Mycolic acids – biological role and potential application in Mycobacterium detection and differentiation
Konrad Kowalski 1 , Przemysław Trzepiński 2 , Magdalena Druszczyńska 2 , Janusz Boratyński 3Abstract
Mycolic acids are one of the basic structural elements of the cell wall of bacteria from Corynebacterineae suborder. These compounds are long-chain α-hydroxy β-alkyl fatty acids with two hydrocarbon chains: longer meromycolic and shorter α-chain meromycolic α-chain. The genus Mycobacterium is characterized by the presence of mycolic acids in length from 60 to 90 carbon atoms having a fully saturated α-chain with a defined length of 22, 24 or 26 carbon atoms. Current research indicates that not only the presence of mycolic acids in the cell wall of mycobacteria is essential for the virulence of mycobacteria. It is proved that the relationship between different types of mycolic acids, their length and the degree of cyclopropanation may vary depending on the stage of infection and mycobacterial culture conditions. At the same time it has been shown that some mycolic acid types are crucial for biofilm formation, antimycobacterial drug resistance or interactions with the immune system. Recent studies also indicate that analysis of mycolic acid profiles could be an alternative to conventional methods of diagnosis of diseases such as tuberculosis, leprosy or mycobacteriosis.
References
- 1. Alahari A., Alibaud L., Trivelli X., Gupta R., Lamichhane G., ReynoldsR.C., Bishai W.R., Guerardel Y., Kremer L.: Mycolic acid methyltransferase,MmaA4, is necessary for thiacetazone susceptibilityin Mycobacterium tuberculosis. Mol. Microbiol., 2009; 71: 1263-1277
Google Scholar - 2. Alibaud L., Alahari A., Trivelli X., Ojha A.K., Hatfull G.F., GuerardelY., Kremer L.: Temperature-dependent regulation of mycolic acidcyclopropanation in saprophytic mycobacteria: role of the Mycobacteriumsmegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanationof α-mycolates. J. Biol. Chem., 2010; 285: 21698-21707
Google Scholar - 3. Anderson R.J.: Chemical investigation of biologically active lipoidsof tubercle bacilli. Proc. Natl. Acad. Sci. USA, 1929; 15: 628-633
Google Scholar - 4. Asselineau J., Lederer E.: Structure of the mycolic acids of Mycobacteria.Nature, 1950; 166: 782-783
Google Scholar - 5. Barkan D., Hedhli D., Yan H.G., Huygen K., Glickman M.S.: Mycobacteriumtuberculosis lacking all mycolic acid cyclopropanation isviable but highly attenuated and hyperinflammatory in mice. Infect.Immun., 2012; 80: 1958-1968
Google Scholar - 6. Barkan D., Liu Z., Sacchettini J.C., Glickman M.S.: Mycolic acid cyclopropanationis essential for viability, drug resistance, and cell wallintegrity of Mycobacterium tuberculosis. Chem. Biol., 2009; 16: 499-509
Google Scholar - 7. Benadie Y., Deysel M., Siko D.G., Roberts V.V., Van Wyngaardt S.,Thanyani S.T., Sekanka G., Ten Bokum A.M., Collett L.A., Grooten J.,Baird M.S., Verschoor J.A.: Cholesteroid nature of free mycolic acidsfrom M. tuberculosis. Chem. Phys. Lipids, 2008; 152: 95-103
Google Scholar - 8. Bendinger B., Rijnaarts H.H., Altendorf K., Zehnder A.J.: Physicochemicalcell surface and adhesive properties of coryneform bacteriarelated to the presence and chain length of mycolic acids. Appl.Environ. Microbiol., 1993; 59: 3973-3977
Google Scholar - 9. Beukes M., Lemmer Y., Deysel M., Al Dulayymi J.R., Baird M.S.,Koza G., Iglesias M.M., Rowles R.R., Theunissen C., Grooten J., ToschiG., Roberts V.V., Pilcher L., Van Wyngaardt S., Mathebula N., BalogunM., Stoltz A.C., Verschoor J.A.: Structure-function relationshipsof the antigenicity of mycolic acids in tuberculosis patients. Chem.Phys. Lipids, 2010; 163: 800-808
Google Scholar - 10. Brennan P.J., Crick D.C.: The cell-wall core of Mycobacterium tuberculosisin the context of drug discovery. Curr. Top. Med. Chem.,2007; 7: 475-488
Google Scholar - 11. Butler W.R., Guthertz L.S.: Mycolic acid analysis by high-performanceliquid chromatography for identification of Mycobacteriumspecies. Clin. Microbiol. Rev., 2001; 14: 704-726
Google Scholar - 12. Butler W.R., Kilburn J.O.: High-performance liquid-chromatographypatterns of mycolic acids as criteria for identification of Mycobacteriumchelonae, Mycobacterium fortuitum, and Mycobacteriumsmegmatis. J. Clin. Microbiol., 1990; 28: 2094-2098
Google Scholar - 13. Carter G., Wu M., Drummond D.C., Bermudez L.E.: Characterizationof biofilm formation by clinical isolates of Mycobacterium avium.J. Med. Microbiol., 2003; 52: 747-752
Google Scholar - 14. Chan C.E., Zhao B.Z., Cazenave-Gassiot A., Pang S.W., Bendt A.K.,Wenk M.R., MacAry P.A., Hanson B.J.: Novel phage display-derivedmycolic acid-specific antibodies with potential for tuberculosis diagnosis.J. Lipid Res., 2013; 54: 2924-2932
Google Scholar - 15. Chen J.M., German G.J., Alexander D.C., Ren H., Tan T., Liu J.:Roles of Lsr2 in colony morphology and biofilm formation of Mycobacteriumsmegmatis. J. Bacteriol., 2006; 188: 633-641
Google Scholar - 16. Cole S.T., Barrell B.G.: Analysis of the genome of Mycobacteriumtuberculosis H37Rv. Novartis Found. Symp., 1998; 217: 160-172
Google Scholar - 17. Dao D.N., Sweeney K., Hsu T., Gurcha S.S., Nascimento I.P., RoshevskyD., Besra G.S., Chan J., Porcelli S.A., Jacobs W.R.: Mycolic acidmodification by the mmaA4 gene of M. tuberculosis modulates IL-12production. PLoS Pathog., 2008; 4: e1000081
Google Scholar - 18. Donoghue H.D., Lee O.Y., Minnikin D.E., Besra G.S., Taylor J.H.,Spigelman M.: Tuberculosis in Dr Granville’s mummy: a molecular re-examinationof the earliest known Egyptian mummy to be scientificallyexamined and given a medical diagnosis. Proc. Biol. Sci., 2010; 277: 51-56
Google Scholar - 19. Donoghue H.D., Spigelman M., Zias J., Gernaey-Child A.M., MinnikinD.E.: Mycobacterium tuberculosis complex DNA in calcified pleurafrom remains 1400 years old. Lett. Appl. Microbiol., 1998; 27: 265-269
Google Scholar - 20. Draper P.: The outer parts of the mycobacterial envelope as permeabilitybarriers. Front. Biosci., 1998; 3: D1253-D1261
Google Scholar - 21. Dubnau E., Chan J., Raynaud C., Mohan V.P., Lanéelle M.A., YuK., Quémard A., Smith I., Daffé M.: Oxygenated mycolic acids arenecessary for virulence of Mycobacterium tuberculosis in mice. Mol.Microbiol., 2000; 36: 630-637
Google Scholar - 22. Fujita Y., Naka T., McNeil M.R., Yano I.: Intact molecular characterizationof cord factor (trehalose 6,6’-dimycolate) from ninespecies of mycobacteria by MALDI-TOF mass spectrometry. Microbiology,2005; 151: 3403-3416
Google Scholar - 23. Fujita Y., Okamoto Y., Uenishi Y., Sunagawa M., Uchiyama T.,Yano I.: Molecular and supra-molecular structure related differencesin toxicity and granulomatogenic activity of mycobacterialcord factor in mice. Microb. Pathog., 2007; 43: 10-21
Google Scholar - 24. Gernaey A.M., Minnikin D.E., Copley M.S., Dixon R.A., MiddletonJ.C., Roberts C.A.: Mycolic acids and ancient DNA confirm an osteologicaldiagnosis of tuberculosis. Tuberculosis, 2001; 81: 259-265
Google Scholar - 25. Glickman M.S., Cahill S.M., Jacobs W.R.Jr.: The Mycobacteriumtuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropanesynthetase. J. Biol. Chem., 2001; 276: 2228-2233
Google Scholar - 26. Hamasaki N., Isowa K., Kamada K., Terano Y., Matsumoto T., ArakawaT., Kobayashi K., Yano I.: In vivo administration of mycobacterial cordfactor (trehalose 6,6’-dimycolate) can induce lung and liver granulomasand thymic atrophy in rabbits. Infect. Immun., 2000; 68: 3704-3709
Google Scholar - 27. Hasegawa T., Leblanc R.M.: Aggregation properties of mycolicacid molecules in monolayer films: a comparative study of compoundsfrom various acid-fast bacterial species. Biochim. Biophys.Acta, 2003; 1617: 89-95
Google Scholar - 28. Hershkovitz I., Donoghue H.D., Minnikin D.E., Besra G.S., LeeO.Y., Gernaey A.M., Galili E., Eshed V., Greenblatt C.L., Lemma E.,Bar-Gal G.K., Spigelman M.: Detection and molecular characterizationof 9,000-year-old Mycobacterium tuberculosis from a neolithicsettlement in the Eastern Mediterranean. PloS One, 2008; 3: e3426
Google Scholar - 29. Kolouchová I., Schreiberová O., Masák J., Sigler K., Rezanka T.:Structural analysis of mycolic acids from phenol-degrading strainof Rhodococcus erythropolis by liquid chromatography-tandem massspectrometry. Folia Microbiol., 2012; 57: 473-483
Google Scholar - 30. Korf J.E., Pynaert G., Tournoy K., Boonefaes T., Van OosterhoutA., Ginneberge D., Haegeman A., Verschoor J.A., De Baetselier P.,Grooten J.: Macrophage reprogramming by mycolic acid promotesa tolerogenic response in experimental asthma. Am. J. Respir. Crit.Care Med., 2006; 174: 152-160
Google Scholar - 31. Korf J., Stoltz A., Verschoor J., De Baetselier P., Grooten J.: TheMycobacterium tuberculosis cell wall component mycolic acid elicitspathogen-associated host innate immune responses. Eur. J. Immunol.,2005; 35: 890-900
Google Scholar - 32. Kowalski K., Szewczyk R., Druszczynska M.: Kwasy mikolowe- potencjalne markery diagnostyki oportunistycznych zakażeń mikroorganizmamiz podrzędu Corynebacterineae. Postępy Hig. Med.Dośw., 2012; 66: 461-468
Google Scholar - 33. Lee O.Y., Wu H.H., Donoghue H.D., Spigelman M., Greenblatt C.L.,Bull I.D., Rothschild B.M., Martin L.D., Minnikin D.E., Besra G.S.: Mycobacteriumtuberculosis complex lipid virulence factors preservedin the 17,000-year-old skeleton of an extinct bison, Bison antiquus.PloS One, 2012; 7: e41923
Google Scholar - 34. Lemmer Y., Thanyani S.T., Vrey P.J., Driver C.H., Venter L., vanWyngaardt S., ten Bokum A.M., Ozoemena K.I., Pilcher L.A., Fernig D.G.,Stoltz A.C., Swai H.S., Verschoor J.A.: Detection of antimycolic acid antibodiesby liposomal biosensors. Methods Enzymol., 2009; 464: 79-104
Google Scholar - 35. Liu J., Barry C.E.3rd, Besra G.S., Nikaido H.: Mycolic acid structuredetermines the fluidity of the mycobacterial cell wall. J. Biol.Chem., 1996; 271: 29545-29551
Google Scholar - 36. Mathebula N.S., Pillay J., Toschi G., Verschoor J.A., OzoemenaK.I.: Recognition of anti-mycolic acid antibody at self-assembledmycolic acid antigens on a gold electrode: a potential impedimetricimmunosensing platform for active tuberculosis. Chem. Commun.,2009; 23: 3345-3347
Google Scholar - 37. Mederos L., Valdivia J.A., Valero-Guillen P.L.: Analysis of thestructure of mycolic acids of Mycobacterium simiae reveals a particularcomposition of α-mycolates in strain ‘habana’ TMC 5135, consideredas immunogenic in tuberculosis and leprosy. Microbiology,2007; 153: 4159-4165
Google Scholar - 38. Mukherjee R., Chatterji D.: Proteomics and mass spectrometricstudies reveal planktonic growth of Mycobacterium smegmatisin biofilm cultures in the absence of rpoZ. J. Chromatogr. B Analyt.Technol. Biomed. Life Sci., 2008; 861: 196-202
Google Scholar - 39. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W.R.Jr., Hatfull G.F.:GroEL1: a dedicated chaperone involved in mycolic acid biosynthesisduring biofilm formation in mycobacteria. Cell, 2005; 123: 861-873
Google Scholar - 40. Ojha A.K., Baughn A.D., Sambandan D., Hsu T., Trivelli X.,Guerardel Y., Alahari A., Kremer L., Jacobs W.R.Jr., Hatfull G.F.:Growth of Mycobacterium tuberculosis biofilms containing freemycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol.,2008; 69: 164-174
Google Scholar - 41. Ojha A.K., Trivelli X., Guerardel Y., Kremer L., Hatfull G.F.: Enzymatichydrolysis of trehalose dimycolate releases free mycolicacids during mycobacterial growth in biofilms. J. Biol. Chem., 2010;285: 17380-17389
Google Scholar - 42. Ozoemena K.I., Mathebula N.S., Pillay J., Toschi G., VerschoorJ.A.: Electron transfer dynamics across self-assembled N-(2-mercaptoethyl)octadecanamide/mycolic acid layers: impedimetric insightsinto the structural integrity and interaction with anti-mycolic acidantibodies. Phys. Chem. Chem. Phys., 2010; 12: 345-357
Google Scholar - 43. Pacheco S.A., Hsu F.F., Powers K.M., Purdy G.E.: MmpL11 proteintransports mycolic acid-containing lipids to the mycobacterial cellwall and contributes to biofilm formation in Mycobacterium smegmatis.J. Biol. Chem., 2013; 288: 24213-24222
Google Scholar - 44. Pan J., Fujiwara N., Oka S., Maekura R., Ogura T., Yano I.: Anti–cord factor (trehalose 6,6’-dimycolate) IgG antibody in tuberculosispatients recognizes mycolic acid subclasses. Microbiol. Immunol.,1999; 43: 863-869
Google Scholar - 45. Peyron P., Vaubourgeix J., Poquet Y., Levillain F., Botanch C.,Bardou F., Daffé M., Emile J.F., Marchou B., Cardona P.J., de ChastellierC., Altare F.: Foamy macrophages from tuberculous patients’granulomas constitute a nutrient-rich reservoir for M. tuberculosispersistence. PLoS Pathog., 2008; 4: e1000204
Google Scholar - 46. Rachman H., Strong M., Ulrichs T., Grode L., Schuchhardt J.,Mollenkopf H., Kosmiadi G.A., Eisenberg D., Kaufmann S.H.E.: Uniquetranscriptome signature of Mycobacterium tuberculosis in pulmonarytuberculosis. Infect. Immun., 2006; 74: 1233-1242
Google Scholar - 47. Recht J., Kolter R.: Glycopeptidolipid acetylation affects slidingmotility and biofilm formation in Mycobacterium smegmatis. J. Bacteriol.,2001; 183: 5718-5724
Google Scholar - 48. Ren H., Dover L.G., Islam S.T., Alexander D.C., Chen J.M., BesraG.S., Liu J.: Identification of the lipooligosaccharide biosyntheticgene cluster from Mycobacterium marinum. Mol. Microbiol., 2007;63: 1345-1359
Google Scholar - 49. Ryan G.J., Hoff D.R., Driver E.R., Voskuil M.I., Gonzalez-JuarreroM., Basaraba R.J., Crick D.C., Spencer J.S., Lenaerts A.J.: Multiple M.tuberculosis phenotypes in mouse and guinea pig lung tissue revealedby a dual-staining approach. PLoS One, 2010; 5: e11108
Google Scholar - 50. Sambandan D., Dao D.N., Weinrick B.C., Vilcheze C., Gurcha S.S.,Ojha A., Kremer L., Besra G.S., Hatfull G.F., Jacobs W.R.: Keto-mycolicacid-dependent pellicle formation confers tolerance to drug–sensitive Mycobacterium tuberculosis. MBio., 2013; 4: e00222-00213
Google Scholar - 51. Sani M., Houben E.N., Geurtsen J., Pierson J., de Punder K., vanZon M., Wever B., Piersma S.R., Jiménez C.R., Daffé M., Appelmelk B.J.,Bitter W., van der Wel N., Peters P.J.: Direct visualization by cryo-EMof the mycobacterial capsular layer: a labile structure containingESX-1-secreted proteins. PLoS Pathog., 2010; 6: e1000794
Google Scholar - 52. Schleicher G.K., Feldman C., Vermaak Y., Verschoor J.A.: Prevalenceof anti-mycolic acid antibodies in patients with pulmonarytuberculosis co-infected with HIV. Clin. Chem. Lab. Med., 2002;40: 882-887
Google Scholar - 53. Shui G., Bendt A.K., Jappar I.A., Lim H.M., Laneelle M., Hervé M.,Via L.E., Chua G.H., Bratschi M.W., Rahim S.Z., Michell, A.L., HwangS.H., Lee J.S., Eum S.Y., Kwak H.K., Daffé M., Dartois V., Michel G.,Barry C.E.3rd, Wenk M.R.: Mycolic acids as diagnostic markers fortuberculosis case detection in humans and drug efficacy in mice.EMBO Mol. Med., 2012; 4: 27-37
Google Scholar - 54. Song S.H., Park K.U., Lee J.H., Kim E.C., Kim J.Q., Song J.: Electrosprayionization-tandem mass spectrometry analysis of the mycolicacid profiles for the identification of common clinical isolatesof mycobacterial species. J. Microbiol. Methods, 2009; 77: 165-177
Google Scholar - 55. Stratton H.M., Brooks P.R., Carr E.L., Seviour R.J.: Effects of cultureconditions on the mycolic acid composition of isolates of Rhodococcusspp. from activated sludgefoams. Syst. Appl. Microbiol.,2003; 26: 165-171
Google Scholar - 56. Sugawara I., Udagawa T., Hua S.C., Reza-Gholizadeh M., OtomoK., Saito Y., Yamada H.: Pulmonary granulomas of guinea pigs inducedby inhalation exposure of heat-treated BCG Pasteur, purifiedtrehalose dimycolate and methyl ketomycolate. J. Med. Microbiol.,2002; 51: 131-137
Google Scholar - 57. Szewczyk R., Kowalski K., Janiszewska-Drobinska B., Druszczyń-ska M.: Rapid method for Mycobacterium tuberculosis identificationusing electrospray ionization tandem mass spectrometry analysisof mycolic acids. Diagn. Microbiol. Infect. Dis., 2013; 76: 298-305
Google Scholar - 58. Takayama K., Wang C., Besra G.S.: Pathway to synthesis andprocessing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol.Rev., 2005; 18: 81-101
Google Scholar - 59. Thanyani S.T., Roberts V., Siko D.G., Vrey P., Verschoor J.A.:A novel application of affinity biosensor technology to detect antibodiesto mycolic acid in tuberculosis patients. J. Immunol. Methods,2008; 332: 61-72
Google Scholar - 60. Tran T.N., Aboudharam G., Raoult D., Drancourt M.: Beyondancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology.Biotechniques, 2011; 50: 370-380
Google Scholar - 61. Tucker T.A., Crow S.A.Jr., Pierce G.E.: Effect of growth media oncell envelope composition and nitrile hydratase stability in Rhodococcusrhodochrous strain DAP 96253. J. Ind. Microbiol. Biotechnol.,2012; 39: 1577-1585
Google Scholar - 62. Uenishi Y., Fujita Y., Kusunose N., Yano I., Sunagawa M.: Comprehensiveanalysis of mycolic acid subclass and molecular speciescomposition of Mycobacterium bovis BCG Tokyo 172 cell wall skeleton(SMP-105). J. Microbiol. Methods, 2008; 72: 149-156
Google Scholar - 63. Uenishi Y., Takii T., Yano I., Sunagawa M.: Separation and molecularcharacterization of mycolic acid from the cell wall skeleton of Mycobacteriumbovis BCG Tokyo 172 (SMP-105) and BCG substrains by normal–phase high performance liquid chromatography and liquid chromatography/massspectrometry. J. Microbiol. Methods, 2009; 77: 320-322
Google Scholar - 64. Viader-Salvado J.M., Garza-Gonzalez E., Valdez-Leal R., del Bosque-MoncayoM.A., Tijerina-Menchaca R., Guerrero-Olazaran M.:Mycolic acid index susceptibility method for Mycobacterium tuberculosis.J. Clin. Microbiol., 2001; 39: 2642-2645
Google Scholar - 65. Viader-Salvadó J.M., Molina-Torres C.A., Guerrero-Olazarán M.:Detection and identification of mycobacteria by mycolic acid analysisof sputum specimens and young cultures. J. Microbiol. Methods,2007; 70: 479-483
Google Scholar - 66. Wick L.Y., Pasche N., Bernasconi S.M., Pelz O., Harms H.: Characterizationof multiple-substrate utilization by anthracene-degradingMycobacterium frederiksbergense LB501T. Appl. Environ. Microbiol.,2003; 69: 6133-6142
Google Scholar - 67. Wick L.Y., Wattiau P., Harms H.: Influence of the growth substrateon the mycolic acid profiles of mycobacteria. Environ. Microbiol.,2002; 4: 612-616
Google Scholar - 68. Yuan Y., Zhu Y., Crane D.D., Barry C.E.3rd: The effect of oxygenatedmycolic acid composition on cell wall function and macrophage growthin Mycobacterium tuberculosis. Mol. Microbiol., 1998; 29: 1449-1458
Google Scholar - 69. Zambrano M.M., Kolter R.: Mycobacterial biofilms: a greasy wayto hold it together. Cell, 2005; 123: 762-764
Google Scholar