Non-small cell lung cancer – mutations, targeted and combination therapy

COMMENTARY ON THE LAW

Non-small cell lung cancer – mutations, targeted and combination therapy

Justyna Kutkowska 1 , Irena Porębska 2 , Andrzej Rapak 1

1. Laboratorium Immunobiologii Molekularnej Nowotworów, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. Ludwika Hirszfelda, Wrocław
2. Katedra i Klinika Pulmonologii i Nowotworów Płuc, Uniwersytet Medyczny im. Piastów Śląskich, Wrocław

Published: 2017-05-17
DOI: 10.5604/01.3001.0010.3826
GICID: 01.3001.0010.3826
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 431-445

 

Abstract

Year after year, a growing number of cases of non-small cell lung cancer (NSCLC), mostly caused by smoking, have been noted. Most patients die because of the late detection of cancer and tumor resistance to treatment with cytostatics. Treatment of patients with advanced NSCLC is impeded by the low sensitivity of the tumor to cytostatic agents and the co-existence of many diseases, which substrate is, like lung cancer, cigarette smoking. Along with the development of molecular biology, targeted therapy has started to be used, affecting specific signaling pathways involved in the processes of oncogenesis. Compounds that inhibit the activity of receptor tyrosine kinases are very well examined and already used in clinical practice. NSCLC is characterized by multiple mutations, including EGFR (epidermal growth factor receptor) and KRAS. Rarer but clinically significant is the rearrangement of the ALK gene. Currently, for NSCLC treatment a number of EGFR inhibitors such as erlotinib, gefitinib, afatinib and two compounds targeted in ALK kinase crizotinib and ceritinib are applied. Unfortunately, despite numerous studies, we are still not able to improve the treatment effectiveness of patients with KRAS mutations. The most efficient solution would be to use a combination of the compounds exhibiting synergistic effects on tumor cells. The literature data describes numerous examples of the combination treatment of NSCLC cells. Some combinations of compounds are already in clinical trials. Most attempts relate to tyrosine kinase inhibitors in combination with other types of pharmacologic inhibitor or immunotherapy. This paper describes the mutations occurring in NSCLC and drugs used in clinical practice as well as being in preclinical development.

References

  • 1. Alvarado D., Klein D.E., Lemmon M.A.: ErbB2 resembles an autoinhibitedinvertebrate epidermal growth factor receptor. Nature,2009; 461: 287-291
    Google Scholar
  • 2. Amin D.N., Campbell M.R., Moasser M.M.: The role of HER3, theunpretentious member of the HER family, in cancer biology and cancertherapeutics. Semin. Cell Dev. Biol., 2010; 21: 944-950
    Google Scholar
  • 3. Anagnostou V.K., Lowery F.J., Zolota V., Tzelepi V., Gopinath A.,Liceaga C., Panagopoulos N., Frangia K., Tanoue L., Boffa D., GettingerS., Detterbeck F., Homer R.J., Dougenis D., Rimm D.L., SyrigosK.N.: High expression of BCL-2 predicts favorable outcome in non–small cell lung cancer patients with non squamous histology. BMCCancer, 2010; 10: 186
    Google Scholar
  • 4. Azzoli C.G., Baker S. Jr., Temin S., Pao W., Aliff T., Brahmer J.,Johnson D.H., Laskin J.L., Masters G., Milton D., Nordquist L., PfisterD.G., Piantadosi S., Schiller J.H., Smith R. i wsp.: American Societyof Clinical Oncology Clinical Practice Guideline update on chemotherapyfor stage IV non-small-cell lung cancer. J. Clin. Oncol., 2009;27: 6251-6266
    Google Scholar
  • 5. Bae E.Y., Lee E.J., Kang H.G., Lee S.Y., Jin G., Lee W.K., Choi J.E.,Jeon H.S., Lim J.O., Lee E.B., Park J.Y.: Polymorphisms in apoptosis–related genes and TP53 mutations in non-small cell lung cancer. J.Korean Med. Sci., 2011; 26: 1527-1530
    Google Scholar
  • 6. Baines A.T., Xu D., Der C.J.: Inhibition of Ras for cancer treatment:the search continues. Future Med. Chem., 2011; 3: 1787-1808
    Google Scholar
  • 7. Banerji U., Camidge D.R., Verheul H.M., Agarwal R., Sarker D., KayeS.B., Desar I.M., Timmer-Bonte J.N., Eckhardt S.G., Lewis K.D., BrownK.H., Cantarini M.V., Morris C., George S.M., Smith P.D., van HerpenC.M.: The first-in-human study of the hydrogen sulfate (Hyd-sulfate)capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phaseI open-label multicenter trial in patients with advanced cancer. Clin.Cancer Res., 2010; 16: 1613-1623
    Google Scholar
  • 8. Bell D.W., Gore I., Okimoto R.A., Godin-Heymann N., Sordella R.,Mulloy R., Sharma S.V., Brannigan B.W., Mohapatra G., Settleman J.,Haber D.A.: Inherited susceptibility to lung cancer may be associatedwith the T790M drug resistance mutation in EGFR. Nat. Genet.,2005; 37: 1315-1316
    Google Scholar
  • 9. Blumenschein G.R.Jr., Smit E.F., Planchard D., Kim D.W., CadranelJ., De Pas T., Dunphy F., Udud K., Ahn M.J., Hanna N.H., Kim J.H.,Mazieres J., Kim S.W., Baas P., Rappold E. i wsp.: A randomized phaseII study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) comparedwith docetaxel in KRAS-mutant advanced non-small-cell lungcancer (NSCLC). Ann. Oncol., 2015; 26: 894-901
    Google Scholar
  • 10. Bravaccini S., Tumedei M.M., Ulivi P., Zoli W., Calistri D., CandoliP., Amadori D., Puccetti M.: ALK translocation detection in non-smallcell lung cancer cytological samples obtained by TBNA or EBUSTBNA.Cytopathology, 2016: 27: 103-107
    Google Scholar
  • 11. Brustugun O.T., Khattak A.M., Tromborg A.K., Beigi M., BeiskeK., Lund-Iversen M., Helland A.: BRAF-mutations in non-small celllung cancer. Lung Cancer, 2014; 84: 36-38
    Google Scholar
  • 12. Butkiewicz D., Krześniak M., Drosik A., Giglok M., GdowiczKłosokA., Kosarewicz A., Rusin M., Masłyk B., Gawkowska-SuwińskaM., Suwiński R.: The VEGFR2, COX-2 and MMP-2 polymorphisms areassociated with clinical outcome of patients with inoperable nonsmallcell lung cancer. Int. J. Cancer, 2015; 137: 2332-2342
    Google Scholar
  • 13. Calles A., Kwiatkowski N., Cammarata B.K., Ercan D., Gray N.S., JänneP.A.: Tivantinib (ARQ 197) efficacy is independent of MET inhibitionin non-small-cell lung cancer cell lines. Mol. Oncol., 2015; 9: 260-269
    Google Scholar
  • 14. Cancer Facts & Figures 2014. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2014/(01.12.2015)
    Google Scholar
  • 15. Cardarella S., Ogino A., Nishino M., Butaney M., Shen J., LydonC., Yeap B.Y., Sholl L.M., Johnson B.E., Jänne P.A.: Clinical, pathologic,and biologic features associated with BRAF mutations in non-smallcell lung cancer. Clin. Cancer Res., 2013; 19: 4532-4540
    Google Scholar
  • 16. Chansky K., Sculier J.P., Crowley J.J., Giroux D., Van MeerbeeckJ., Goldstraw P.: The International Association for the Study of LungCancer Staging Project: prognostic factors and pathologic TNM stagein surgically managed non-small cell lung cancer. J. Thorac. Oncol.,2009; 4: 792-801
    Google Scholar
  • 17. Chen B., Xu X., Luo J., Wang H., Zhou S.: Rapamycin enhancesthe anti-cancer effect of dasatinib by suppressing Src/PI3K/mTORpathway in NSCLC cells. PLoS One, 2015; 10: e0129663
    Google Scholar
  • 18. Chen D., Zhang L.Q., Huang J.F., Liu K., Chuai Z.R., Yang Z., WangY.X., Shi D.C., Liu Q., Huang Q., Fu W.L.: BRAF mutations in patientswith non-small cell lung cancer: a systematic review and metaanalysis.PLoS One, 2014; 9: e101354
    Google Scholar
  • 19. Chen L., He Y., Huang H., Liao H., Wei W.: Selective COX-2 inhibitorcelecoxib combined with EGFR-TKI ZD1839 on non-small celllung cancer cell lines: in vitro toxicity and mechanism study. Med.Oncol., 2008; 25: 161-171
    Google Scholar
  • 20. Cheng J., Qi J., Li X.T., Zhou K., Xu J.H., Zhou Y., Zhang G.Q., XuJ.P., Zhou R.J.: ATRA and genistein synergistically inhibit the metastaticpotential of human lung adenocarcinoma cells. Int. J. Clin.Exp. Med., 2015; 8: 4220-4227
    Google Scholar
  • 21. Cheng L., Alexander R.E., Maclennan G.T., Cummings O.W., MontironiR., Lopez-Beltran A., Cramer H.M., Davidson D.D., Zhang S.:Molecular pathology of lung cancer: key to personalized medicine.Mod. Pathol., 2012; 25: 347-369
    Google Scholar
  • 22. Christensen J.G., Zou H.Y., Arango M.E., Li Q., Lee J.H., McDonnellS.R., Yamazaki S., Alton G.R., Mroczkowski B., Los G.: Cytoreductiveantitumor activity of PF-2341066, a novel inhibitor of anaplasticlymphoma kinase and c-Met, in experimental models of anaplasticlarge-cell lymphoma. Mol. Cancer Ther., 2007; 6: 3314-3322
    Google Scholar
  • 23. Ciardiello F., Caputo R., Bianco R., Damiano V., Pomatico G., DePlacido S., Bianco A.R., Tortora G.: Antitumor effect and potentiationof cytotoxic drugs activity in human cancer cells by ZD-1839(Iressa), an epidermal growth factor receptor-selective tyrosine kinaseinhibitor. Clin. Cancer Res., 2000; 6: 2053-2063
    Google Scholar
  • 24. Cost-Utility Analysis of Treatments for Advanced Non-SmallCell Lung Cancer. http://www.ajpb.com/journals/ajpb/2015/ajpb_novemberdecember2015/cost-utility-analysis-of-treatments-foradvanced-non-small-cell-lung-cancer(03.01.2016)
    Google Scholar
  • 25. Courtney K.D., Corcoran R.B., Engelman J.A.: The PI3K pathwayas drug target in human cancer. J. Clin. Oncol., 2010; 28: 1075-1083
    Google Scholar
  • 26. Czyżykowski R., Połowinczak-Przybyłek J., Potemski P.: Nicotine-inducedresistance of non-small cell lung cancer to treatment– possible mechanisms. Postępy Hig. Med. Dośw., 2016; 70: 186-193
    Google Scholar
  • 27. d›Amato T.A., Landreneau R.J., McKenna R.J., Santos R.S., ParkerR.J.: Prevalence of in vitro extreme chemotherapy resistancein resected nonsmall-cell lung cancer. Ann. Thorac. Surg., 2006;81: 440-446
    Google Scholar
  • 28. Dasari A., Gore L., Messersmith W.A., Diab S., Jimeno A., WeekesC.D., Lewis K.D., Drabkin H.A., Flaig T.W., Camidge D.R.: A phase I studyof sorafenib and vorinostat in patients with advanced solid tumorswith expanded cohorts in renal cell carcinoma and non-smallcell lung cancer. Invest. New Drugs, 2013; 31: 115-125
    Google Scholar
  • 29. De Luca A., Carotenuto A., Rachiglio A., Gallo M., Maiello M.R.,Aldinucci D., Pinto A., Normanno N.: The role of the EGFR signalingin tumor microenvironment. J. Cell Physiol., 2008; 214: 559-567
    Google Scholar
  • 30. DeSantis C.E., Lin C.C., Mariotto A.B., Siegel R.L., Stein K.D.,Kramer J.L., Alteri R., Robbins A.S., Jemal A.: Cancer treatment andsurvivorship statistics, 2014. CA Cancer J. Clin., 2014; 64: 252-271
    Google Scholar
  • 31. Dimou A., Non L., Chae Y.K., Tester W.J., Syrigos K.N.: MET genecopy number predicts worse overall survival in patients with nonsmallcell lung cancer (NSCLC); a systematic review and meta-analysis.PLoS One, 2014; 9: e107677
    Google Scholar
  • 32. Dingemans A.M., Mellema W.W., Groen H.J., van Wijk A., BurgersS.A., Kunst P.W., Thunnissen E., Heideman D.A., Smit E.F.: A phase IIstudy of sorafenib in patients with platinum-pretreated, advanced(Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.Clin. Cancer Res., 2013; 19: 743-751
    Google Scholar
  • 33. El-Chaar N.N., Piccolo S.R., Boucher K.M., Cohen A.L., ChangJ.T., Moos P.J., Bild A.H.: Genomic classification of the RAS networkidentifies a personalized treatment strategy for lung cancer. Mol.Oncol., 2014; 8: 1339-1354
    Google Scholar
  • 34. Ettinger D.S., Akerley W., Bepler G., Blum M.G., Chang A., CheneyR.T., Chirieac L.R., D›Amico T.A., Demmy T.L., Ganti A.K., GovindanR., Grannis F.W. Jr., Jahan T., Jahanzeb M., Johnson D.H. i wsp.: Nonsmallcell lung cancer. J. Natl. Compr. Canc. Netw., 2010; 8: 740-801
    Google Scholar
  • 35. European Medicines Agency: Advexin – Product Information.http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000919/wapp/Initial_authorisation/human_wapp_000042.jsp (13.06.2016)
    Google Scholar
  • 36. European Medicines Agency: Tagrisso – Product Information.http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004124/human_med_001961.jsp&mid=WC0b01ac058001d124 (15.06.2016)
    Google Scholar
  • 37. FDA Approval for Afatinib Dimaleate. http://www.cancer.gov/about-cancer/treatment/drugs/fda-afatinibdimaleate (05.12.2015)
    Google Scholar
  • 38. FDA Approval for Ceritinib – National Cancer Institute. http://www.cancer.gov/about-cancer/treatment/drugs/fda-ceritinib(05.12.2015)
    Google Scholar
  • 39. FDA Approval for Crizotinib. http://www.cancer.gov/aboutcancer/treatment/drugs/fda-crizotinib(05.12.2015)
    Google Scholar
  • 40. FDA Approval for Erlotinib Hydrochloride – National CancerInstitute. http://www.cancer.gov/about-cancer/treatment/drugs/fda-erlotinib-hydrochloride (05.12.2015)
    Google Scholar
  • 41. FDA Approval for Gefitinib. http://www.cancer.gov/about-cancer/treatment/drugs/fda-gefitinib(05.12.2015)
    Google Scholar
  • 42. Gadgeel S.M., Gandhi L., Riely G.J., Chiappori A.A., West H.L.,Azada M.C., Morcos P.N., Lee R.M., Garcia L., Yu L., Boisserie F., DiLaurenzio L., Golding S., Sato J., Yokoyama S., Tanaka T., Ou S.H.:Safety and activity of alectinib against systemic disease and brainmetastases in patients with crizotinib-resistant ALK-rearrangednon-small-cell lung cancer (AF-002JG): results from the dose-findingportion of a phase 1/2 study. Lancet Oncol., 2014; 15: 1119-1128
    Google Scholar
  • 43. Gautschi O., Milia J., Cabarrou B., Bluthgen M.V., Besse B., SmitE.F., Wolf J., Peters S., Früh M., Koeberle D., Oulkhouir Y., SchulerM., Curioni-Fontecedro A., Huret B., Kerjouan M. i wsp.: Targetedtherapy for patients with BRAF-mutant lung cancer: results fromthe European EURAF cohort. J. Thorac. Oncol., 2015; 10: 1451-1457
    Google Scholar
  • 44. Gazdar A.F., Shigematsu H., Herz J., Minna J.D.: Mutations andaddiction to EGFR: the Achilles ‹heal› of lung cancers? Trends. Mol.Med., 2004; 10: 481-486
    Google Scholar
  • 45. Goffin J., Lacchetti C., Ellis P.M., Ung Y.C., Evans W.K.: First-line systemic chemotherapy in the treatment of advanced non-small celllung cancer: a systematic review. J. Thorac. Oncol., 2010; 5: 260-274
    Google Scholar
  • 46. Gridelli C., Peters S., Sgambato A., Casaluce F., Adjei A.A., CiardielloF.: ALK inhibitors in the treatment of advanced NSCLC. CancerTreat. Rev., 2014; 40: 300-306
    Google Scholar
  • 47. Hames M.L., Chen H., Iams W., Aston J., Lovly C.M., Horn L.:Correlation between KRAS mutation status and response to chemotherapyin patients with advanced non-small cell lung cancer. LungCancer, 2016; 92: 29-34
    Google Scholar
  • 48. Han J.Y., Park K., Kim S.W., Lee D.H., Kim H.Y., Kim H.T., AhnM.J., Yun T., Ahn J.S., Suh C., Lee J.S., Yoon S.J., Han J.H., Lee J.W., JoS.J., Lee J.S.: First-SIGNAL: first-line single-agent iressa versus gemcitabineand cisplatin trial in never-smokers with adenocarcinomaof the lung. J. Clin. Oncol., 2012; 30: 1122-1128
    Google Scholar
  • 49. Hecht S.S.: Lung carcinogenesis by tobacco smoke. Int. J. Cancer,2012, 131: 2724-2732
    Google Scholar
  • 50. Heist R.S., Wang X., Hodgson L., Otterson G.A., StinchcombeT.E., Gandhi L., Villalona-Calero M.A., Watson P., Vokes E.E., SocinskiM.A., Alliance for Clinical Trials in Oncology: CALGB 30704 (Alliance):a randomized phase II study to assess the efficacy of pemetrexedor sunitinib or pemetrexed plus sunitinib in the second-linetreatment of advanced non-small-cell lung cancer. J. Thorac. Oncol.,2014, 9: 214-221
    Google Scholar
  • 51. Herbst R.S.: Review of epidermal growth factor receptor biology.Int. J. Radiat. Oncol. Biol. Phys., 2004; 59: 21-26
    Google Scholar
  • 52. Hirsh V., Cadranel J., Cong X.J., Fairclough D., Finnern H.W., LorenceR.M., Miller V.A., Palmer M., Yang J.C.: Symptom and qualityof life benefit of afatinib in advanced non-small-cell lung cancerpatients previously treated with erlotinib or gefitinib: results ofa randomized phase IIb/III trial (LUX-Lung 1). J. Thorac. Oncol.,2013; 8: 229-237
    Google Scholar
  • 53. Hynes N.E., Lane H.A.: ERBB receptors and cancer: the complexityof targeted inhibitors. Nat. Rev. Cancer, 2005; 5: 341-354
    Google Scholar
  • 54. Iacono D., Chiari R., Metro G., Bennati C., Bellezza G., Cenci M.,Ricciuti B., Sidoni A., Baglivo S., Minotti V., Crinò L.: Future options forALK-positive non-small cell lung cancer. Lung Cancer, 2015; 87: 211-219
    Google Scholar
  • 55. Javid J., Mir R., Mirza M., Imtiyaz A., Prasant Y., Mariyam Z.,Julka P.K., Mohan A., Lone M., Ray P.C., Saxena A.: CC genotype ofanti-apoptotic gene BCL-2 (-938 C/A) is an independent prognosticmarker of unfavorable clinical outcome in patients with non-smallcelllung cancer. Clin. Transl. Oncol., 2015; 17: 289-295
    Google Scholar
  • 56. Jiang H., Zhao P.J., Su D., Feng J., Ma S.L.: Paris saponin I inducesapoptosis via increasing the Bax/Bcl-2 ratio and caspase-3 expressionin gefitinib-resistant non-small cell lung cancer in vitro and invivo. Mol. Med. Rep., 2014; 9: 2265-2272
    Google Scholar
  • 57. Jorissen R.N., Walker F., Pouliot N., Garrett T.P., Ward C.W., BurgessA.W.: Epidermal growth factor receptor: mechanisms of activationand signalling. Exp. Cell Res., 2003; 284: 31-53
    Google Scholar
  • 58. Karachaliou N., Mayo C., Costa C., Magri I., Gimenez-Capitan A.,Molina-Vila M.A., Rosell R.: KRAS mutations in lung cancer. Clin.Lung Cancer, 2013; 14: 205-214
    Google Scholar
  • 59. Kim Y.S., Seol C.H., Jung J.W., Oh S.J., Hwang K.E., Kim H.J., JeongE.T., Kim H.R.: Synergistic effect of sulindac and simvastatin on apoptosisin lung cancer A549 cells through AKT-dependent downregulationof survivin. Cancer Res. Treat., 2015; 47: 90-100
    Google Scholar
  • 60. Kobayashi S., Boggon T.J., Dayaram T., Jänne P.A., Kocher O.,Meyerson M., Johnson B.E., Eck M.J., Tenen D.G., Halmos B.: EGFRmutation and resistance of non-small-cell lung cancer to gefitinib.N. Engl. J. Med., 2005; 352: 786-792
    Google Scholar
  • 61. Kowalczyk A., Szutowicz-Zielińska E., Dziadziuszko R., JassemJ.: Znaczenie inhibitorów kinazy tyrozynowej EGFR w leczeniu niedrobnokomórkowegoraka płuca. Onkologia w Praktyce Klinicznej,2005; 1: 217-224
    Google Scholar
  • 62. Krawczyk P., Chorostowska-Wynimko J., Dziadziuszko R., JassemJ., Krzakowski M., Langfort R., Puacz E., Wasąg B., Wojas-KrawczykK.: Zalecenia metodyczne dotyczące oceny mutacji genu EGFR orazrearanżacji genu ALK w kwalifikacji chorych na niedrobnokomórkowegoraka płuca do terapii ukierunkowanych molekularnie. Nowotwory,2014; 64: 336-342
    Google Scholar
  • 63. Krzakowski M., Jassem J., Dziadziuszko R., Kowalski D.M., OlszewskiW., Orłowski T., Rzyman W., Smorczewska M.: Nowotworypłuca i opłucnej oraz śródpiersia. W: Zalecenia postępowania diagnostyczno-terapeutycznegow nowotworach złośliwych 2013, t. 1,Via Medica, Gdańsk 2013, 69-101
    Google Scholar
  • 64. Lenferink A.E., Pinkas-Kramarski R., van de Poll M.L., van VugtM.J., Klapper L.N., Tzahar E., Waterman H., Sela M., van Zoelen E.J.,Yarden Y.: Differential endocytic routing of homo – and hetero-dimericErbB tyrosine kinases confers signaling superiority to receptorheterodimers. EMBO J., 1998; 17: 3385-3397
    Google Scholar
  • 65. Li G., Zhao J., Peng X., Liang J., Deng X., Chen Y.: Radiation/paclitaxel treatment of p53-abnormal non-small cell lung cancerxenograft tumor and associated mechanism. Cancer Biother. Radiopharm.,2012; 27: 227-233
    Google Scholar
  • 66. Lockhart A.C., Liu Y., Dehdashti F., Laforest R., Picus J., Frye J.,Trull L., Belanger S., Desai M., Mahmood S., Mendell J., Welch M.J.,Siegel B.A.: Phase 1 evaluation of [(64)Cu]DOTA-patritumab to assessdosimetry, apparent receptor occupancy, and safety in subjectswith advanced solid tumors. Mol. Imaging Biol., 2016; 18: 446-453
    Google Scholar
  • 67. Ma P.C.: Personalized targeted therapy in advanced non-smallcell lung cancer. Cleve. Clin. J. Med., 2012; 79: eS56-eS60
    Google Scholar
  • 68. Mao C., Qiu L.X., Liao R.Y., Du F.B., Ding H., Yang W.C., Li J., ChenQ.: KRAS mutations and resistance to EGFR-TKIs treatment in patientswith non-small cell lung cancer: a meta-analysis of 22 studies.Lung Cancer, 2010; 69: 272-278
    Google Scholar
  • 69. Marsit C.J., Zheng S., Aldape K., Hinds P.W., Nelson H.H., WienckeJ.K., Kelsey K.T.: PTEN expression in non-small-cell lung cancer:evaluating its relation to tumor characteristics, allelic loss, and epigeneticalteration. Hum. Pathol., 2005; 36: 768-776
    Google Scholar
  • 70. Mendell J., Freeman D.J., Feng W., Hettmann T., Schneider M.,Blum S., Ruhe J., Bange J., Nakamaru K., Chen S., Tsuchihashi Z.,von Pawel J., Copigneaux C., Beckman R.A.: Clinical translation andvalidation of a predictive biomarker for patritumab, an anti-humanepidermal growth factor receptor 3 (HER3) monoclonal antibody, inpatients with advanced non-small cell lung cancer. EBioMedicine,2015; 2: 264-271
    Google Scholar
  • 71. Mitsudomi T., Morita S., Yatabe Y., Negoro S., Okamoto I., TsurutaniJ., Seto T., Satouchi M., Tada H., Hirashima T., Asami K., KatakamiN., Takada M., Yoshioka H., Shibata K. i wsp.: Gefitinib versus cisplatinplus docetaxel in patients with non-small-cell lung cancerharbouring mutations of the epidermal growth factor receptor (WJTOG3405):an open label, randomised phase 3 trial. Lancet Oncol.,2010; 11: 121-128
    Google Scholar
  • 72. Mok T.S., Wu Y.L., Thongprasert S., Yang C.H., Chu D.T., SaijoN., Sunpaweravong P., Han B., Margono B., Ichinose Y., NishiwakiY., Ohe Y., Yang J.J., Chewaskulyong B., Jiang H. i wsp.: Gefitinib orcarboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J.Med., 2009; 361: 947-957
    Google Scholar
  • 73. Montani F., Marzi M.J., Dezi F., Dama E., Carletti R.M., Bonizzi G.,Bertolotti R., Bellomi M., Rampinelli C., Maisonneuve P., Spaggiari L.,Veronesi G., Nicassio F., Di Fiore P.P., Bianchi F.: miR-Test: a blood testfor lung cancer early detection. J. Natl. Cancer Inst., 2015; 107: djv063
    Google Scholar
  • 74. Nyati M.K., Morgan M.A., Feng F.Y., Lawrence T.S.: Integrationof EGFR inhibitors with radiochemotherapy. Nat. Rev. Cancer, 2006;6: 876-885
    Google Scholar
  • 75. Paz-Ares L., Mezger J., Ciuleanu T.E., Fischer J.R., von Pawel J.,Provencio M., Kazarnowicz A., Losonczy G., de Castro G. Jr., SzczesnaA., Crino L., Reck M., Ramlau R., Ulsperger E., Schumann C. i wsp.:Necitumumab plus pemetrexed and cisplatin as first-line therapy in patients with stage IV non-squamous non-small-cell lung cancer(INSPIRE): an open-label, randomised, controlled phase 3 study. LancetOncol., 2015; 16: 328-337
    Google Scholar
  • 76. Peng Z.: Current status of gendicine in China: recombinanthuman Ad-p53 agent for treatment of cancers. Hum. Gene Ther.,2005; 16: 1016-1027
    Google Scholar
  • 77. Petersen I.: The morphological and molecular diagnosis of lungcancer. Dtsch. Arztebl. Int., 2011; 108: 525-531
    Google Scholar
  • 78. Pirker R., Herth F.J., Kerr K.M., Filipits M., Taron M., Gandara D.,Hirsch F.R., Grunenwald D., Popper H., Smit E., Dietel M., MarchettiA., Manegold C., Schirmacher P., Thomas M. i wsp.: Consensus forEGFR mutation testing in non-small cell lung cancer: results froma European workshop. J. Thorac. Oncol., 2010; 5: 1706-1713
    Google Scholar
  • 79. Planchard D., Kim T.M., Mazieres J., Quoix E., Riely G., Barlesi F.,Souquet P.J., Smit E.F., Groen H.J., Kelly R.J., Cho B.C., Socinski M.A.,Pandite L., Nase C., Ma B. i wsp.: Dabrafenib in patients with BRAFV600Epositiveadvanced non-small-cell lung cancer: a single-arm, multicentre,open-label, phase 2 trial. Lancet Oncol., 2016; 17: 642-650
    Google Scholar
  • 80. Porebska I., Wyrodek E., Kosacka M., Adamiak J., Jankowska R.,Harlozinska-Szmyrka A.: Apoptotic markers p53, Bcl-2 and Bax inprimary lung cancer. In Vivo, 2006; 20: 599-604
    Google Scholar
  • 81. Pylayeva-Gupta Y., Grabocka E., Bar-Sagi D.: RAS oncogenes:weaving a tumorigenic web. Nat. Rev. Cancer, 2011; 11: 761-774
    Google Scholar
  • 82. Reck M., van Zandwijk N., Gridelli C., Baliko Z., Rischin D., AllanS., Krzakowski M., Heigener D.: Erlotinib in advanced non-smallcell lung cancer: efficacy and safety findings of the global phase IVTarceva Lung Cancer Survival Treatment study. J. Thorac. Oncol.,2010; 5: 1616-1622
    Google Scholar
  • 83. Ren T., Shan J., Li M., Qing Y., Qian C., Wang G., Li Q., Lu G., LiC., Peng Y., Luo H., Zhang S., Yang Y., Cheng Y., Wang D., Zhou S.F.:Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhancesthe antitumor efficacy of cisplatin through inhibition ofAPE1 repair and redox activity in non-small-cell lung cancer. DrugDes. Devel. Ther., 2015; 9: 2887-2910
    Google Scholar
  • 84. Research C.f.D.E.a.: Approved Drugs – Alectinib. http://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm476946.htm (19.06.2016)
    Google Scholar
  • 85. Research C.f.D.E.a.: Approved Drugs – Cobas EGFR Mutation Testv2. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm504540.htm(19.06.2016)
    Google Scholar
  • 86. Research C.f.D.E.a.: Approved Drugs – FDA Approves CrizotinibCapsules. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm490391.htm(19.06.2016)
    Google Scholar
  • 87. Research C.f.D.E.a.: Drug Approvals and Databases – Drug TrialsSnapshots: PORTRAZZA. http://www.fda.gov/drugs/informationondrugs/ucm483844.htm(19.06.2016)
    Google Scholar
  • 88. Ribeiro Gomes J., Cruz M.R.: Combination of afatinib with cetuximabin patients with EGFR-mutant non-small-cell lung cancerresistant to EGFR inhibitors. Onco. Targets Ther., 2015; 8: 1137-1142
    Google Scholar
  • 89. Roengvoraphoj M., Tsongalis G.J., Dragnev K.H., Rigas J.R.: Epidermalgrowth factor receptor tyrosine kinase inhibitors as initialtherapy for non-small cell lung cancer: focus on epidermal growthfactor receptor mutation testing and mutation-positive patients.Cancer Treat. Rev., 2013; 39: 839-850
    Google Scholar
  • 90. Rosell R., Carcereny E., Gervais R., Vergnenegre A., Massuti B.,Felip E., Palmero R., Garcia-Gomez R., Pallares C., Sanchez J.M., PortaR., Cobo M., Garrido P., Longo F., Moran T. i wsp.: Erlotinib versusstandard chemotherapy as first-line treatment for European patientswith advanced EGFR mutation-positive non-small-cell lung cancer(EURTAC): a multicentre, open-label, randomised phase 3 trial. LancetOncol., 2012; 13: 239-246
    Google Scholar
  • 91. Roth J.A., Nguyen D., Lawrence D.D., Kemp B.L., Carrasco C.H.,Ferson D.Z., Hong W.K., Komaki R., Lee J.J., Nesbitt J.C., Pisters K.M.,Putnam J.B., Schea R., Shin D.M., Walsh G.L. i wsp.: Retrovirus-mediatedwild-type p53 gene transfer to tumors of patients with lungcancer. Nat. Med., 1996; 2: 985-991
    Google Scholar
  • 92. Scheffler M., Bos M., Gardizi M., König K., Michels S., FassunkeJ., Heydt C., Künstlinger H., Ihle M., Ueckeroth F., Albus K., Serke M.,Gerigk U., Schulte W., Töpelt K. i wsp.: PIK3CA mutations in non-smallcell lung cancer (NSCLC): genetic heterogeneity, prognostic impactand incidence of prior malignancies. Oncotarget, 2015; 6: 1315-1326
    Google Scholar
  • 93. Sequist L.V., von Pawel J., Garmey E.G., Akerley W.L., BruggerW., Ferrari D., Chen Y., Costa D.B., Gerber D.E., Orlov S., Ramlau R.,Arthur S., Gorbachevsky I., Schwartz B., Schiller J.H.: Randomizedphase II study of erlotinib plus tivantinib versus erlotinib plus placeboin previously treated non-small-cell lung cancer. J. Clin. Oncol.,2011; 29: 3307-3315
    Google Scholar
  • 94. Sequist L.V., Yang J.C., Yamamoto N., O›Byrne K., Hirsh V., Mok T.,Geater S.L., Orlov S., Tsai C.M., Boyer M., Su W.C., Bennouna J., KatoT., Gorbunova V., Lee K.H., Shah R. i wsp.: Phase III study of afatinibor cisplatin plus pemetrexed in patients with metastatic lung adenocarcinomawith EGFR mutations. J. Clin. Oncol., 2013; 31: 3327-3334
    Google Scholar
  • 95. Shepherd F.A., Rodrigues Pereira J., Ciuleanu T., Tan E.H., HirshV., Thongprasert S., Campos D., Maoleekoonpiroj S., Smylie M., MartinsR., van Kooten M., Dediu M., Findlay B., Tu D., Johnston D. i wsp.:Erlotinib in previously treated non-small-cell lung cancer. N. Engl.J. Med., 2005; 353: 123-132
    Google Scholar
  • 96. Shigematsu H., Takahashi T., Nomura M., Majmudar K., SuzukiM., Lee H., Wistuba, II, Fong K.M., Toyooka S., Shimizu N., FujisawaT., Minna J.D., Gazdar A.F.: Somatic mutations of the HER2 kinasedomain in lung adenocarcinomas. Cancer Res., 2005; 65: 1642-1646
    Google Scholar
  • 97. Siegel R., Ma J., Zou Z., Jemal A.: Cancer statistics, 2014. CA CancerJ. Clin., 2014; 64: 9-29
    Google Scholar
  • 98. Siegelin M.D., Borczuk A.C.: Epidermal growth factor receptormutations in lung adenocarcinoma. Lab. Invest., 2014; 94: 129-137
    Google Scholar
  • 99. Simone C.B. 2nd, Friedberg J.S., Glatstein E., Stevenson J.P., StermanD.H., Hahn S.M., Cengel K.A.: Photodynamic therapy for thetreatment of non-small cell lung cancer. J. Thorac. Dis., 2012; 4: 63-75
    Google Scholar
  • 100. Sirotnak F.M.: Studies with ZD1839 in preclinical models. Semin.Oncol., 2003; 30: 12-20
    Google Scholar
  • 101. Soria J.C., Mok T.S., Cappuzzo F., Jänne P.A.: EGFR-mutatedoncogene-addicted non-small cell lung cancer: current trends andfuture prospects. Cancer Treat. Rev., 2012; 38: 416-430
    Google Scholar
  • 102. Su J., Cheng H., Zhang D., Wang M., Xie C., Hu Y., Chang H.C.,Li Q.: Synergistic effects of 5-fluorouracil and gambogenic acid onA549 cells: activation of cell death caused by apoptotic and necroptoticmechanisms via the ROS-mitochondria pathway. Biol. Pharm.Bull., 2014; 37: 1259-1268
    Google Scholar
  • 103. Sugita S., Ito K., Yamashiro Y., Moriya S., Che X.F., Yokoyama T.,Hiramoto M., Miyazawa K.: EGFR-independent autophagy inductionwith gefitinib and enhancement of its cytotoxic effect by targetingautophagy with clarithromycin in non-small cell lung cancer cells.Biochem. Biophys. Res. Commun., 2015; 461: 28-34
    Google Scholar
  • 104. Toh C.K., Gao F., Lim W.T., Leong S.S., Fong K.W., Yap S.P., HsuA.A., Eng P., Koong H.N., Thirugnanam A., Tan E.H.: Never-smokerswith lung cancer: epidemiologic evidence of a distinct disease entity.J. Clin. Oncol., 2006; 24: 2245-2251
    Google Scholar
  • 105. Tokumo M., Toyooka S., Kiura K., Shigematsu H., Tomii K., AoeM., Ichimura K., Tsuda T., Yano M., Tsukuda K., Tabata M., UeokaH., Tanimoto M., Date H., Gazdar A.F., Shimizu N.: The relationshipbetween epidermal growth factor receptor mutations and clinicopathologicfeatures in non-small cell lung cancers. Clin. Cancer Res.,2005; 11: 1167-1173
    Google Scholar
  • 106. Torok S., Hegedus B., Laszlo V., Hoda M.A., Ghanim B., BergerW., Klepetko W., Dome B., Ostoros G.: Lung cancer in never smokers.Future Oncol., 2011; 7: 1195-1211
    Google Scholar
  • 107. Travis W.D., Brambilla E., Noguchi M., Nicholson A.G., GeisingerK.R., Yatabe Y., Beer D.G., Powell C.A., Riely G.J., Van Schil P.E., Garg K.,Austin J.H., Asamura H., Rusch V.W., Hirsch F.R. i wsp.: Internationalassociation for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classificationof lung adenocarcinoma. J. Thorac. Oncol., 2011; 6: 244-285
    Google Scholar
  • 108. Tsao M.S., Sakurada A., Cutz J.C., Zhu C.Q., Kamel-Reid S., SquireJ., Lorimer I., Zhang T., Liu N., Daneshmand M., Marrano P., da CunhaSantos G., Lagarde A., Richardson F., Seymour L. i wsp.: Erlotinib inlung cancer – molecular and clinical predictors of outcome. N. Engl.J. Med., 2005; 353: 133-144
    Google Scholar
  • 109. Umelo I., Noeparast A., Chen G., Renard M., Geers C., VansteenkisteJ., Giron P., De Wever O., Teugels E., De Grève J.: Identificationof a novel HER3 activating mutation homologous to EGFR-L858R inlung cancer. Oncotarget, 2016; 7: 3068-3083
    Google Scholar
  • 110. Vallee A., Sagan C., Le Loupp A.G., Bach K., Dejoie T., Denis M.G.:Detection of EGFR gene mutations in non-small cell lung cancer:lessons from a single-institution routine analysis of 1,403 tumorsamples. Int. J. Oncol., 2013; 43: 1045-1051
    Google Scholar
  • 111. Wang L.H., Li Y., Yang S.N., Wang F.Y., Hou Y., Cui W., Chen K.,Cao Q., Wang S., Zhang T.Y., Wang Z.Z., Xiao W., Yang J.Y., Wu C.F.:Gambogic acid synergistically potentiates cisplatin-induced apoptosisin non-small-cell lung cancer through suppressing NF-κB andMAPK/HO-1 signalling. Br. J. Cancer, 2014; 110: 341-352
    Google Scholar
  • 112. Wang W.L., Tang Z.H., Xie T.T., Xiao B.K., Zhang X.Y., Guo D.H.,Wang D.X., Pei F., Si H.Y., Zhu M.: Efficacy and safety of sorafenib foradvanced non-small cell lung cancer: a meta-analysis of randomizedcontrolled trials. Asian Pac. J. Cancer Prev., 2014; 15: 5691-5696
    Google Scholar
  • 113. Wheler J.J., Tsimberidou A.M., Falchook G.S., Zinner R.G., HongD.S., Fok J.Y., Fu S., Piha-Paul S.A., Naing A., Kurzrock R.: Combining erlotinib and cetuximab is associated with activity in patientswith non-small cell lung cancer (including squamous cell carcinomas)and wild-type EGFR or resistant mutations. Mol. Cancer Ther.,2013; 12: 2167-2175
    Google Scholar
  • 114. WHO | Cancer. WHO; http://www.who.int/mediacentre/factsheets/fs297/en/(10.11.2015)
    Google Scholar
  • 115. Wu X., Zhao H., Suk R., Christiani D.C.: Genetic susceptibility totobacco-related cancer. Oncogene, 2004; 23: 6500-6523
    Google Scholar
  • 116. Yokouchi H., Kanazawa K.: Revisiting the role of COX-2 inhibitorfor non-small cell lung cancer. Transl. Lung Cancer Res., 2015;4: 660-664
    Google Scholar
  • 117. Zhang C., Shi J., Mao S.Y., Xu Y.S., Zhang D., Feng L.Y., Zhang B.,Yan Y.Y., Wang S.C., Pan J.P., Yang Y.P., Lin N.M.: Role of p38 MAPK inenhanced human cancer cells killing by the combination of aspirinand ABT-737. J. Cell Mol. Med., 2015; 19: 408-417
    Google Scholar
  • 118. Zhang H., Li Z., Wang K.: Combining sorafenib with celecoxibsynergistically inhibits tumor growth of non-small cell lung cancercells in vitro and in vivo. Oncol. Rep., 2014; 31: 1954-1960
    Google Scholar
  • 119. Zhang J., Gold K.A., Kim E.: Sorafenib in non-small cell lungcancer. Expert Opin. Investig. Drugs, 2012; 21: 1417-1426
    Google Scholar
  • 120. Zhang J., Wang S., Wang L., Wang R., Chen S., Pan B., Sun Y.,Chen H.: Prognostic value of Bcl-2 expression in patients with non–small-cell lung cancer: a meta-analysis and systemic review. Oncol.Targets Ther., 2015; 8: 3361-3369
    Google Scholar

Full text

Skip to content