New prognostic biomarkers in multiple myeloma
Aneta Szudy-Szczyrek 1 , Michał Szczyrek 2 , Maria Soroka-Wojtaszko 1 , Marek Hus 1Abstract
Multiple myeloma is a malignant neoplastic disease, characterized by uncontrolled proliferation and accumulation of plasma cells in the bone marrow, which is usually connected with production of a monoclonal protein. It is the second most common hematologic malignancy. It constitutes approximately 1% of all cancers and 10% of hematological malignancies. Despite the huge progress that has been made in the treatment of multiple myeloma in the past 30 years including the introduction of new immunomodulatory drugs and proteasome inhibitors, it is still an incurable disease. According to current data, the five-year survival rate is 45%. Multiple myeloma is a very heterogeneous disease with a very diverse clinical course, which is expressed by differences in effectiveness of therapeutic strategies and ability to develop chemoresistance. This diversity implies the need to define risk stratification factors that would help to create personalized and optimized therapy and thereby improve treatment outcomes. Prognostic markers that aim to objectively evaluate the risk of a poor outcome, relapse and the patient’s overall outcome are useful for this purpose. The existing, widely used prognostic classifications, such as the Salmon-Durie classification or ISS, do not allow for individualization of treatment. As a result of the development of diagnostic techniques, especially cytogenetics and molecular biology, we were able to discover a lot of new, more sensitive and specific prognostic factors. The paper presents recent reports on the role of molecular, cytogenetic and biochemical alterations in pathogenesis and prognosis of the disease.
References
- 1. Alsayed Y., Ngo H., Runnels J., Leleu X., Singha U.K., PitsillidesC.M., Spencer J.A., Kimlinger T., Ghobrial J.M., Jia X., Lu G., TimmM., Kumar A., Côté D., Veilleux I., Hedin K.E., Roodman G.D.:Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependentmigration and homing in multiple myeloma. Blood, 2007; 109:2708-2717
Google Scholar - 2. Aqeilan R.I., Calin G.A., Croce C.M.: miR-15a and miR-16-1 in cancer:discovery, function and future perspectives. Cell Death Differ.,2010; 17: 215-220
Google Scholar - 3. Avet-Loiseau H., Durie B.G., Cavo M., Attal M., Gutierrez N., HaesslerJ., Goldschmidt H., Hajek R., Lee J.H., Sezer O., Barlogie B., CrowleyJ., Fonseca R., Testoni N., Ross F. i wsp.: Combining fluorescent insitu hybridization data with ISS staging improves risk assessment inmyeloma: an International Myeloma Working Group collaborativeproject. Leukemia, 2013; 27: 711-717
Google Scholar - 4. Avet-Loiseau H., Gerson F., Magrangeas F., Minvielle S., HarousseauJ.L., Bataille R.; Intergroupe Francophone du Myélome: Rearrangementsof the c-myc oncogene are present in 15% of primaryhuman multiple myeloma tumors. Blood, 2001; 98: 3082-3086
Google Scholar - 5. Bartel D.P.: MicroRNAs: genomics, biogenesis, mechanism, andfunction. Cell, 2004; 116: 281-297
Google Scholar - 6. Bisping G., Wenning D., Kropff M., Gustavus D., Müller-Tidow C.,Stelljes M., Munzert G., Hilberg F., Roth G.J., Stefanic M., Volpert S.,Mesters R.M., Berdel W.E., Kienast J.: Bortezomib, dexamethasone,and fibroblast growth factor receptor 3-specific tyrosine kinaseinhibitor in t(4;14) myeloma. Clin. Cancer Res., 2009; 15: 520-531
Google Scholar - 7. Bosman M.C., Reis C.R., Schuringa J.J., Vellenga E., Quax W.J.:Decreased affinity of recombinant human tumor necrosis factor–related apoptosis-inducing ligand (rhTRAIL) D269H/E195R to osteoprotegerin(OPG) overcomes TRAIL resistance mediated by the bonemicroenvironment. J. Biol. Chem., 2014; 289: 1071-1078
Google Scholar - 8. Carrasco D.R., Sukhdeo K., Protopopova M., Sinha R., Enos M.,Carrasco D.E., Zheng M., Mani M., Henderson J., Pinkus G.S., MunshiN., Horner J., Ivanova E.V., Protopopov A., Anderson K.C. i wsp.:The differentiation and stress response factor XBP-1 drives multiplemyeloma pathogenesis. Cancer Cell, 2007; 11: 349-360
Google Scholar - 9. Chang H., Qi C., Yi Q.L., Reece D., Stewart A.K.: p53 gene deletiondetected by fluorescence in situ hybridization is an adverse prognosticfactor for patients with multiple myeloma following autologousstem cell transplantation. Blood, 2005; 105: 358-360
Google Scholar - 10. Chapman M.A., Lawrence M.S., Keats J.J., Cibulskis K., SougnezC., Schinzel A.C., Harview C.L., Brunet J.P., Ahmann G.J., Adli M., AndersonK.C., Ardlie K.G., Auclair D., Baker A., Bergsagel P.L. i wsp.:Initial genome sequencing and analysis of multiple myeloma. Nature,2011; 471: 467-472
Google Scholar - 11. Chesi M., Bergsagel P.L., Shonukan O.O., Martelli M.L., BrentsL.A., Chen T., Schröck E., Ried T., Kuehl W.M.: Frequent dysregulationof the c-maf proto-oncogene at 16q23 by translocation to an Ig locusin multiple myeloma. Blood, 1998; 91: 4457-4463
Google Scholar - 12. Debes-Marun C.S., Dewald G.W., Bryant S., Picken E., Santana–Dávila R., González-Paz N., Winkler J.M., Kyle R.A., Gertz M.A., WitzigT.E., Dispenzieri A., Lacy M.Q., Rajkumar S.V., Lust J.A., GreippP.R., Fonseca R.: Chromosome abnormalities clustering and its implicationsfor pathogenesis and prognosis in myeloma. Leukemia,2003; 17: 427-436
Google Scholar - 13. Ferrucci A., Moschetta M., Frassanito M.A., Berardi S., CatacchioI., Ria R., Racanelli V., Caivano A., Solimando A.G., Vergara D., MaffiaM., Latorre D., Rizzello A., Zito A., Ditonno P. i wsp.: A HGF/cMETautocrine loop is operative in multiple myeloma bone marrow endothelialcells and may represent a novel therapeutic target. Clin.Cancer Res., 2014; 20: 5796-5807
Google Scholar - 14. Fonseca R., Bailey R.J., Ahmann G.J., Rajkumar S.V., Hoyer J.D.,Lust J.A., Kyle R.A, Gertz M.A., Greipp P.R., Dewald G.W.: Genomicabnormalities in monoclonal gammopathy of undetermined significance.Blood, 2002; 100: 1417-1424
Google Scholar - 15. Fonseca R., Barlogie B., Bataille R., Bastard C., Bergsagel P.L.,Chesi M., Davies F.E., Drach J., Greipp P.R., Kirsch I.R., Kuehl W.M.,Hernandez J.M., Minvielle S., Pilarski L.M., Shaughnessy J.D. Jr. i wsp.:Genetics and cytogenetics of multiple myeloma: a workshop report.Cancer Res., 2004; 64: 1546-1558
Google Scholar - 16. Fonseca R., Bergsagel P.L., Drach J., Shaughnessy J., Gutierrez N.,Stewart A.K., Morgan G., Van Ness B., Chesi M., Minvielle S., Neri A.,Barlogie B., Kuehl W.M., Liebisch P., Davies F. i wsp.; InternationalMyeloma Working Group. International Myeloma Working Groupmolecular classification of multiple myeloma: spotlight review. Leukemia,2009; 23: 2210-2221
Google Scholar - 17. Fonseca R., Blood E., Rue M., Harrington D., Oken M.M., Kyle R.A.,Dewald G.W., Van Ness B., Van Wier S.A., Henderson K.J., Bailey R.J.,Greipp P.R.: Clinical and biologic implications of recurrent genomicaberrations in myeloma. Blood, 2003; 101: 4569-4575
Google Scholar - 18. Fonseca R., Blood E.A., Oken M.M., Kyle R.A., Dewald G.W., BaileyR.J., Van Wier S.A., Henderson K.J., Hoyer J.D., Harrington D., KayN.E., Van Ness B., Greipp P.R.: Myeloma and the t(11;14)(q13;q32);evidence for a biologically defined unique subset of patients. Blood,2002; 99: 3735-3741
Google Scholar - 19. Fonseca R., Debes-Marun C.S., Picken E.B., Dewald G.W., BryantS.C., Winkler J.M., Blood E., Oken M.M., Santana-Dávila R., González–Paz N., Kyle R.A., Gertz M.A., Dispenzieri A., Lacy MQ., Greipp P.R.:The recurrent IgH translocations are highly associated with nonhyperdiploidvariant multiple myeloma. Blood, 2003; 102: 2562-2567
Google Scholar - 20. Fonseca R., Van Wier S.A., Chng W.J., Ketterling R., Lacy M.Q.,Dispenzieri A., Bergsagel P.L., Rajkumar S.V., Greipp P.R., Litzow M.R.,Price-Troska T., Henderson K.J., Ahmann G.J., Gertz M.A.: Prognosticvalue of chromosome 1q21 gain by fluorescent in situ hybridizationand increase CKS1B expression in myeloma. Leukemia, 2006;20: 2034-2040
Google Scholar - 21. Frassanito M.A., Cusmai A., Iodice G., Dammacco F.: Autocrineinterleukin-6 production and highly malignant multiple myeloma:relation with resistance to drug-induced apoptosis. Blood, 2001;97: 483-489
Google Scholar - 22. Friedman R.C., Farh K.K., Burge C.B., Bartel D.P.: Most mammalianmRNAs are conserved targets of microRNAs. Genome Res.,2009; 19: 92-105
Google Scholar - 23. Garand R., Avet-Loiseau H., Accard F., Moreau P., Harousseau J.L.,Bataille R.: t(11;14) and t(4;14) translocations correlated with maturelymphoplasmacytoid and immature morphology, respectively, inmultiple myeloma. Leukemia, 2003; 17: 2032-2035
Google Scholar - 24. Geng C,. Hou J., Zhao Y., Ke X., Wang Z., Qiu L., Xi H., WangF., Wei N., Liu Y., Yang S., Wei P., Zheng X., Huang Z., Zhu B., ChenW.M.: A multicenter, open-label phase II study of recombinant CPT(Circularly Permuted TRAIL) plus thalidomide in patients with relapsedand refractory multiple myeloma. Am. J. Hematol., 2014; 89:1037-1042
Google Scholar - 25. Hanamura I., Stewart J.P., Huang Y., Zhan F., Santra M., SawyerJ.R., Hollmig K., Zangarri M., Pineda-Roman M., van Rhee F., CavalloF., Burington B., Crowley J., Tricot G., Barlogie B., Shaughnessy J.D. Jr.:Frequent gain of chromosome band 1q21 in plasma-cell dyscrasiasdetected by fluorescence in situ hybridization: incidence increasesfrom MGUS to relapsed myeloma and is related to prognosis anddisease progression following tandem stem-cell transplantation.Blood, 2006; 108: 1724-1732
Google Scholar - 26. Hayashi T., Hideshima T., Anderson K.C.: Novel therapies formultiple myeloma. Br. J. Haematol., 2003; 120: 10-17
Google Scholar - 27. Hideshima T., Catley L., Raje N., Chauhan D., Podar K., Mitsiades C., Tai Y.T., Vallet S., Kiziltepe T., Ocio E., Ikeda H., Okawa Y., HideshimaH., Munshi N.C., Yasui H. i wsp.: Inhibition of Akt inducessignificant downregulation of survivin and cytotoxicity in humanmultiple myeloma cells. Br. J. Haematol., 2007; 138: 783-791
Google Scholar - 28. Hideshima T., Chauhan D., Schlossman R., Richardson P., AndersonK.C.: The role of tumor necrosis factor α in the pathophysiologyof human multiple myeloma: therapeutic applications. Oncogene,2001; 20: 4519-4527
Google Scholar - 29. Hideshima T., Mitsiades C., Tonon G., Richardson P.G, AndersonK.C.: Understanding multiple myeloma pathogenesis in the bonemarrow to identify new therapeutic targets. Nat. Rev. Cancer, 2007;7: 585-598
Google Scholar - 30. Hirano T.: Interleukin 6 and its receptor: ten years later. Int. Rev.Immunol., 1998; 16: 249-284
Google Scholar - 31. Jakob C., Sterz J., Zavrski I., Heider U., Kleeberg L., Fleissner C.,Kaiser M., Sezer O.: Angiogenesis in multiple myeloma. Eur. J. Cancer,2006; 42: 1581-1590
Google Scholar - 32. Johnstone R.W., Frew A.J., Smyth M.J.: The TRAIL apoptotic pathwayin cancer onset, progression and therapy. Nat. Rev. Cancer,2008; 8: 782-798
Google Scholar - 33. Jurczyszyn A., Czepiel J., Biesiada G., Gdula-Argasińska J., CiborD., Owczarek D., Perucki W., Skotnicki A.B.: HGF, sIL-6R and TGF-β1play a significant role in the progression of multiple myeloma. J.Cancer, 2014; 5: 518-524
Google Scholar - 34. Keats J.J., Reiman T., Maxwell C.A., Taylor B.J., Larratt L.M., MantM.J., Belch A.R., Pilarski L.M.: In multiple myeloma, t(4;14)(p16;q32)is an adverse prognostic factor irrespective of FGFR3 expression.Blood, 2003; 101: 1520-1529
Google Scholar - 35. Kofler N.M., Simons M.: Angiogenesis versus arteriogenesis: neuropilin 1 modulation of VEGF signaling. F1000Prime Rep., 2015; 7: 26
Google Scholar - 36. Kwon W.K., Lee J.Y., Mun Y.C., Seong C.M., Chung W.S., Huh J.:Clinical utility of FISH analysis in addition to G-banded karyotypein hematologic malignancies and proposal of a practical approach.Korean J. Hematol., 2010; 45: 171-176
Google Scholar - 37. Kyle R.A., Gertz M.A., Witzig T.E., Lust J.A., Lacy M.Q., DispenzieriA., Fonseca R., Rajkumar S.V., Offord J.R., Larson D.R., PlevakM.E., Therneau T.M., Greipp P.R.: Review of 1027 patients with newlydiagnosed multiple myeloma. Mayo Clin. Proc., 2003; 78: 21-33
Google Scholar - 38. Landgren O., Gridley G., Turesson I., Caporaso N.E., Goldin L.R.,Baris D., Fears T.R., Hoover R.N., Linet M.S.: Risk of monoclonal gammopathyof undetermined significance (MGUS) and subsequentmultiple myeloma among African American and white veterans inthe United States. Blood, 2006; 107: 904-906
Google Scholar - 39. Lauring J., Abukhdeir A.M., Konishi H., Garay J.P., Gustin J.P.,Wang Q., Arceci R.J., Matsui W., Park B.H.: The multiple myelomaassociated MMSET gene contributes to cellular adhesion, clonogenicgrowth, and tumorigenicity. Blood, 2008; 111: 856-864
Google Scholar - 40. Leone P.E., Walker B.A., Jenner M.W., Chiecchio L., Dagrada G.,Protheroe R.K., Johnson D.C., Dickens N.J., Brito J.L., Else M., GonzalezD., Ross F.M., Chen-Kiang S., Davies F.E., Morgan G.J.: Deletions ofCDKN2C in multiple myeloma: biological and clinical implications.Clin. Cancer Res., 2008; 14: 6033-6041
Google Scholar - 41. Li F., Hao M., Feng X., Zang M., Qin Y., Yi S., Li Z., Xu Y., Zhou L.,Sui W., Deng S., Zou D., Zhan F., Qiu L.: Downregulated miR-33b isa novel predictor associated with disease progression and poor prognosisin multiple myeloma. Leuk. Res., 2015; 39: 793-799
Google Scholar - 42. Li F., Xu Y., Deng S., Li Z., Zou D., Yi S., Sui W., Hao M., Qiu L.:MicroRNA-15a/16-1 cluster located at chromosome 13q14 is down–regulated but displays different expression pattern and prognosticsignificance in multiple myeloma. Oncotarget, 2015; 6: 38270-38282
Google Scholar - 43. Liang S.B., Yang X.Z., Trieu Y., Li Z., Zive J., Leung-HagesteijnC., Wei E., Zozulya S., Coss C.C., Dalton J.T., Fantus I.G., Trudel S.:Molecular target characterization and antimyeloma activity of thenovel, insulin-like growth factor 1 receptor inhibitor, Gtx-134. Clin.Cancer Res., 2011; 17: 4693-4704
Google Scholar - 44. Łopuch S., Kawalec P., Wiśniewska N.: Effectiveness of targetedtherapy as monotherapy or combined therapy in patients withrelapsed or refractory multiple myeloma: a systematic review andmeta-analysis. Hematology, 2015; 20: 1-10
Google Scholar - 45. Martinez-Climent J.A., Vizcarra E., Sanchez D., Blesa D., MaruganI., Benet I., Sole F., Rubio-Moscardo F., Terol M.J., Climent J., SarsottiE., Tormo M., Andreu E., Salido M., Ruiz M.A. i wsp.: Loss of a noveltumor suppressor gene locus at chromosome 8p is associated withleukemic mantle cell lymphoma. Blood, 2001; 98: 3479-3482
Google Scholar - 46. Moreaux J., Legouffe E., Jourdan E., Quittet P., Rème T., LugagneC., Moine P., Rossi J.F., Klein B., Tarte K.: BAFF and APRIL protect myelomacells from apoptosis induced by interleukin 6 deprivation anddexamethasone. Blood, 2004; 103: 3148-3157
Google Scholar - 47. Multiple Myeloma. Survival rates by stage for multiple myeloma.http://www.cancer.org/cancer/multiplemyeloma/detailedguide/multiple-myeloma-survival-rates (24.05.2015)
Google Scholar - 48. Munshi N.C., Anderson K.C., Bergsagel P.L., Shaughnessy J., PalumboA., Durie B., Fonseca R., Stewart A.K., Harousseau J.L., Dimopoulos M.,Jagannath S., Hajek R., Sezer O., Kyle R., Sonneveld P. i wsp.: InternationalMyeloma Workshop Consensus Panel 2. Consensus recommendationsfor risk stratification in multiple myeloma: report of the InternationalMyeloma Workshop Consensus Panel 2. Blood, 2011; 117: 4696-4700
Google Scholar - 49. Podar K., Chauhan D., Anderson K.C.: Bone marrow microenvironmentand the identification of new targets for myeloma therapy.Leukemia, 2009; 23: 10-24
Google Scholar - 50. Ribatti D., Nico B., Vacca A.: Importance of the bone marrowmicroenvironment in inducing the angiogenic response in multiplemyeloma. Oncogene, 2006; 25: 4257-4266
Google Scholar - 51. Roth L.: The good, the bad and the ugly: a neuropilin-2 storyfrom normal to tumor-associated lymphangiogenesis. Cell Adh.Migr., 2008; 2: 217-219
Google Scholar - 52. Rubio-Moscardo F,, Blesa D., Mestre C., Siebert R., Balasas T., BenitoA., Rosenwald A., Climent J., Martinez J.I., Schilhabel M., KarranE.L., Gesk S., Esteller M., deLeeuw R., Staudt L.M. i wsp.: Characterizationof 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL–R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressorgenes. Blood, 2005; 106: 3214-3222
Google Scholar - 53. Shaughnessy J. Jr., Gabrea A., Qi Y., Brents L., Zhan F., Tian E.,Sawyer J., Barlogie B., Bergsagel P.L., Kuehl M.: Cyclin D3 at 6p21 isdysregulated by recurrent chromosomal translocations to immunoglobulinloci in multiple myeloma. Blood, 2001; 98: 217-223
Google Scholar - 54. Smadja N.V., Leroux D., Soulier J., Dumont S., Arnould C., TaviauxS., Taillemite J.L., Bastard C.: Further cytogenetic characterizationof multiple myeloma confirms that 14q32 translocationsare a very rare event in hyperdiploid cases. Genes ChromosomesCancer, 2003; 38: 234-239
Google Scholar - 55. Sutlu T., Alici E., Jansson M., Wallblom A., Dilber M.S., GahrtonG., Nahi H.: The prognostic significance of 8p21 deletion in multiplemyeloma. Br. J. Haematol, 2009; 144: 266-268
Google Scholar - 56. Suzuki K., Ogura M., Abe Y., Suzuki T., Tobinai K., Ando K., TaniwakiM., Maruyama D., Kojima M., Kuroda J., Achira M., Iizuka K.:Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody,in relapsed/refractory multiple myeloma. Int. J. Hematol.,2015; 101: 286-294
Google Scholar - 57. Tagoug I., Sauty De Chalon A., Dumontet C.: Inhibition of IGF-1signalling enhances the apoptotic effect of AS602868, an IKK2 inhibitor,in multiple myeloma cell lines. PLoS One, 2011; 6: e22641
Google Scholar - 58. Tai Y.T., Catley L.P., Mitsiades C.S., Burger R., Podar K., ShringpaureR., Hideshima T., Chauhan D., Hamasaki M., Ishitsuka K., RichardsonP., Treon S.P., Munshi N.C., Anderson K.C.: Mechanisms bywhich SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. CancerRes., 2004; 64: 2846-2852
Google Scholar - 59. Tai Y.T., Li X.F., Breitkreutz I., Song W., Neri P., Catley L., PodarK., Hideshima T., Chauhan D., Raje N., Schlossman R., RichardsonP.,. Munshi N.C., Anderson K.C.: Role of B-cell-activating factor inadhesion and growth of human multiple myeloma cells in the bonemarrow microenvironment. Cancer Res., 2006; 66: 6675-6682
Google Scholar - 60. Tai Y.T., Li X.F., Catley L., Coffey R., Breitkreutz I., Bae J., Song W.,Podar K., Hideshima T., Chauhan D., Schlossman R., Richardson P.,Treon S.P., Grewal I.S., Munshi N.C. et al.: Immunomodulatory druglenalidomide (CC-5013, IMiD3) augments anti-CD40 SGN-40-inducedcytotoxicity in human multiple myeloma: clinical implications. CancerRes., 2005; 65: 11712-11720
Google Scholar - 61. Terpos E., Eleutherakis-Papaiakovou V., Dimopoulos M.A.: Clinicalimplications of chromosomal abnormalities in multiple myeloma.Leuk. Lymphoma, 2006; 47: 803-814
Google Scholar - 62. Terpos E., Szydlo R., Apperley J.F., Hatjiharissi E., Politou M.,Meletis J., Viniou N., Yataganas X., Goldman J.M., Rahemtulla A.: Solublereceptor activator of nuclear factor κB ligand-osteoprotegerinratio predicts survival in multiple myeloma: proposal for a novelprognostic index. Blood, 2003; 102: 1064-1069
Google Scholar - 63. Tiedemann R.E., Gonzalez-Paz N., Kyle R.A., Santana-Davila R.,Price-Troska T., Van Wier S.A., Chng W.J., Ketterling R.P., Gertz M.A.,Henderson K., Greipp P.R., Dispenzieri A., Lacy M.Q., Rajkumar S.V.,Bergsagel P.L. i wsp.: Genetic aberrations and survival in plasma cellleukemia. Leukemia, 2008; 22: 1044-1052
Google Scholar - 64. Van Wier S., Braggio E., Baker A., Ahmann G., Levy J., CarptenJ.D., Fonseca R.: Hypodiploid multiple myeloma is characterized bymore aggressive molecular markers than non-hyperdiploid multiplemyeloma. Haematologica, 2013; 98: 1586-1592
Google Scholar - 65. Xiong W., Wu X., Starnes S., Johnson S.K., Haessler J., Wang S.,Chen L., Barlogie B., Shaughnessy J.D. Jr., Zhan F.: An analysis of theclinical and biologic significance of TP53 loss and the identificationof potential novel transcriptional targets of TP53 in multiple myeloma.Blood, 2008; 112: 4235-4246
Google Scholar - 66. Zhan F., Huang Y., Colla S., Stewart J.P., Hanamura I., Gupta S.,Epstein J., Yaccoby S., Sawyer J., Burington B., Anaissie E., HollmigK., Pineda-Roman M., Tricot G., van Rhee F. i wsp.: The molecularclassification of multiple myeloma. Blood, 2006; 108: 2020-2028
Google Scholar