Multifunctional ligands – a new approach in the search for drugs against multi-factorial diseases
Tomasz Wichur 1 , Barbara Malawska 1Abstract
Selective drugs directed at a single biological target often prove ineffective in the treatment of diseases with a complex pathomechanism, e.g. Alzheimer’s disease (AD). This situation prompts researchers to design multi-target-directed ligands (MTDLs), capable of interacting with a number of selected biological targets. The paper outlines the concept of the multi-targetdirected ligand design and examples of its use in the search of a cure for AD. In the knowledgebased approach for designing MTDLs, selective ligands of different targets are combined in one molecule. In the screening-based approach, libraries of compounds are screened against selected targets, which allows one to find molecules with a desirable pharmacological profile. It is also possible to obtain multifunctional ligands by performing optimization of a drug with known side activity and transforming it into the main activity, with a simultaneous decrease or complete removal of the original activity. The type of biological targets and applied MTDL design strategy affect the physicochemical and pharmacokinetic properties of the resulting molecules. AD is a multifactorial neurodegenerative disease of the central nervous system associated with the formation of neurofibrillary tangles within neurons, formed by the hyperphosphorylated τ proteins, and extracellular β-amyloid deposits (senile plaques). Current AD therapy comprises symptomatic drugs that enhance cholinergic neurotransmission or inhibit glutamate receptors. The literature provides numerous examples of compounds which proved in in vitro tests to be multifunctional ligands. Most of them are derivatives of cholinesteraseinhibiting drugs, also capable of inhibiting the aggregation of Aβ and showing neuroprotective effects in Aβ-induced cytotoxicity assays.
References
- 1. Alzheimer’s Association: 2013 Alzheimer’s disease facts and figures.Alzheimers Dement., 2013; 9: 208-245
Google Scholar - 2. Bansal Y., Silakari O.: Multifunctional compounds: smart moleculesfor multifactorial diseases. Eur. J. Med. Chem., 2014; 76: 31-42
Google Scholar - 3. Blennow K., de Leon M.J., Zetterberg H.: Alzheimer’s disease.Lancet, 2006; 368: 387-403
Google Scholar - 4. Citron M.: Alzheimer’s disease: strategies for disease modification.Nat. Rev. Drug Discov., 2010; 9: 387-398
Google Scholar - 5. Fareed J., Hoppensteadt D.A., Fareed D., Demir M., Wahi R., ClarkeM., Adiguzel C., Bick R.: Survival of heparins, oral anticoagulants, andaspirin after the year 2010. Semin. Thromb. Hemost., 2008; 34: 58-73
Google Scholar - 6. Fernández-Bachiller M.I., Pérez C., Campillo N.E., Páez J.A.,González-Muñoz G.C., Usán P., García-Palomero E., López M.G., VillarroyaM., García A.G., Martínez A., Rodríguez-Franco M.I.: Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease,with cholinergic, antioxidant, and neuroprotective properties.Chem. Med. Chem., 2009; 4: 828-841
Google Scholar - 7. Fu H., Li W., Luo J., Lee N.T., Li M., Tsim K.W., Pang Y., YoudimM.B., Han Y.: Promising anti-Alzheimer’s dimer bis(7)-tacrine reducesβ-amyloid generation by directly inhibiting BACE-1 activity.Biochem. Biophys. Res. Commun., 2008; 366: 631-636
Google Scholar - 8. Gilbert B.J.: The role of amyloid β in the pathogenesis of Alzheimer’sdisease. J. Clin. Pathol., 2013; 66: 362-366
Google Scholar - 9. Goedert M., Spillantini M.G.: A century of Alzheimer’s disease.Science, 2006; 314: 777-781
Google Scholar - 10. Guzior N., Bajda M., Skrok M., Kurpiewska K., Lewiński K., BrusB., Pišlar A., Kos J., Gobec S., Malawska B.: Development of multifunctional,heterodimeric isoindoline-1,3-dione derivatives as cholinesteraseand β-amyloid aggregation inhibitors with neuroprotectiveproperties. Eur. J. Med. Chem., 2015; 92: 738-749
Google Scholar - 11. Guzior N.; Więckowska A., Panek D., Malawska B.: Recent developmentof multifunctional agents as potential drug candidatesfor the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015;22: 373-404
Google Scholar - 12. Hopkins A.L.: Network pharmacology: the next paradigm indrug discovery. Nat. Chem. Biol., 2008; 4: 682-690
Google Scholar - 13. Ignasik M., Bajda M., Guzior N., Prinz M., Holzgrabe U., MalawskaB.: Design, synthesis and evaluation of novel 2-(aminoalkyl)-isoindoline-1,3-dionederivatives as dual-binding site acetylcholinesteraseinhibitors. Arch. Pharm., 2012; 345: 509-516
Google Scholar - 14. Ittner L.M., Götz J.: Amyloid-β and tau – a toxic pas de deux inAlzheimer’s disease. Nat. Rev. Neurosci., 2011; 12: 67-72
Google Scholar - 15. Karran E., Mercken M., De Strooper B.: The amyloid cascade hypothesisfor Alzheimer’s disease: an appraisal for the developmentof therapeutics. Nat. Rev. Drug Discov., 2011; 10: 698-712
Google Scholar - 16. Korcsmáros T., Szalay M.S., Böde C., Kovács I.A., Csermely P.:How to design multi-target drugs: target search options in cellularnetworks. Expert Opin. Drug Discov., 2007; 2: 799-808
Google Scholar - 17. Li W., Mak M., Jiang H., Wang Q., Pang Y., Chen K., Han Y.: Novelanti-Alzheimer’s dimer bis(7)-cognitin: cellular and molecular mechanismsof neuroprotection through multiple targets. Neurotherapeutics,2009; 6: 187-201
Google Scholar - 18. Luo W., Li Y.P., He Y., Huang S.L., Li D., Gu L.Q., Huang Z.S.: Synthesisand evaluation of heterobivalent tacrine derivatives as potentialmulti-functional anti-Alzheimer agents. Eur. J. Med. Chem.,2011; 46: 2609-2616
Google Scholar - 19. Mangialasche F., Solomon A., Winblad B., Mecocci P., KivipeltoM.: Alzheimer’s disease: clinical trials and drug development. LancetNeurol., 2010; 9: 702-716
Google Scholar - 20. Marksteiner J., Schmidt R.: Treatment strategies in Alzheimer’sdisease with a focus on early pharmacological interventions. DrugsAging, 2004; 21: 415-426
Google Scholar - 21. Meunier J., Ieni J., Maurice T.: The anti-amnesic and neuroprotectiveeffects of donepezil against amyloid β25-35 peptide-inducedtoxicity in mice involve an interaction with the σ1 receptor. Br. J.Pharmacol., 2006; 149: 998-1012
Google Scholar - 22. Minarini A., Milelli A., Simoni E., Rosini M., Bolognesi M.L., MarchettiC., Tumiatti V.: Multifunctional tacrine derivatives in Alzheimer’sdisease. Curr. Top. Med. Chem., 2013; 13: 1771-1786
Google Scholar - 23. Minarini A., Milelli A., Tumiatti V., Rosini M., Simoni E., BolognesiM.L., Andrisano, V., Bartolini M., Motori E., Angeloni C., HreliaS.: Cystamine-tacrine dimer: a new multi-target-directed ligandas potential therapeutic agent for Alzheimer’s disease treatment.Neuropharmacology, 2012; 62: 997-1003
Google Scholar - 24. Miyamoto S., Miyake N., Jarskog L.F., Fleischhacker W.W., LiebermanJ.A.: Pharmacological treatment of schizophrenia: a critical reviewof the pharmacology and clinical effects of current and futuretherapeutic agents. Mol. Psychiatry, 2012; 17: 1206-1227
Google Scholar - 25. Morphy R.: Selective multitargeted drugs. W: Polypharmacologyin drug discovery, red.: J.U. Peters. John Wiley & Sons, Hoboken2012, 247-262
Google Scholar - 26. Morphy R., Kay C., Rankovic Z.: From magic bullets to designedmultiple ligands. Drug Discov. Today, 2004; 9: 641-651
Google Scholar - 27. Morphy R., Rankovic Z.: Designed multiple ligands. An emergingdrug discovery paradigm. J. Med. Chem., 2005; 48: 6523-6543
Google Scholar - 28. Morphy R., Rankovic Z.: The physicochemical challenges of designingmultiple ligands. J. Med. Chem., 2006; 49: 4961-4970
Google Scholar - 29. Müller-Schiffmann A., Sticht H., Korth C.: Hybrid compounds:from simple combinations to nanomachines. BioDrugs, 2012; 26:21-31
Google Scholar - 30. Peters J.U.: Polypharmacology – foe or friend? J. Med. Chem.,2013; 56: 8955-8971
Google Scholar - 31. Peters J.U.: Pharmacological promiscuity and molecular properties.W: Polypharmacology in drug discovery, red: J.U. Peters. JohnWiley & Sons, Hoboken 2012, 47-62
Google Scholar - 32. Rapposelli S., Balsamo A.: Multifunctional drugs: new challengingchimeras in medicinal chemistry and drug discovery. W: Multifunctionaldrugs: new chimeras in medicinal chemistry, red.: S.Rapposelli. Transworld Research Network, Kerala 2010, 1-17
Google Scholar - 33. Rizzo S., Bartolini M., Ceccarini L., Piazzi L., Gobbi S., Cavalli A.,Recanatini M., Andrisano V., Rampa A.: Targeting Alzheimer’s disease:novel indanone hybrids bearing a pharmacophoric fragment ofAP2238. Bioorg. Med. Chem., 2010; 18: 1749-1760
Google Scholar - 34. Rodda J., Carter J.: Cholinesterase inhibitors and memantine forsymptomatic treatment of dementia. BMJ, 2012; 344: e2986
Google Scholar - 35. Roth B.L., Sheffler D.J., Kroeze W.K.: Magic shotguns versus magicbullets: selectively non-selective drugs for mood disorders andschizophrenia. Nat. Rev. Drug Discov., 2004; 3: 353-359
Google Scholar - 36. Rydzewski R.M.: Real world drug discovery: a chemist’s guideto biotech and pharmaceutical research. Elsevier, Amsterdam 2008
Google Scholar - 37. Sharom J.R., Bellows D.S., Tyers M.: From large networks to smallmolecules. Curr. Opin. Chem. Biol., 2004; 8: 81-90
Google Scholar - 38. Steinhilber D., Schubert-Zsilavecz M., Roth H.J.: Chemia medyczna.MedPharm Polska, Wrocław 2012
Google Scholar - 39. Viayna E., Sabate R., Muñoz-Torrero D.: Dual inhibitors ofβ-amyloid aggregation and acetylcholinesterase as multi-targetanti-Alzheimer drug candidates. Curr. Top. Med. Chem., 2013; 13:1820-1842
Google Scholar - 40. Wermuth C.G.: Selective optimization of side activities: the SOSAapproach. Drug Discov. Today, 2006; 11: 160-164
Google Scholar - 41. Wilkinson D.G., Francis P.T., Schwam E., Payne-Parrish J.: Cholinesteraseinhibitors used in the treatment of Alzheimer’s disease:the relationship between pharmacological effects and clinical efficacy.Drugs Aging, 2004; 21: 453-478
Google Scholar - 42. Youdim M.B.: Multi target neuroprotective and neurorestorativeanti-Parkinson and anti-Alzheimer drugs ladostigil and M30 derivedfrom rasagiline. Exp. Neurobiol., 2013; 22: 1-10
Google Scholar - 43. Youdim M.B., Weinstock M.: Molecular basis of neuroprotectiveactivities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethylmethyl carbamate]. Cell. Mol.Neurobiol., 2001; 21: 555-573
Google Scholar