MSTN gene polymorphism in livestock animals
Monika Stefaniuk 1 , Urszula Kaczor 2 , Maria Kulisa 1Abstract
Myostatin, also known as GDF8 (growth differentiation factor 8), belongs to one of the biggest groups of proteins, called transforming growth factors (TGF-β). The protein regulates embryonic development and maintains homeostasis of full-grown individuals. When the process of maturation is over, GDF8 becomes a negative regulator of skeletal muscle growth.The physiological role of myostatin is to prevent overgrowth of muscle tissue in various stages of organism development. It also inhibits the regeneration of skeletal muscles by weakening activation and proliferation of satellite cells and the migration of macrophages and myoblasts to the site of injury. Several mutations within the sequence of MSTN have been described; they may affect the activity of the protein in the tissues, and hence the level of the functional characteristics of the animals, which determine the value of breeding animals. Understanding the impact of individual mutations in the gene encoding the protein is particularly important in relation to production traits of livestock.
References
- 1. Arthur P.F.: Double muscling in cattle: a review. Aus. J. Agr. Res.,1995; 46: 1493-1515
Google Scholar - 2. Baron E.E., Wenceslau A.A., Alvares L.E., Nones K., Ruy D.C.,Schmidt G.S., Zanella E.L., Coutinho L.L., Ledur M.C.: High level ofpolymorphism in the myostatin chicken gene., 2002; 7th World Congressof Genetic and Applied on Livestock Production. Montpellier,France.
Google Scholar - 3. Blobe G.C., Schiemann W.P., Lodish H.F.: Role of transforminggrowth factor β in human disease. N. Eng. J. Med., 2000; 342: 1350-1358
Google Scholar - 4. Boman I.A., Klemetsdal G., Blichfeldt T., Nafstad O., Våge D.I.:A frameshift mutation in the coding region of the myostatin gene(MSTN) affects carcass conformation and fatness in NorwegianWhite Sheep (Ovis aries). Anim. Genet., 2009; 40: 418-422
Google Scholar - 5. Boman I.A., Våge D.I.: An insertion in the coding region of themyostatin (MSTN) gene affects carcass conformation and fatnessin the Norwegian Spaelsau (Ovis aries). BMC Res. Notes, 2009; 2: 98
Google Scholar - 6. Casas E., Keele J.W., Fahrenkrug S.C., Smith T.P., Cundiff L.V.,Stone R.T.: Quantitative analysis of birth, weaning, and yearlingweights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci., 1999; 77:1686-1692
Google Scholar - 7. Charlier C., Coppieters W., Farnir F., Grobet L., Leroy P.L., MichauxC., Mni M., Schwers A., Vanmanshoven P., Hanset R.: The mh genecausing double-muscling in cattle maps to bovine chromosome 2.Mamm. Genome, 1995; 6: 788-792
Google Scholar - 8. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., BouixJ., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F.,Milenkovic D., Tobin J., Charlier C., Georges M.: A mutation creatinga potential illegitimate microRNA target site in the myostatin geneaffects muscularity in sheep. Nat. Genet., 2006; 38: 813-818
Google Scholar - 9. Dall’Olio S., Fontanesi L., Nanni Costa L., Tassinari M., Minieri L.,Falaschini A.: Analysis of horse myostatin gene and identification ofsingle nucleotide polymorphisms in breeds of different morphologicaltypes. J. Biomed. Biotechnol., 2010; 2010: 542945
Google Scholar - 10. Esmailizadeh A.K., Bottema C.D., Sellick G.S., Verbyla A.P., MorrisC.A., Cullen N.G., Pitchford W.S.: Effects of the myostatin F94L substitutionon beef traits. J. Anim. Sci., 2008; 86: 1038-1046
Google Scholar - 11. Georges M.: When less means more: impact of myostatin in animalbreeding. Immunol. Endocr. Metab. Agents Med. Chem., 2010;10: 240-248
Google Scholar - 12. Gill J.L., Bishop S.C., McCorquodale C., Williams J.L., Wiener P.:Associations between the 11-bp deletion in the myostatin gene andcarcass quality in Angus-sired cattle. Anim. Genet., 2009; 40: 97-100
Google Scholar - 13. Gordon K.J., Blobe G.C.: Role of transforming growth factor-βsuperfamily signaling pathways in human disease. Biochem. Biophys.Acta, 2008; 1782: 197-228
Google Scholar - 14. Grobet L., Martin L.J., Poncelet D., Pirottin D., Brouwers B., RiquetJ., Schoeberlein A., Dunner S., Ménissier F., Massabanda J., FriesR., Hanset R., Georges M.: A deletion in the bovine myostatin genecauses the double-muscled phenotype in cattle. Nat. Genet., 1997;17: 71-74
Google Scholar - 15. Grobet L., Poncelet D., Royo L.J., Brouwers B., Pirottin D., MichauxC., Ménissier F, Zanotti M., Dunner S., Georges M.: Moleculardefinition of an allelic series of mutations disrupting the myostatinfunction and causing double-muscling in cattle. Mamm. Genome,1998; 9: 210-213
Google Scholar - 16. Hadjipavlou G., Matika O., Clop A., Bishop S.C.: Two single nucleotidepolymorphisms in the myostatin (GDF8) gene have significantassociation with muscle depth of commercial Charollais sheep.Anim. Genet., 2008: 39: 346-353
Google Scholar - 17. Han J., Forrest R.H., Hickford J.G.: Genetic variations in the myostatingene (MSTN) in New Zealand sheep breeds. Mol. Biol. Rep.,2013; 40: 6379-6384
Google Scholar - 18. Han S.H., Cho I.C., Ko M.S., Kim E.Y., Park S.P., Lee S.S., Oh H.S.A promoter polymorphism of MSTN g.-371T>A and its associationswith carcass traits in Korean cattle. Mol. Biol. Rep., 2012; 39: 3767-3772
Google Scholar - 19. Haynes F.E., Greenwood P.L., McDonagh M.B., McMahon C.D.,Nicholas G.D., Berry C.J., Oddy V.H.: Lack of association betweenallelic status and myostatin content in lambs with the myostating+6723G>A allele. J. Anim. Sci., 2013; 91: 78-89
Google Scholar - 20. Haynes F.E., Greenwood P.L., McDonagh M.B., Oddy V.H.: Myostatinallelic status interacts with level of nutrition to affect growth,composition, and myofiber characteristics of lambs. J. Anim. Sci.,2012; 90: 456-465
Google Scholar - 21. Hickford J.G., Forrest R.H., Zhou H., Fang Q., Han J., FramptonC.M., Horrell A.L.: Polymorphisms in the ovine myostatin gene(MSTN) and their association with growth and carcass traits in NewZealand Romney sheep. Anim. Genet., 2010; 41: 64-72
Google Scholar - 22. Hill E.W., Gu J., Eivers S.S., Fonseca R.G., McGivney B.A., GovindarajanP., Orr N., Katz L.M., MacHugh D.E.: A sequence polymorphismin MSTN predicts sprinting ability and racing stamina in thoroughbredhorses. PLoS One, 2010; 5: e8645
Google Scholar - 23. Hill E.W., McGivney B.A., Gu J., Whiston R., Machugh D.E.: A genome-wideSNP-association study confirms a sequence variant(g.66493737C>T) in the equine myostatin (MSTN) gene as the mostpowerful predictor of optimum racing distance for Thoroughbredracehorses. BMC Genomics, 2010; 11: 552
Google Scholar - 24. Hogan B.L., Blessing M., Winnier G.E., Suzuki N., Jones C.M.:Growth factors in development: the role of TGF-β related polypeptidesignaling molecules in embryogenesis. Dev. Suppl., 1994;53-60
Google Scholar - 25. Hu S., Ni W., Sai W., Zi H., Qiao J., Wang P., Sheng J., Chen C.:Knockdown of myostatin expression by RNAi enhances musclegrowth in transgenic sheep. PLoS One, 2013; 8: e58521
Google Scholar - 26. Jiang Y.L., Li N., Zhao X.B., Hu X.X., Liu Z.L., Deng X.M., Wu C.X.,Du L.X., Cao J.S.: Identification and analysis of a novel microsatellitemarker flanking porcine myostatine gene (MSTN). Yi Chuan XueBao, 2004; 31: 480-484
Google Scholar - 27. Joulia-Ekaza D., Cabello G.: Myostatin regulation of muscle development:molecular basis, natural mutations, physiopathologicalaspects. Exp. Cell Res., 2006; 312: 2401-2414
Google Scholar - 28. Kambadur R., Sharma M., Smith T.P., Bass J.J.: Mutations in myostatin(GDF8) in double-muscled Belgian Blue and Piedmontese cattle.Genome Res., 1997; 7: 910-916
Google Scholar - 29. Karim L., Coppieters W., Grobet L., Valentini A., Georges M.:Convenient genotyping of six myostatin mutations causing doublemusclingin cattle using a multiplex oligonucleotide ligation assay.Anim. Genet., 2000; 31: 396-399
Google Scholar - 30. Kijas J.W., McCulloch R., Edwards J.E., Oddy V.H., Lee S.H., vander Werf J.: Evidence for multiple alleles effecting muscling and fatnessat the ovine GDF8 locus. BMC Genet., 2007; 8: 80
Google Scholar - 31. Li S.H., Xiong Y.Z., Zheng R., Li A.Y., Deng C.Y., Jiang S.W., LeiM.G., Wen Y.Q., Cao G.C.: Polymorphism of porcine myostatin gene.Yi Chuan Xue Bao, 2002; 29: 326-331
Google Scholar - 32. Li X.L., Wu Z.L., Liu Z.Z., Gong Y.F., Zhou R.Y., Zheng G.R.:SNP identification and analysis in part of intron 2 of goat MSTNgene and variation within and among species. J. Hered., 2006;97: 285-289
Google Scholar - 33. Liem L.M., Fibbe W.E., van Houwelingen H.C., Goulmy E.: Serumtransforming growth factor-beta1 levels in bone marrow transplantrecipients correlate with blood cell counts and chronic graft-versushostdisease. Transplantation, 1999; 67: 59-65
Google Scholar - 34. Lin S.Y., Morrison J.R., Phillips D.J., De Kretser D.M.: Regulationof ovarian function by the TGF-β superfamily and follistatin. Reproduction,2003; 126: 133-148
Google Scholar - 35. McCroskery S., Thomas M., Platt L., Hennebry A., NishimuraT., McLeay L., Sharma M., Kambadur R.: Improved muscle healingthrough enhanced regeneration and reduced fibrosis in myostatinnullmice. J. Cell Sci., 2005; 118: 3531-3541
Google Scholar - 36. McPherron A.C., Lawler A.M., Lee S.J.: Regulation of skeletal musclemass in mice by a new TGF-beta superfamily member. Nature, 1997;387: 83-90
Google Scholar - 37. McPherron A.C., Lee S.J.: Double muscling in cattle due to mutationsin the myostatin gene. Proc. Natl. Acad. Sci. USA, 1997; 94: 12457-12461
Google Scholar - 38. Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., MellershC.S., Parker H.G., Ostrander E.A.: A mutation in the myostatin geneincreases muscle mass and enhance racing performance in heterozygotedogs. PLoS Genet., 2007; 3: e79
Google Scholar - 39. Rybak-Krzyszkowska M., Grzyb A., Millewicz T., Krzaczkowska–Sendrakowska M., Krzysiek J.: Primary ovarian insufficiency in infertilityclinic. Pol. J. Endocrinol., 2004; 55: 766-768
Google Scholar - 40. Sellick G.S., Pitchford W.S., Morris C.A., Cullen N.G., CrawfordA.M., Raadsma H.W., Bottema C.D.: Effect of myostatin F94L on carcassyield in cattle. Anim. Genet. 2007; 38: 440-446
Google Scholar - 41. Shimasaki S., Moore R.K., Otsuka F., Erickson G.F.: The bone morphogeneticprotein system in mammalian reproduction. Endocr..Rev., 2004; 25: 72-101
Google Scholar - 42. Siegel P.M., Massagué J.: Cytostatic and apoptotic actions ofTGF-β in homeostasis and cancer. Nat. Rev. Cancer, 2003; 3: 807-821
Google Scholar - 43. Smołucha G., Piestrzyńska-Kajtoch A., Rejduch B.: Genetycznyaspekt wysokiej plenności u owiec. Cz. I, Wiad. Zoot., 2012; 50: 21-26
Google Scholar - 44. Sonstegard T.S., Rohrer G.A., Smith T.P.: Myostatin maps to porcinechromosome 15 by linkage and physical analyses. Anim. Genet.,1998; 29: 19-22
Google Scholar - 45. Stępień-Wyrobiec O., Hrycek A., Wyrobiec G.: Transformującyczynnik wzrostu beta (TGF-beta). Postępy Hig. Med. Dośw., 2008;62: 688-693
Google Scholar - 46. Stinckens A., Luyten T., Bijttebier J., Van den Maagdenberg K.,Dieltiens D., Janssens S., De Smet S., Georges M., Buys N.: Characterizationof the complete porcine MSTN gene and expression levels inpig breeds differing in muscularity. Anim. Genet., 2008; 39: 586-596
Google Scholar - 47. Takeda H., Charlier C., Farnir F., Georges M.: Demonstratingpolymorphic miRNA mediated gene regulation in vivo: applicationto the g+6223G>A mutation of Texel sheep. RNA, 2010; 16: 1854-1863
Google Scholar - 48. Tessanne K., Golding M.C., Long C.R., Peoples M.D., Hannon G.,Westhusin M.E. Production of transgenic calves expressing an shRNAtargeting myostatin. Mol. Reprod. Dev., 2012; 79: 176-185
Google Scholar - 49. Tozaki T., Sato F., Hill E.W., Miyake T., Endo Y., Kakoi H., GawaharaH., Hirota K., Nakano Y., Nambo Y., Kurosawa M.: Sequencevariants at the myostatin gene locus influence the body compositionof Thoroughbred horses. J. Vet. Med. Sci., 2011; 73: 1617-1624
Google Scholar - 50. Tu P.A., Shiau J.W., Ding S.T., Lin E.C., Wu M.C., Wang P.H.: Theassociation of genetic variations in the promoter region of myostatingene with growth traits in Duroc pigs. Anim. Biotechnol.,2012; 23: 291-298
Google Scholar - 51. Wade C.M., Giulotto E., Sigurdsson S., Zoli M., Generre S., ImslandF., Lear T.L., Adelson D.L., Bailey E., Bellone R.R., Blöcker H.,Distl O., Edgar R.C., Garber M., Leeb T. i wsp.: Genome sequence, comparative analysis, and population genetics of the domestic horse.Science, 2009; 326: 865-867
Google Scholar - 52. Zhang C., Liu Y., Xu D., Wen Q., Li X., Zhang W., Yang L.: Polymorphismsof myostatin gene (MSTN) in four goat breeds and theireffects on Boer goat growth performance. Mol. Biol. Rep., 2012; 39:3081-3087
Google Scholar - 53. Zhang G., Ding F., Wang J., Dai G., Xie K., Zhang L., Wang W.,Zhou S.: Polymorphism in exons of the myostatin gene and its relationshipwith body weight traits in the Bian chicken. Biochem.Genet., 2011; 49: 9-19
Google Scholar - 54. Zhang G., Zhang L., Wei Y., Wang J., Ding F., Dai G., Xie K.:Polymorphisms of the myostatin gene and its relationship withreproduction traits in the Bian chicken. Anim. Biotechnol., 2012;23: 184-193
Google Scholar - 55. Zhang G.X., Zhao X.H., Wang J.Y., Ding F.X., Zhang L.: Effect ofan exon 1 mutation in the myostatin gene on the growth traits ofthe Bian chicken. Anim. Genet., 2012; 43: 458-459
Google Scholar - 56. Zhang Z.J., Ling Y.H., Wang L.J., Hang Y.F., Guo X.F., Zhang Y.H.,Ding J.P., Zhang X.R.: Polymorphisms of the myostatin gene (MSTN)and its relationship with growth traits in goat breeds. Genet. Mol.Res., 2013; 12: 965-971
Google Scholar - 57. Zhiliang G., Dahai Z., Ning L., Hui L., Xuemei D., Changxin W.:The single nucleotide polymorphisms of the chicken myostatin geneare associated with skeletal muscle and adipose growth. Sci. ChinaC Life Sci., 2004; 47: 25-30
Google Scholar - 58. Zhu X., Topouzis S., Liang L.F., Stotish R.L.: Myostatin signalingthrough Smad2, Smad3 and Smad4 is regulated by the inhibitorySmad7 by a negative feedback mechanism. Cytokine, 2004; 26:262-272
Google Scholar