Neurofibromin – protein structure and cellular functions in the context of neurofibromatosis type I pathogenesis
Anna Abramowicz 1 , Monika Gos 1Abstract
Neurofibromatosis type I (NF1) is multisystemic disease characterized by pigmentary skin changes, increased susceptibility to tumor formation, neurological deficits and skeletal defects. The disease is a monogenic, autosomal dominant disorder, caused by the presence of mutations in the NF1 gene encoding neurofibromin – a multifunctional regulatory protein. The basic function of neurofibromin protein is modulation of the RAS protein activity necessary for regulation of cell proliferation and differentiation by the RAS/MAPK and RAS/PI3K/AKT signal transduction pathways. In addition, neurofibromin is a regulator of adenylate cyclase activity and therefore may interfere with signaling by the cAMP/protein kinase A pathway that regulates cell cycle progression or learning and memory formation processes. Neurofibromin also interacts with many other proteins that are engaged in intracellular transport (tubulin, kinesin), actin cytoskeleton rearrangements (LIMK2, Rho and Rac) or morphogenesis of neural cells (syndecans, CRMP proteins). The activity of neurofibromin is strictly regulated by the expression of different NF1 mRNA isoforms depending on tissue type or period in organism development, the protein localization, posttranslational modifications (phosphorylation, ubiquitination) or interactions with other proteins (e.g. 14-3-3). The fact that neurofibromin is engaged in many cellular processes has significant consequences when the proper protein functioning is impaired due to decreased protein level or activity. It affects the normal cell function and results in disturbances of organism development that lead to the occurrence of clinical signs specific for NF1. In the article, the basic neurofibromin functions are presented in the context of the molecular pathogenesis of NF1.
References
- 1. Abramowicz A., Gos M.: Neurofibromin in neurofibromatosistype 1 – mutations in NF1 gene as a cause of disease. Dev. PeriodMed., 2014; 18: 297-306
Google Scholar - 2. Ahmadian M.R., Kiel C., Stege P., Scheffzek K.: Structural fingerprintsof the Ras-GTPase activating proteins neurofibromin andp120GAP. J. Mol. Biol., 2003; 329: 699-710
Google Scholar - 3. Ahmadian M.R., Wiesmüller L., Lautwein A., Bischoff F.R., WittinghoferA.: Structural differences in the minimal catalytic domains ofthe GTPase-activating proteins p120GAP and neurofibromin. J. Biol.Chem., 1996; 271: 16409-16415
Google Scholar - 4. Arun V.: Validation and Functional Characterization of NovelNeurofibromin Interacting Proteins, PhD thesis, https://tspace.library.utoronto.ca/bitstream/1807/35166/11/Arun_Vedant_201303_PhD_Thesis.pdf [23.11.2014]
Google Scholar - 5. Arun V., Wiley J.C., Kaur H., Kaplan D.R., Guha A.: A novel neurofibromin(NF1) interaction with the leucine-rich pentatricopeptide repeat motif-containing protein links neurofibromatosis type 1 andthe French Canadian variant of Leigh’s syndrome in a common molecularcomplex. J. Neurosci. Res., 2013; 91: 494-505
Google Scholar - 6. Arun V., Worrell L., Wiley J.C., Kaplan D.R., Guha A.: Neurofibromininteracts with the cytoplasmic dynein heavy chain 1in melanosomes of human melanocytes. FEBS Lett., 2013; 587:1466-1473
Google Scholar - 7. Ballester R., Marchuk D., Boguski M., Saulino A., Letcher R., WiglerM., Collins F.: The NF1 locus encodes a protein functionally relatedto mammalian GAP and yeast IRA proteins. Cell, 1990; 63: 851-859
Google Scholar - 8. Barron V.A., Lou H.: Alternative splicing of the neurofibromatosistype I pre-mRNA. Biosci. Rep., 2012; 32: 131-138
Google Scholar - 9. Bikowska-Opalach B., Jackowska T.: Nerwiakowłókniakowatośćtypu 1 – opis obrazu klinicznego oraz molekularnych podstaw rozwojuchoroby. Dev. Per. Med., 2013; 17: 334-340
Google Scholar - 10. Bollag G., McCormick F., Clark R.: Characterization of full-lengthneurofibromin: tubulin inhibits Ras GAP activity. EMBO J., 1993; 12:1923-1927
Google Scholar - 11. Bonneau F., Lenherr E.D., Pena V., Hart D.J., Scheffzek K.: Solubilitysurvey of fragments of the neurofibromatosis type 1 proteinneurofibromin. Protein Expr. Purif., 2009; 65: 30-37
Google Scholar - 12. Boyanapalli M., Lahoud O.B., Messiaen L., Kim B., Anderle deSylor M.S., Duckett S.J., Somara S., Mikol D.D.: Neurofibromin bindsto caveolin-1 and regulates ras, FAK, and Akt. Biochem. Biophys. Res.Commun., 2006; 340: 1200-1208
Google Scholar - 13. Boyd K.P., Korf B.R., Theos A.: Neurofibromatosis type 1. J. Am.Acad. Dermatol., 2009; 61: 1-14
Google Scholar - 14. Brannan C.I., Perkins A.S., Vogel K.S., Ratner N., Nordlund M.L.,Reid S.W., Buchberg A.M., Jenkins N.A., Parada L.F., Copeland N.G.:Targeted disruption of the neurofibromatosis type-1 gene leads todevelopmental abnormalities in heart and various neural crest–derived tissues. Genes Dev., 1994; 8: 1019-1029; Erratum in: GenesDev., 1994; 8: 2792
Google Scholar - 15. Brown J.A., Diggs-Andrews K.A., Gianino S.M., Gutmann D.H.:Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphologyin a cAMP/PKA/ROCK-dependent manner. Mol. Cell. Neurosci.,2012; 49: 13-22
Google Scholar - 16. Brown J.A., Gianino S.M., Gutmann D.H.: Defective cAMP generationunderlies the sentivity of CNS neurons to neurofibromatosis-1heterozygosity. J. Neurosci., 2010; 30: 5579-5589
Google Scholar - 17. Bryk D., Olejarz W., Zapolska-Downar D.: Kinazy aktywowanemitogenami i ich znaczenie w patogenezie miażdżycy. Postępy Hig.Med. Dośw., 2014; 68: 10-22
Google Scholar - 18. Chudy A., Gajewska B., Gutowicz M., Barańczyk-Kuźma A.: Białkatransportu wewnątrzkomórkowego: klasyfikacja, budowa i funkcjekinezyn. Postępy Hig. Med. Dośw., 2011; 65: 588-596
Google Scholar - 19. Cichowski K., Santiago S., Jardim M., Johnson B.W., Jacks T.:Dynamic regulation of the Ras pathway via proteolysis of the NF1tumor suppressor. Genes Dev., 2003; 17: 449-454
Google Scholar - 20. Cui Y., Costa R.M., Murphy G.G., Elgersma Y., Zhu Y., Gutmann D.H.,Parada L.F., Mody I., Silva A.J.: Neurofibromin regulation of ERK signalingmodulates GABA release and learning. Cell, 2008; 135: 549-560
Google Scholar - 21. D’Angelo I., Welti S., Bonneau F., Scheffzek K.: A novel bipartitephospholipid-binding module in the neurofibromatosis type 1 protein.EMBO Rep., 2006; 7: 174-179
Google Scholar - 22. Dasgupta B., Dugan L.L., Gutmann D.H.: The neurofibromatosis 1 gene product neurofibromin regulates pituitary adenylate cyclase-activatingpolypeptide-mediated signaling in astrocytes. J. Neurosci.,2003; 23: 8949-8954
Google Scholar - 23. Dasgupta B., Gutmann D.H.: Neurofibromatosis 1: closing theGAP between mice and men. Curr. Opin. Genet. Dev., 2003; 13: 20-27
Google Scholar - 24. Daston M.M., Ratner N.: Neurofibromin, a predominantly neuronalGTPase activating protein in the adult, is ubiquitously expressedduring development. Dev. Dyn., 1992; 195: 216-226
Google Scholar - 25. Daston M.M., Scrable H., Nordlund M., Sturbaum A.K., NissenL.M., Ratner N.: The protein product of the neurofibromatosis type 1 gene is expressed at highest abundance in neurons, Schwann cells,and oligodendrocytes. Neuron, 1992; 8: 415-428
Google Scholar - 26. De Raedt T., Maertens O., Chmara M., Brems H., Heyns I., Sciot R.,Majounie E., Upadhyaya M., De Schepper S., Speleman F., MessiaenL., Vermeesch J.R., Legius E.: Somatic loss of wild type NF1 allele inneurofibromas: Comparison of NF1 microdeletion and non-microdeletionpatients. Genes Chromosomes Cancer, 2006; 45: 893-904
Google Scholar - 27. Deo M., Huang J.L., Fuchs H., de Angelis M.H., Van RaamsdonkC.D.: Differential effects of neurofibromin gene dosage on melanocytedevelopment. J. Invest. Dermatol., 2013; 133: 49-58
Google Scholar - 28. Diggs-Andrews K.A., Gutmann D.H.: Modeling cognitive dysfunctionin neurofibromatosis-1. Trends Neurosci., 2013; 36: 237-247
Google Scholar - 29. Diggs-Andrews K.A., Tokuda K., Izumi Y., Zorumski C.F., WozniakD.F., Gutmann D.H.: Dopamine deficiency underlies learning deficitsin neurofibromatosis-1 mice. Ann. Neurol., 2013; 73: 309-315
Google Scholar - 30. Diwakar G., Zhang D., Jiang S., Hornyak T.J.: Neurofibromin asa regulator of melanocyte development and differentiation. J. CellSci., 2008; 121: 167-177
Google Scholar - 31. Endo M., Yamamoto H., Setsu N., Kohashi K., Takahashi Y., Ishii T.,Iida K., Matsumoto Y., Hakozaki M., Aoki M., Iwasaki H., Dobashi Y., NishiyamaK., Iwamoto Y., Oda Y.: Prognostic significance of AKT/mTORand MAPK pathways and antitumor effect of mTOR inhibitor in NF1–related and sporadic malignant peripheral nerve sheath tumors. Clin.Cancer Res., 2013; 19: 450-461
Google Scholar - 32. Feng L., Yunoue S., Tokuo H., Ozawa T., Zhang D., PatrakitkomjornS., Ichimura T., Saya H., Araki N.: PKA phosphorylation and14-3-3 interaction regulate the function of neurofibromatosis typeI tumor suppressor, neurofibromin. FEBS Lett., 2004; 557: 275-282
Google Scholar - 33. Gos M., Leszkiewicz M., Abramowicz A.: RAS/MAPK signal transductionpathway and its role in the pathogenesis of Noonan syndrome.Postępy Biochem., 2012; 58: 255-264
Google Scholar - 34. Gregory P.E., Gutmann D.H., Mitchell A., Park S., Boguski M.,Jacks T., Wood D.L., Jove R., Collins F.S.: Neurofibromatosis type 1gene product (neurofibromin) associates with microtubules. Somat.Cell Mol. Genet., 1993; 19: 265-274
Google Scholar - 35. Guo H.F., Tong J., Hannan F., Luo L., Zhong Y.: A neurofibromatosis-1-regulatedpathway is required for learning in Drosophila.Nature, 2000; 403: 895-898
Google Scholar - 36. Gutmann D.H., Geist R.T., Wright D.E., Snider W.D.: Expressionof the neurofibromatosis 1 (NF1) isoforms in developing and adultrat tissues. Cell Growth Differ., 1995; 6: 315-323
Google Scholar - 37. Gutmann D.H., Wu Y.L., Hedrick N.M., Zhu Y., Guha A., Parada L.F.:Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressorresults in abnormalities in cell attachment, spreading and motilityin astrocytes. Hum. Mol. Genet., 2001; 10: 3009-3016
Google Scholar - 38. Hannan F., Ho I., Tong J.J., Zhu Y., Nurnberg P., Zhong Y.: Effect of neurofibromatosistype I mutations on a novel pathway for adenylyl cyclase activationrequiring neurofibromin and Ras. Hum. Mol. Genet., 2006; 15: 1087-1098
Google Scholar - 39. Hinman M.N., Sharma A., Luo G., Lou H.: Neurofibromatosis type 1 alternative splicing is a key regulator of Ras signaling in neurons.Mol. Cell. Biol., 2014; 34: 2188-2197
Google Scholar - 40. Ho I.S., Hannan F., Guo H.F., Hakker I., Zhong Y.: Distinct functionaldomains of neurofibromatosis type I regulate immediate versuslong-term memory formation. J. Neurosci., 2007; 27: 6852-6857
Google Scholar - 41. Hollstein P.E., Cichowski K.: Identifying the ubiquitin ligasecomplex that regulates the NF1 tumor suppressor and Ras. CancerDiscov., 2013; 3: 880-893
Google Scholar - 42. Hsueh Y.P., Roberts A.M., Volta M., Sheng M., Roberts R.G.: Bipartiteinteraction between neurofibromatosis type I protein (neurofibromin)and syndecan transmembrane heparan sulfate proteoglycans.J. Neurosci., 2001; 21: 3764-3770
Google Scholar - 43. Jacks T., Shih T.S., Schmitt E.M., Bronson R.T., Bernards A., WeinbergR.A.: Tumour predisposition in mice heterozygous for a targetedmutation in Nf1. Nat. Genet., 1994; 7: 353-361
Google Scholar - 44. Johannessen C.M., Reczek E.E., James M.F., Brems H., Legius E.,Cichowski K.: The NF1 tumor suppressor critically regulates TSC2and mTOR. Proc. Natl. Acad. Sci. USA, 2005; 102: 8573-8578
Google Scholar - 45. Karwacki M.W., Woźniak W.: Neurofibromatosis–an inborn geneticdisorder with susceptibility to neoplasia. Med. Wieku Rozwoj.,2006; 10: 923-948
Google Scholar - 46. Kaufmann D., Müller R., Kenner O., Leistner W., Hein C., VogelW., Bartelt B.: The N-terminal splice product NF1-10a-2 of the NF1gene codes for a transmembrane segment. Biochem. Biophys. Res.Commun., 2002; 294: 496-503
Google Scholar - 47. Kim H.A., Ratner N., Roberts T.M., Stiles C.D.: Schwann cell proliferativeresponses to cAMP and Nf1 are mediated by cyclin D1. J.Neurosci., 2001; 21:1110-1116
Google Scholar - 48. Knudson A.G.Jr.: Mutation and cancer: statistical study of retinoblastoma.Proc. Natl. Acad. Sci. USA, 1971; 68: 820-823
Google Scholar - 49. Kötting C., Kallenbach A., Suveyzdis Y., Wittinghofer A., GerwertK.: The GAP arginine finger movement into the catalytic siteof Ras increases the activation entropy. Proc. Natl. Acad. Sci. USA,2008; 105: 6260-6265
Google Scholar - 50. Kweh F., Zheng M., Kurenova E., Wallace M., Golubovskaya V.,Cance W.G.: Neurofibromin physically interacts with the N-terminaldomain of focal adhesion kinase. Mol. Carcinog., 2009; 48: 1005-1017
Google Scholar - 51. Larizza L., Gervasini C., Natacci F., Riva P.: Developmental abnormalitiesand cancer predisposition in neurofibromatosis type 1.Curr. Mol. Med., 2009; 9: 634-653
Google Scholar - 52. Le L.Q., Parada L.F.: Tumor microenvironment and neurofibromatosistype I: connecting the GAPs. Oncogene, 2007; 26: 4609-4616
Google Scholar - 53. Lemmon M.A.: Pleckstrin homology domains: not just for phosphoinositides.Biochem. Soc. Trans., 2004; 32: 707-711
Google Scholar - 54. Leondaritis G., Petrikkos L., Mangoura D.: Regulation of the Ras–GTPase activating protein neurofibromin by C-tail phosphorylation:implications for protein kinase C/Ras/extracellular signal-regulatedkinase 1/2 pathway signaling and neuronal differentiation. J. Neurochem.,2009; 109: 573-583
Google Scholar - 55. Lin Y.L., Hsueh Y.P.: Neurofibromin interacts with CRMP-2 andCRMP-4 in rat brain. Biochem. Biophys. Res. Commun., 2008; 369:747-752
Google Scholar - 56. Lin Y.L., Lei Y.T., Hong C.J., Hsueh Y.P.: Syndecan-2 induces filopodiaand dendritic spine formation via the neurofibromin-PKA–Ena/VASP pathway. J. Cell Biol., 2007; 177: 829-841
Google Scholar - 57. Liu N., Xu N., Wei L.H., Chai G.L.: Mammalian target of rapamycininhibitor abrogates abnormal osteoclastogenesis in neurofibromatosistype 1. Chin. Med. J., 2013; 126: 101-107
Google Scholar - 58. Maertens O., Brems H., Vandesompele J., De Raedt T., Heyns I., RosenbaumT., De Schepper S., De Paepe A., Mortier G., Janssens S., SpelemanF., Legius E., Messiaen L.: Comprehensive NF1 screening on culturedSchwann cells from neurofibromas. Hum. Mutat., 2006; 27: 1030-1040
Google Scholar - 59. Mangoura D., Sun Y., Li C., Singh D., Gutmann D.H., Flores A.,Ahmed M., Vallianatos G.: Phosphorylation of neurofibromin by PKCis a possible molecular switch in EGF receptor signaling in neuralcells. Oncogene, 2006; 25: 735-745
Google Scholar - 60. Martin G.A., Viskochil D., Bollag G., McCabe P.C., Crosier W.J.,Haubruck H., Conroy L, Clark R., O’Connell P., Cawthon R.M., InnisM.A., McCormick F.: The GAP-related domain of the neurofibromatosistype 1 gene product interacts with ras p21. Cell, 1990; 63: 843-849
Google Scholar - 61. Nasir-ud-Din, Kaleem A., Ahmad I., Walker-Nasir E., Hoessli D.C.,Shakoori A.R.: Effect on the Ras/Raf signaling pathway of post-translationalmodifications of neurofibromin: in silico study of proteinmodification responsible for regulatory pathways. J. Cell. Biochem.,2009; 108: 816-824
Google Scholar - 62. Neel N.F., Martin T.D., Stratford J.K., Zand T.P., Reiner D.J., DerC.J.: The RalGEF-Ral effector signaling network: the road less traveledfor anti-Ras drug discovery. Genes Cancer, 2011; 2: 275-287
Google Scholar - 63. Oliveira A.F., Yasuda R.: Neurofibromin is the major ras inactivatorin dendritic spines. J. Neurosci., 2014; 34: 776-783
Google Scholar - 64. Ozawa T., Araki N., Yunoue S., Tokuo H., Feng L., PatrakitkomjornS., Hara T., Ichikawa Y., Matsumoto K., Fujii K., Saya H.: Theneurofibromatosis type 1 gene product neurofibromin enhancescell motility by regulating actin filament dynamics via the Rho–ROCK-LIMK2-cofilin pathway. J. Biol. Chem., 2005; 280: 39524-39533
Google Scholar - 65. Patrakitkomjorn S., Kobayashi D., Morikawa T., Wilson M.M.,Tsubota N., Irie A., Ozawa T., Aoki M., Arimura N., Kaibuchi K., SayaH., Araki N.: Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin,regulates the neuronal differentiation of PC12 cells viaits associating protein, CRMP-2. J. Biol. Chem., 2008; 283: 9399-9413
Google Scholar - 66. Starinsky-Elbaz S., Faigenbloom L., Friedman E., Stein R., KloogY.: The pre-GAP-related domain of neurofibromin regulates cellmigration through the LIM kinase/cofilin pathway. Mol. Cell. Neurosci.,2009; 42: 278-287
Google Scholar - 67. Suzuki H., Takahashi K., Yasumoto Ki., Fuse N., Shibahara S.:Differential tissue-specific expression of neurofibromin isoformmRNAs in rat. J. Biochem., 1996; 120: 1048-1054
Google Scholar - 68. Thomas L., Richards M., Mort M., Dunlop E., Cooper D.N., UpadhyayaM.: Assessment of the potential pathogenicity of missensemutations identified in the GTPase-activating protein (GAP)-relateddomain of the neurofibromatosis type-1 (NF1) gene. Hum. Mutat.,2012; 33: 1687-1696
Google Scholar - 69. Tokuo H., Yunoue S., Feng L., Kimoto M., Tsuji H., Ono T., SayaH., Araki N.: Phosphorylation of neurofibromin by cAMP-dependentprotein kinase is regulated via a cellular association of NG,NG-dimethylargininedimethylaminohydrolase. FEBS Lett., 2001; 494: 48-53
Google Scholar - 70. Tong J., Hannan F., Zhu Y., Bernards A., Zhong Y.: Neurofibrominregulates G protein-stimulated adenylyl cyclase activity. Nat.Neurosci., 2002; 5: 95-96
Google Scholar - 71. Trovó-Marqui A.B., Tajara E.H.: Neurofibromin: a general outlook.Clin. Genet., 2006; 70: 1-13
Google Scholar - 72. Vallée B., Doudeau M., Godin F., Gombault A., Tchalikian A.,de Tauzia M.L., Bénédetti H.: Nf1 RasGAP inhibition of LIMK2 mediatesa new cross-talk between Ras and Rho pathways. PLoS One,2012; 7: e47283
Google Scholar - 73. Vandenbroucke I., Van Oostveldt P., Coene E., De Paepe A., MessiaenL.: Neurofibromin is actively transported to the nucleus. FEBSLett., 2004; 560: 98-102
Google Scholar - 74. Welander J., Söderkvist P., Gimm O.: The NF1 gene: a frequentmutational target in sporadic pheochromocytomas and beyond.Endocr. Relat. Cancer, 2013; 20: C13-C17
Google Scholar - 75. Welti S.: Biochemical Characterization of the Sec14-PH Modulefrom the Neurofibromatosis Type I Protein, PhD Thesis http://archiv.ub.uni-heidelberg.de/volltextserver/8902/1/PhDThesis_Final.pdf (23.11.2014)
Google Scholar - 76. Welti S., Fraterman S., D’Angelo I., Wilm M., Scheffzek K.: TheSec14 homology module of neurofibromin binds cellular glycerophospholipids:mass spectrometry and structure of a lipid complex.J. Mol. Biol., 2007; 366: 551-562
Google Scholar - 77. Welti S., Kühn S., D’Angelo I., Brügger B., Kaufmann D., ScheffzekK.: Structural and biochemical consequences of NF1 associatednontruncating mutations in the Sec14-PH module of neurofibromin.Hum. Mutat., 2011; 32: 191-197
Google Scholar - 78. Williams V.C., Lucas J., Babcock M.A., Gutmann D.H., Korf B.,Maria B.L.: Neurofibromatosis type 1 revisited. Pediatrics, 2009; 123:124-133
Google Scholar - 79. Xu G.F., Lin B., Tanaka K., Dunn D., Wood D., Gesteland R., WhiteR., Weiss R., Tamanoi F.: The catalytic domain of the neurofibromatosistype 1 gene product stimulates ras GTPase and complementsira mutants of S. cerevisiae. Cell, 1990; 63: 835-841
Google Scholar - 80. Yan J., Chen S., Zhang Y., Li X., Li Y., Wu X., Yuan J., RoblingA.G., Kapur R., Chan R.J., Yang F.C.: Rac1 mediates the osteoclastgains-in-function induced by haploinsufficiency of Nf1. Hum. Mol.Genet., 2008; 17: 936-948
Google Scholar - 81. Zhu Z., Golay H.G., Barbie D.A.: Targeting pathways downstreamof KRAS in lung adenocarcinoma. Pharmacogenomics, 2014;15: 1507-1518
Google Scholar