Nanostructures: General information. The use of nanoobjects in medicine and cosmetology

REVIEW ARTICLE

Nanostructures: General information. The use of nanoobjects in medicine and cosmetology

Paulina Dębek 1 , Agnieszka Feliczak-Guzik 1 , Izabela Nowak 1

1. Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, Poznań,

Published: 2017-12-15
DOI: 10.5604/01.3001.0010.7137
GICID: 01.3001.0010.7137
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1055-1062

 

Abstract

The general tendency towards the miniaturization of technological systems and materials has prompted intensive development of nanotechnology. It is a quickly developing area of science devoted to the production and application of nanomaterial structures defined as those whose one size does not exceed 100 nm. Nanostructures have been found to show new physical, chemical and biological properties often better than the corresponding materials made of particles of micrometric or macrometric sizes, so they have become of great interest in many areas of industry as well as other areas [22], such as medicine and cosmetology. According to literature and Scopus database, Fig. 1, the most popular nanostructures used in medicine and cosmetology, besides silver and gold nanoparticles, are those of other transition metals such as platinum, palladium or ruthenium. This paper is concerned with the wide range of present and potential applications of nanomaterials in medicine and cosmetology.

References

  • 1. Bartensteina J.E., Robertson J., Battaglia G., Briscoe W.H.: Stability of polymersomes prepared by size exclusion chromatography and extrusion. Colloid. Surface. A, 2016; 506: 739-746
    Google Scholar
  • 2. Bera A., Belhaj H.: Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery – a comprehensive review. J. Nat. Gas Sci. Eng., 2016; 34: 1284-1309
    Google Scholar
  • 3. Boisseau P., Loubaton B.: Nanomedicine, nanotechnology in medicine. C. R. Physique, 2011; 12: 620-636
    Google Scholar
  • 4. Brydson R.M., Hammond C.: Wytwarzanie i klasyfikacja nanostruktur. W: Nanotechnologie, red.: R.W. Kelsall, I.W. Hamley, M. Geoghegan. Wydawnictwo Naukowe PWN, Warszawa 2008, 1-56
    Google Scholar
  • 5. Bystrzejewska-Piotrowska G., Golimowski J., Urban P.L.: Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag., 2009; 29: 2587-2595
    Google Scholar
  • 6. Drugacy J., Lekston Z., Morawiec H.: The application of NiTi alloys with shape memory and superelastic properties in the maxillofacial surgery. J. Med. Informat. Technolog., 2001; 2: 85-92
    Google Scholar
  • 7. Feynman R.P.: There’s plenty of room at the bottom. J. Microelectromech. S., 1992; 1: 60-66
    Google Scholar
  • 8. Franken A., Eloff F.C., Du Plessis J., Badenhorst C.J., Du Plessis J.L.: In vitro permeation of platinum through African and Caucasian skin. Toxicol. Lett., 2015; 232: 566-572
    Google Scholar
  • 9. Franken A., Eloff F.C., Du Plessis J., Badenhorst C.J., Jordaan A., Du Plessis J.L.: In vitro permeation of platinum and rhodium through Caucasian skin. Toxicol. In Vitro, 2014; 28: 1396-1401
    Google Scholar
  • 10. Freitas Jr R.A.: Nanodentistry. J. Am. Dent. Assoc., 2000; 131: 1559-1565
    Google Scholar
  • 11. Hydzik P.: Zagrożenia związane z nanotechnologią w świetle prawodawstwa Unii Europejskiej. Przegl. Lek., 2012; 69: 490-491
    Google Scholar
  • 12. Jakubczyk E.: Nanotechnologia w technologii żywności. Przem. Spoż., 2007; 4: 16-22
    Google Scholar
  • 13. Jung A.: Nanoparticles in medical applications – a direction of the future? Pediatr. Med. Rodz., 2014; 10: 104-110
    Google Scholar
  • 14. Kachi H., Noda M., Wataha J.C., Nakaoki Y., Sano H.: Colloidal platinum nanoparticles increase mitochondrial stress induced by resin composite components. J. Biomed. Mater. Res. B. Appl. Biomater., 2011; 96: 193-198
    Google Scholar
  • 15. Koperkiewicz D.: Nanocząstki złota w fototermicznej terapii antynowotworowej. http://think.wsiz.rzeszow.pl/wp-content/uploads/2015/08/6-Koperkiewicz_NANOCZĄSTKI-ZŁOTAW-FOTOTERMICZNEJ-TERAPII-ANTYNOWOTWOROWEJ_popr.pdf (14.11.2016)
    Google Scholar
  • 16. Krzyżostan M.: Nanotechnologie w kosmetyce – idealne rozwią- zanie dla pokonania bariery naskórkowej? http://biotechnologia. pl/kosmetologia/artykuly/nanotechnologie-w-kosmetyce-idealnerozwiazanie-dla-pokonania-bariery-naskorkowej,1123.html?mobile_view=true (15.11.2016)
    Google Scholar
  • 17. Kurzydłowski K.: Nanomateriały – definicje, podstawowe poję- cia i przykłady. W: Nanomateriały inżynierskie konstrukcyjne i inżynierskie, red.: M. Lewandowska, K. Kurzydłowski. Wydawnictwo Naukowe PWN, Warszawa 2011, 1-26
    Google Scholar
  • 18. Langauer-Lewowicka H., Pawlas K.: Nanocząstki, nanotechnologia – potencjalne zagrożenia środowiskowe i zawodowe. Environ. Med., 2014; 17: 7-14
    Google Scholar
  • 19. Larese Filon F., Mauro M., Adami G., Bovenzi M., Crosera M.: Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol., 2015; 72: 310-322
    Google Scholar
  • 20. Larguinho M., Baptista P.V.: Gold and silver nanoparticles for clinical diagnostics – from genomics to proteomics. J. Proteomics, 2012; 75: 2811-2823
    Google Scholar
  • 21. Lidén C., Röndell E., Skare L., Nalbanti A.: Nickel release from tools on the Swedish market. Contact Dermatitis, 1998; 39: 127-131
    Google Scholar
  • 22. Mauro M., Crosera M., Bianco C., Adami G., Montini T., Fornasiero P., Jaganjac M., Bovenzi M., Filon F.L.: Permeation of platinum and rhodium nanoparticles through intact and damaged human skin. J. Nanopart. Res., 2015; 17: 253
    Google Scholar
  • 23. Mitra S.B., Wu D., Holmes B.N.: An application of nanotechnology in advanced dental materials. J. Am. Dent. Assoc., 2003; 134: 1382-1390
    Google Scholar
  • 24. Mnyusiwalla A., Daar A.S., Singer P.A.: ‘Mind the gap’: science and ethics in nanotechnology. Nanotechnology, 2003; 14: 9-13
    Google Scholar
  • 25. Műller-Goymann C.C.: Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Biopharm., 2004; 58: 343-356
    Google Scholar
  • 26. Nutalapati R., Kasagani S., Jampani N., Mutthineni R., Jonnalagadda L.: Nanodentistry – the new horizon. Internet J. Nanotechnology, 2011; 3: 1-5
    Google Scholar
  • 27. Panek H., Kawala M., Zdanowski J.: Use of nanotechnology in dentistry. Prot. Stom., 2006; 56: 16-21
    Google Scholar
  • 28. Pardeike J., Hommoss A., Müller R.H.: Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009; 366: 170-184
    Google Scholar
  • 29. Pautrat J.L.: Nanosciences: evolution or revolution? C. R. Physique, 2011; 12: 605-613
    Google Scholar
  • 30. Pulit J., Banach M., Kowalski Z.: Właściwości nanocząsteczek miedzi, platyny, srebra, złota i palladu. Techn. T., 2011; 108: 197-209
    Google Scholar
  • 31. Rodriguez J., Martin M.J., Ruiz M.A., Clares B.: Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int., 2016; 83: 41-59
    Google Scholar
  • 32. Runowski M.: Nanotechnologia – nanomateriały, nanocząstki i wielofunkcyjne nanostruktury typu rdzeń/powłoka. Chemik, 2014; 68: 766-775
    Google Scholar
  • 33. Sadrieh N.: FDA considerations for regulation of nanomaterial containing products. http://www.fda.gov/ohrms/dockets/ac/06/ briefing/2006-4241B1-02-31-FDANano%20Sadrieh%20nanotech%20 presentation%20(2).pdf (15.11.2016)
    Google Scholar
  • 34. Shabalovskaya S.A.: On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed. Mater. Eng., 1996; 6: 267-289
    Google Scholar
  • 35. Sinha B., Müller R.H., Möschwitzer J.P.: Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int. J. Pharm., 2013; 453: 126-141
    Google Scholar
  • 36. Snopczyński T., Góralczyk K., Czaja K., Struciński P., Hernik A., Korcz W., Ludwicki J.K.: Nanotechnologia – możliwości i zagrożenia. Rocz. Państw. Zakł. Hig., 2009; 60: 101-111
    Google Scholar
  • 37. Sokół J.L.: Nanotechnologia w życiu człowieka. Econ. Manage., 2012; 4: 18-29
    Google Scholar
  • 38. Szczepaniak-Lalewicz K.: Inteligentne nanostruktury – dużo gadania, mało efektów? Mity i fakty. Prace Instytutu Odlewnictwa, 2011; 514: 65-79
    Google Scholar
  • 39. Szlecht A., Schroeder G.: Zastosowanie nanotechnologii w kosmetologii. W: Nanotechnologia, kosmetyki, chemia supramolekularna, red.: G. Schroeder. Cursiva, Poznań 2010, 7-33
    Google Scholar
  • 40. Verma S., Gokhale R., Burgess D.J.: A comparative study of top-down and bottom-up approaches for the preparation of micro/ nanosuspensions. Int. J. Pharm., 2009; 380: 216-222
    Google Scholar
  • 41. Wiseman C.L., Zereini F.: Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Sci. Total Environ., 2009; 407: 2493-2500
    Google Scholar
  • 42. Zdrojewicz A., Waracki M., Bugaj B., Pypno D., Cabała K.: Medical applications of nanotechnology. Postępy Hig. Med. Dośw., 2015; 69: 1196-1204
    Google Scholar

Full text

Skip to content