.R., Weeke P., Norgaard M.L.,Jørgensen C.H., Lange T., Abildstrøm S.Z., Schramm T.K., Vaag A.,Køber L., Torp-Pedersen C., Gislason G.H.: Metformin treatmentis associated with a low risk of mortality in diabetic patients withheart failure: A retrospective nationwide cohort study. Diabetologia,2010; 53: 2546–2553
    Google Scholar
  • 5. Bagul P.K., Dinda A.K., Banerjee S.K.: Effect of resveratrol on sirtuinsexpression and cardiac complications in diabetes. Biochem.Biophys. Res. Commun., 2015; 468: 221–227
    Google Scholar
  • 6. Barbati S.A., Colussi C., Bacci L., Aiello A., Re A., Stigliano E.,Isidori A.M., Grassi C., Pontecorvi A., Farsetti A., Gaetano C., NanniS.: Transcription factor CREM mediates high glucose response incardiomyocytes and in a male mouse model of prolonged hyperglycemia.Endocrinology, 2017: 158: 2391–2405
    Google Scholar
  • 7. Behram Kandemir Y., Guntekin U., Tosun V., Korucuk N., BozdemirM.N.: Melatonin protects against streptozotocin-induceddiabetic cardiomyopathy by the phosphorylation of vascular endothelialgrowth factor-A (VEGF-A). Cell. Mol. Biol., 2018; 64: 47–52
    Google Scholar
  • 8. Brownlee M.: Glycation products and the pathogenesis of diabeticcomplications. Diabetes Care, 1992; 15:1835–1843
    Google Scholar
  • 9. Brownlee M.: Biochemistry and molecular cell biology of diabeticcomplications. Nature, 2001; 414: 813–820
    Google Scholar
  • 10. Brownlee M.: The pathobiology of diabetic complications:A unifying mechanism. Diabetes, 2006; 54: 615–625
    Google Scholar
  • 11. Brunvand L., Heier M., Brunborg C., Hanssen K.F., FugelsethD., Stensaeth K.H., Dahl-Jørgensen K., Margeirsdottir H.D.: Advancedglycation end products in children with type 1 diabetesand early reduced diastolic heart function. BMC Cardiovasc. Disord.,2017; 17: 133
    Google Scholar
  • 12. Castoldi G., di Gioia C.R.T., Roma F., Carletti R., Manzoni G.,Stella A., Zerbini G., Perseghin G.: Activation of angiotensin type
    Google Scholar
  • 13. Cecchi E., Pomari F., Brusasco G., Angelino P., Blatto A., GambaS., Demarie D., Moratti M., Ghisio A., Gaschino G. i wsp.: Preclinicalleft ventricular diastolic dysfunction in insulin-dependent diabetes.G. Ital. Cardiol., 1994; 24: 839–844
    Google Scholar
  • 14. Ceriello A.: Hypothesis: The “metabolic memory”, the newchallenge of diabetes. Diabetes Res. Clin. Pract., 2009; 86: S2–S6
    Google Scholar
  • 15. Ceriello A., Ihnat M.A., Thorpe J.E.: The “metabolic memory”:Is more than just tight glucose control necessary to prevent diabeticcomplications? J. Clin. Endocrinol. Metab., 2009; 94: 410–415
    Google Scholar
  • 16. Chengji W., Xianjin F.: Treadmill exercise alleviates diabeticcardiomyopathy by suppressing plasminogen activator inhibitorexpression and enhancing eNOS in streptozotocin-induced malediabetic rats. Endocr. Connect., 2018; 7: 553–559
    Google Scholar
  • 17. Clark R.J., McDonough P.M., Swanson E., Trost S.U., SuzukiM., Fukuda M., Dillmann W.H.: Diabetes and the accompanyinghyperglycemia impairs cardiomyocyte calcium cycling throughincreased nuclear O-GlcNAcylation. J. Biol. Chem., 2003; 278: 44230–44237
    Google Scholar
  • 18. El-Osta A., Brasacchio D., Yao D., Pocai A., Jones P.L., RoederR.G., Cooper M.E., Brownlee M.: Transient high glucose causespersistent epigenetic changes and altered gene expression duringsubsequent normoglycemia. J. Exp. Med., 2008; 205: 2409–2417
    Google Scholar
  • 19. Gaede P., Vedel P., Larsen N., Jensen G.V., Parving H.H., PedersenO.: Multifactorial intervention and cardiovascular disease inpatients with type 2 diabetes. N. Engl. J. Med., 2003; 348: 383–393
    Google Scholar
  • 20. Gagnum V., Stene L.C., Jenssen T.G., Berteussen L.M., SandvikL., Joner G., Njølstad P.R., Skrivarhaug T.: Causes of death inchildhood-onset Type 1 diabetes: Long-term follow-up. Diabet.Med., 2017; 34: 56–63
    Google Scholar
  • 21. Ghosh N., Katare R.: Molecular mechanism of diabetic cardiomyopathyand modulation of microRNA function by syntheticoligonucleotides. Cardiovasc. Diabetol., 2018; 17: 43
    Google Scholar
  • 22. Guo R., Nair S.: Role of microRNA in diabetic cardiomyopathy:From mechanism to intervention. Biochim. Biophys. Acta Mol. Basis.Dis., 2017; 1863: 2070–2077
    Google Scholar
  • 23. Guo S., Meng X.W., Yang X.S., Liu X.F., Ou-Yang C.H., Liu C.:Curcumin administration suppresses collagen synthesis in thehearts of rats with experimental diabetes. Acta Pharmacol. Sin.,2018; 39: 195–204
    Google Scholar
  • 24. Guo X., Xue M., Li C.J., Yang W., Wang S.S., Ma Z.J., Zhang X.N.,Wang XY, Zhao R., Chang B.C., Chen L.M.: Protective effects of triptolideon TLR4 mediated autoimmune and inflammatory responseinduced myocardial fibrosis in diabetic cardiomyopathy. J. Ethnopharmacol.,2016; 193: 333–344
    Google Scholar
  • 25. Hanefeld M., Fischer S., Julius U., Schulze J., Schwanebeck U.,Schmechel H., Ziegelasch H.J., Lindner J., The DIS Group: Risk factorsfor myocardial infarction and death in newly detected NIDDM:The Diabetes Intervention Study, 11-year follow-up. Diabetologia,1996; 39: 1577–1583
    Google Scholar
  • 26. Hodzic A., Ribault V., Maragnes P., Milliez P., Saloux E., LabombardaF.: Decreased regional left ventricular myocardial strain intype 1 diabetic children: A first sign of diabetic cardiomyopathy?J. Transl. Int. Med., 2016; 4: 81–87
    Google Scholar
  • 27. Hoffman W.H., Passmore G.G., Hannon D.W., Talor M.V., FoxP., Brailer C., Haislip D., Keel C., Harris G., Rose N.R., Fiordalisi I.,Čiháková D.: Increased systemic Th17 cytokines are associated withdiastolic dysfunction in children and adolescents with diabeticketoacidosis. PLoS One, 2013; 8: e71905
    Google Scholar
  • 28. Hoffman W., Sharma M., Cihakova D., Talor M.V., Rose N.R.,Mohanakumar T., Passmore G.G.: Cardiac antibody production toself-antigens in children and adolescents during and following thecorrection of severe diabetic ketoacidosis. Autoimmunity, 2016;49: 188–196
    Google Scholar
  • 29. Jia G., Habibi J., Bostick B.P., Ma L., DeMarco V.G., Aroor A.R.,Hayden M.R., Whaley-Connell A.T., Sowers J.R.: Uric acid promotesleft ventricular diastolic dysfunction in mice fed a Western diet.Hypertension, 2015; 65: 531–539
    Google Scholar
  • 30. Kanamori H., Takemura G., Goto K., Tsujimoto A., Mikami A.,Ogino A., Watanabe T., Morishita K., Okada H., Kawasaki M., SeishimaM., Minatoguchi S.: Autophagic adaptations in diabetic cardiomyopathydiffer between type 1 and type 2 diabetes. Autophagy,2015; 11: 1146–1160
    Google Scholar
  • 31. Kandemir Y.B., Tosun V., Güntekin U.: Melatonin protectsagainst streptozotocin-induced diabetic cardiomyopathy throughthe mammalian target of rapamycin (mTOR) signaling pathway.Adv. Clin. Exp. Med., 2019; 28: 1171–1177
    Google Scholar
  • 32. Kannel W.B., Hjortland M., Castelli W.P.: Role of diabetes incongestive heart failure: The Framingham study. Am. J. Cardiol.,1974; 34: 29–34
    Google Scholar
  • 33. Karbasforooshan H., Karimi G.: The role of SIRT1 in diabeticcardiomyopathy. Biomed. Pharmacother., 2017; 90: 386–392
    Google Scholar
  • 34. Kim J.A., Jang H.J., Martinez-Lemus L.A., Sowers J.R.: Activationof mTOR/p70S6 kinase by ANG II inhibits insulin-stimulatedendothelial nitric oxide synthase and vasodilation. Am. J. Physiol.Endocrinol. Metab., 2012; 302: E201–E208
    Google Scholar
  • 35. Kolm-Litty V., Sauer U., Nerlich A., Lehmann R., Schleicher E.D.:High glucose-induced transforming growth factor beta1 productionis mediated by the hexosamine pathway in porcine glomerularmesangial cells. J. Clin. Invest., 1998; 101: 160–169
    Google Scholar
  • 36. Lee T.W., Bai K.J., Lee T.I., Chao T.F., Kao Y.H., Chen Y.J.: PPARsmodulate cardiac metabolism and mitochondrial function in diabetes.J. Biomed. Sci., 2017; 24: 5
    Google Scholar
  • 37. Leyden D. Asthma und diabetes mellitus. Zeitschr. Klin. Med.,1881; 3: 358–364
    Google Scholar
  • 38. Li C., Zhang J., Xue M., Li X., Han F., Liu X., Xu L., Lu Y., ChengY., Li T., Yu X., Sun B., Chen L.: SGLT2 inhibition with empagliflozinattenuates myocardial oxidative stress and fibrosis in diabeticmice heart. Cardiovasc. Diabetol., 2019; 18: 15
    Google Scholar
  • 39. Li N., Wu H., Geng R., Tang Q.: Identification of core gene biomarkersin patients with diabetic cardiomyopathy. Dis. Markers,2018; 2018: 6025061
    Google Scholar
  • 40. Lind M., Bounias I., Olsson M., Gudbjörnsdottir S., SvenssonA.M., Rosengren A.: Glycaemic control and incidence of heart failurein 20,985 patients with type 1 diabetes: An observational study.Lancet, 2011; 378: 140–146
    Google Scholar
  • 41. Lundbaek K.: Is there a diabetic cardiopathy? W: Pathogenetischefaktoren des myokardinfarkts. red.: G. Schettler, Stuttgart1969: 63–71
    Google Scholar
  • 42. Malek V., Gaikwad A.B.: Telmisartan and thiorphan combinationtreatment attenuates fibrosis and apoptosis in preventingdiabetic cardiomyopathy. Cardiovasc. Res., 2019; 115: 373–384
    Google Scholar
  • 43. Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E.,Leiter L.A., Lingvay I., Rosenstock J., Seufert J., Warren M.L., WooV., Hansen O., Holst A.G., Pettersson J., Vilsbøll T. i wsp.: Semaglutideand cardiovascular outcomes in patients with type 2 diabetes.N. Engl. J. Med., 2016; 375: 1834–1844
    Google Scholar
  • 44. Marso S.P., Daniels G.H., Brown-Frandsen K., Kristensen P.,Mann J.E., Nauck M.A., Nissen S.E., Pocock S., Poulter N.R., RavnL.S., Steinberg W.M., Stocker M., Zinman B., Bergenstal R.M., BuseJ.B. i wsp.: Liraglutide and cardiovascular outcomes in type 2 diabetes.N. Engl. J. Med., 2016; 375: 311–322
    Google Scholar
  • 45. Mrozikiewicz-Rakowska B., Łukawska M., Nehring P.,Szymański K., Sobczyk-Kopcioł A., Krzyżewska M., Maroszek P.,Płoski R., Czupryniak L.: Genetic predictors associated with diabeticretinopathy in patients with diabetic foot. Pol. Arch. Intern.Med., 2018; 128: 35–42
    Google Scholar
  • 46. Mrozikiewicz-Rakowska B., Maroszek P., Nehring P., Sobczyk-Kopciol A., Krzyzewska M., Kaszuba A.M., Łukawska M., ChojnowskaN., Kozka M., Bujalska-Zadrozny M., Ploski R., Krzymien J.,Czupryniak L.: Genetic and environmental predictors of chronickidney disease in patients with type 2 diabetes and diabetic footulcer: A pilot study. J. Physiol. Pharmacol., 2015; 66: 751–761
    Google Scholar
  • 47. Mrozikiewicz-Rakowska B., Nehring P., Szymański K., Sobczyk-Kopcioł A., Płoski R., Drygas W., Krzymień J., Acharya N.A., Czupryniak L., Przybyłkowski A.: Selected RANKL/RANK/OPG systemgenetic variants in diabetic foot patients. J. Diabetes. Metab.Disord., 2018; 17: 287–296
    Google Scholar
  • 48. Neal B., Perkovic V., Mahaffey K.W., de Zeeuw D., Fulcher G.,Erondu N., Shaw W., Law G., Desai M., Matthews D.R., CANVAS ProgramCollaborative Group: Canagliflozin and cardiovascular andrenal events in type 2 diabetes. N. Engl. J. Med., 2017; 377: 644–657
    Google Scholar
  • 49. Nemoto O., Kawaguchi M., Yaoita H. Miyake K., Maehara K.,Maruyama Y.: Left ventricular dysfunction and remodeling instreptozotocin-induced diabetic rats. Circ. J., 2006; 70: 327–334
    Google Scholar
  • 50. Nichols G.A., Gullion C.M., Koro C.E., Ephross S.A, Brown J.B.:The incidence of congestive heart failure in type 2 diabetes: Anupdate. Diabetes Care, 2004; 27: 1879–1884
    Google Scholar
  • 51. Nicolino A., Longobardi G., Furgi G., Rossi M., Zoccolillo N.,Ferrara N., Rengo F.: Left ventricular diastolic filling in diabetesmellitus with and without hypertension. Am. J. Hypertens., 1995;8: 382–389
    Google Scholar
  • 52. Ohkuma T., Komorita Y., Peters S.A.E., Woodward M.: Diabetesas a risk factor for heart failure in women and men: A systematicreview and meta-analysis of 47 cohorts including 12 million individuals.Diabetologia, 2019; 62: 1550–1560
    Google Scholar
  • 53. Patel A., MacMahon S., Chalmers J., Neal B., Billot L., WoodwardM., Marre M., Cooper M., Glasziou P., Grobbee D., Hamet P., HarrapS., Heller S., Liu L., Mancia G. i wsp.: Intensive blood glucosecontrol and vascular outcomes in patients with type 2 diabetes.N. Engl. J. Med., 2008; 358: 2560–2572
    Google Scholar
  • 54. Poirier P., Bogaty P., Garneau C., Marois L., Dumesnil J.G.: Diastolicdysfunction in normotensive men with well-controlledtype 2 diabetes: Importance of maneuvers in echocardiographicscreening for preclinical diabetic cardiomyopathy. Diabetes Care,2001; 24: 5–10
    Google Scholar
  • 55. Riddle M.C.: Effects of intensive glucose lowering in the managementof patients with type 2 diabetes mellitus in the action tocontrol cardiovascular risk in diabetes (ACCORD) trial. Circulation,2010; 122: 844–846
    Google Scholar
  • 56. Rubler S., Dlugash J., Yuceoglu Y.Z., Kumral T., Branwood A.W.,Grishman A.: New type of cardiomyopathy associated with diabeticglomerulosclerosis. Am. J. Cardiol., 1972; 30: 595–602
    Google Scholar
  • 57. Rydén L., Grant P.J., Anker S.D., Berne C., Cosentino F., DanchinN., Deaton C., Escaned J., Hammes H.P., Huikuri H., Marre M., MarxN., Mellbin L., Ostergren J., Patrono C. i wsp.: ESC Guidelines ondiabetes, pre-diabetes, and cardiovascular diseases developed incollaboration with the EASD: The Task Force on diabetes, prediabetes,and cardiovascular diseases of the European Society ofCardiology (ESC) and developed in collaboration with the EuropeanAssociation for the Study of Diabetes (EASD). Eur. Heart J.,2013; 34: 3035–3087
    Google Scholar
  • 58. Schalkwijk C.G., Stehouwer C.D.: Vascular complications indiabetes mellitus: The role of endothelial dysfunction. Clin. Sci.,2005; 109: 143–159
    Google Scholar
  • 59. Seferović P.M., Paulus W.J.: Clinical diabetic cardiomyopathy:A two-faced disease with restrictive and dilated phenotypes. Eur.Heart J., 2015; 36: 1718–1727
    Google Scholar
  • 60. Siebel A.L., Fernandez A.Z., El-Osta A.: Glycemic memory associatedepigenetic changes. Biochem. Pharmacol., 2010; 80: 1853–1859
    Google Scholar
  • 61. Song Y.L., Ford J.W., Gordon D., Shanley C.J.: Regulation of lysyloxidase by interferon-γ in rat aortic smooth muscle cells. Arterioscler.Thromb. Vasc. Biol., 2000; 20: 982–988
    Google Scholar
  • 62. Stehouwer C.D., Lambert J., Donker A.J., van Hinsbergh V.W.:Endothelial dysfunction and pathogenesis of diabetic angiopathy.Cardiovasc. Res., 1997; 34: 55–68
    Google Scholar
  • 63. Stratton I.M., Adler A.I., Neil H.A., Matthews D.R., ManleyS.E., Cull C.A., Hadden D., Turner R.C., Holman R.R.: Association ofglycaemia with macrovascular and microvascular complicationsof type 2 diabetes (UKPDS 35): Prospective observational study.BMJ, 2000; 321: 405–412
    Google Scholar
  • 64. Subramanian S., Hirsch I.B.: Intensive diabetes treatment andcardiovascular outcomes in type 1 diabetes mellitus: Implicationsof the diabetes control and complications trial/epidemiology ofdiabetes interventions and complications study 30-year follow-up.Endocrinol. Metab. Clin. North Am., 2018; 47: 65–79
    Google Scholar
  • 65. Sundgren N.C., Giraud G.D., Schultz J.M., Lasarev M.R., StorkP.J., Thornburg K.L.: Extracellular signal-regulated kinase andphosphoinositol-3 kinase mediate IGF-1 induced proliferation offetal sheep cardiomyocytes. Am. J. Physiol. Regul. Integr. Comp.Physiol., 2003; 285: R1481–R1489
    Google Scholar
  • 66. Vaur L., Gueret P., Lievre M., Chabaud S., Passa P., DIABHYCARStudy Group (type 2 DIABetes, Hypertension, CARdiovascularEvents and Ramipril) study: Development of congestive heartfailure in type 2 diabetic patients with microalbuminuria or proteinuria:Observations from the DIABHYCAR (type 2 DIABetes, Hypertension,CArdiovascular Events and Ramipril) study. DiabetesCare, 2003; 26: 855–860
    Google Scholar
  • 67. Vinik A.I.: Diabetic neuropathy: Pathogenesis and therapy.Am. J. Med.,1999; 107: 17S–26S
    Google Scholar
  • 68. Wai B., Patel S.K., Ord M., MacIsaac R.J, Jerums G., SrivastavaP.M., Burrell L.M.: Prevalence, predictors and evolution of echocardiographicallydefined cardiac abnormalities in adults with type 1 diabetes: An observational cohort study. J. Diabetes Complications,2014; 28: 22–28
    Google Scholar
  • 69. Waldman M., Cohen K., Yadin D., Nudelman V., Gorfil D., Laniado-Schwartzman M., Kornwoski R., Aravot D., Abraham N.G.,Arad M., Hochhauser E.: Regulation of diabetic cardiomyopathy bycaloric restriction is mediated by intracellular signaling pathwaysinvolving ‘SIRT1 and PGC-1α’. Cardiovasc. Diabetol., 2018; 17: 111
    Google Scholar
  • 70. Wu L., Wang K., Wang W., Wen Z., Wang P., Liu L., Wang D.W.:Glucagon-like peptide-1 ameliorates cardiac lipotoxicity in diabeticcardiomyopathy via the PPARα pathway. Aging Cell., 2018;17: e12763
    Google Scholar
  • 71. Xu W., Chen J., Lin J., Liu D., Mo L., Pan W., Feng J., Wu W., ZhengD.: Exogenous H2S protects H9c2 cardiac cells against high glucoseinducedinjury and inflammation by inhibiting the activation ofthe NF-κB and IL-1β pathways. Int. J. Mol. Med., 2015; 35: 177–186
    Google Scholar
  • 72. Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E. Jr.,Drazner M.H., Fonarow G.C., Geraci S.A., Horwich T., Januzzi J.L.,Johnson M.R., Kasper E.K., Levy W.C., Masoudi F.A., McBride P.E.i wsp.: 2013 ACCF/AHA guideline for the management of heartfailure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J.Am. Coll. Cardiol., 2013; 62: e147–e239
    Google Scholar
  • 73. Yoldas T., Örün U.A., Sagsak E., Aycan Z., Kaya Ö., Özgür S.,Karademir S.: Subclinical left ventricular systolic and diastolicdysfunction in type 1 diabetic children and adolescents with goodmetabolic control. Echocardiography, 2018; 35: 227–233
    Google Scholar
  • 74. Yu Q., Vazquez R., Khojeini E.V., Patel C., Venkataramani R.,Larson D.F.: IL-18 induction of osteopontin mediates cardiac fibrosisand diastolic dysfunction in mice. Am. J. Physiol. Heart Circ.Physiol., 2009; 297: H76–H85
    Google Scholar
  • 75. Yu Q., Vazquez R., Zabadi S., Watson R.R., Larson D.F.: T-lymphocytesmediate left ventricular fibrillar collagen cross-linkingand diastolic dysfunction in mice. Matrix Biol., 2010; 29: 511–518
    Google Scholar
  • 76. Yu Y., Zheng G.: Troxerutin protects against diabetic cardiomyopathythrough NFκB/AKT/IRS1 in a rat model of type 2 diabetes.Mol. Med. Rep., 2017; 15: 3473–3478
    Google Scholar
  • 77. Zhao C., Zhang Y., Liu H., Li P., Zhang H., Cheng G.: Fortunellinprotects against high fructose-induced diabetic heart injury inmice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation. Biochem. Biophys. Res. Commun., 2017;490: 552–559
    Google Scholar
  • 78. Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., HantelS., Mattheus M., Devins T., Johansen O.E., Woerle H.J., BroedlU.C., Inzucchi S.E: Empagliflozin, cardiovascular outcomes, andmortality in type 2 diabetes. N. Engl. J. Med., 2015; 373: 2117–2128
    Google Scholar

Full text

Skip to content