Noncovalent cation-π interactions – their role in nature

COMMENTARY ON THE LAW

Noncovalent cation-π interactions – their role in nature

Krzysztof Fink 1 , Janusz Boratyński 1

1. Laboratorium Chemii Biomedycznej „Neolek”, Instytut Immunologii i Terapii Doświadczalnej PAN im. Ludwika Hirszfelda we Wrocławiu

Published: 2014-11-07
DOI: 10.5604/17322693.1127950
GICID: 01.3001.0003.1367
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 1276-1286

 

Abstract

Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions – cation-π interactions – is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation–aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

References

  • 1. Ahern C.A., Eastwood A.L., Dougherty D.A., Horn R.: Electrostaticcontributions of aromatic residues in the local anesthetic receptorof voltage-gated sodium channels. Circ. Res., 2008; 102: 86-94
    Google Scholar
  • 2. Anbarasu A., Prasad V.R., Sathpathy S., Sethumadhavan R.: Influenceof cation-π interactions to the structural stability of prokaryoticand eukaryotic translation elongation factors. Protoplasma,2009; 238: 11-20
    Google Scholar
  • 3. Anbarasu A., Sethumadhavan R.: Exploring the role of cation-πinteractions in glycoproteins lipid-binding proteins and RNA-bindingproteins. J. Theor. Biol., 2007; 247: 346-353
    Google Scholar
  • 4. Andrew C.D., Bhattacharjee S., Kokkoni N., Hirst J.D., Jones G.R.,Doig A.J.: Stabilizing interactions between aromatic and basic sidechains in α-helical peptides and proteins. Tyrosine effects on helixcircular dichroism. J. Am. Chem. Soc., 2002; 124: 12706-12714
    Google Scholar
  • 5. Armentrout P.B., Yang B., Rodgers M.T.: Metal cation dependenceof interactions with amino acids: bond energies of Rb+ and Cs+ to Met,Phe, Tyr, and Trp. J. Phys. Chem. B, 2013; 117: 3771-3781
    Google Scholar
  • 6. Ashby J.A., McGonigle I.V., Price K.L., Cohen N., Comitani F., DoughertyD.A., Molteni C., Lummis S.C.: GABA binding to an insectGABA receptor: a molecular dynamics and mutagenesis study. Biophys.J., 2012; 103: 2071-2081 7 Bacarizo J., Camara-Artigas A.: Atomic resolution structures ofthe c-Src SH3 domain in complex with two high-affinity peptidesfrom classes I and II. Acta Crystallogr. D, 2013; 69: 756-766
    Google Scholar
  • 7. BMC Biochemistry, 2011; 12: 65
    Google Scholar
  • 8. Bale S., Brooks W., Hanes J.W., Mahesan A.M., Guida W.C., EalickS.E.: Role of the sulfonium center in determining the ligand specificityof human s-adenosylmethionine decarboxylase. Biochemistry,2009; 48: 6423-6430
    Google Scholar
  • 9. Broemstrup T., Reuter N.: How does proteinase 3 interact withlipid bilayers? Phys. Chem. Chem. Phys., 2010; 12: 7487-7496
    Google Scholar
  • 10. Burghardt T.P., Juranic N., Macura S., Ajtai K.: Cation-π interactionin a folded polypeptide. Biopolymers, 2002; 63: 261-272
    Google Scholar
  • 11. Burley S.K., Petsko G.A.: Amino-aromatic interactions in proteins.FEBS Lett., 1986; 203: 139-143
    Google Scholar
  • 12. Cabarcos O.M., Weinheimer C.J., Lisy J.M.: Size selectivity bycation-π interactions: Solvation of K+ and Na+ by benzene and water.J. Chem. Phys., 1999; 110: 8429-8435
    Google Scholar
  • 13. Chan D.I., Prenner E.J., Vogel H.J.: Tryptophan- and arginine–rich antimicrobial peptides: structures and mechanisms of action.Biochim. Biophys. Acta, 2006; 1758: 1184-1202
    Google Scholar
  • 14. Chen C.C., Hsu W., Hwang K.C., Hwu J.R., Lin C.C., Horng J.C.:Contributions of cation-π interactions to the collagen triple helixstability. Arch. Biochem. Biophys., 2011; 508: 46-53
    Google Scholar
  • 15. Chen C.C., Hsu W., Kao T.C., Horng J.C.: Self-assembly of shortcollagen-related peptides into fibrils via cation-π interactions. Biochemistry,2011; 50: 2381-2383
    Google Scholar
  • 16. Cheng J., Goldstein R., Gershenson A., Stec B., Roberts M.F.: Thecation-π box is a specific phosphatidylcholine membrane targetingmotif. J. Biol. Chem., 2013; 288: 14863-14873
    Google Scholar
  • 17. Collard F., Fagan R.L., Zhang J., Nemet I., Palfey B.A., MonnierV.M.: The cation-π interaction between Lys53 and the flavin of fructosamineoxidase (FAOX-II) is critical for activity. Biochemistry, 2011;50: 7977-7986
    Google Scholar
  • 18. Costanzo F., Della Valle R.G., Barone V.: MD simulation of the Na+–phenylalanine complex in water: competition between cation-π interactionand aqueous solvation. J. Phys. Chem. B, 2005; 109: 23016-23023
    Google Scholar
  • 19. Cubero E., Luque F.J., Orozco M.: Is polarization important incation-π interactions? Proc. Natl. Acad. Sci. USA, 1998; 95: 5976-5980
    Google Scholar
  • 20. de Jesus A.J., Allen T.W.: The role of tryptophan side chains inmembrane protein anchoring and hydrophobic mismatch. Biochim.Biophys. Acta, 2013; 1828: 864-876
    Google Scholar
  • 21. Diez-Garcia F., Pantoja-Uceda D., Jimenez M.A., Chakrabartty A.,Laurents D.V.: Structure of a simplified β-hairpin and its ATP complex.Arch. Biochem. Biophys., 2013; 537: 62-71
    Google Scholar
  • 22. Duan M., Song B., Shi G., Li H., Ji G., Hu J., Chen X., Fang H.:Cation 3π: cooperative interaction of a cation and three benzeneswith an anomalous order in binding energy. J. Am. Chem. Soc., 2012;134: 12104-12109
    Google Scholar
  • 23. Duffy N.H., Lester H.A., Dougherty D.A.: Ondansetron and granisetronbinding orientation in the 5-HT(3) receptor determined by unnaturalamino acid mutagenesis. ACS Chemical Biology, 2012; 7: 1738-1745
    Google Scholar
  • 24. Elumalai P., Rajasekaran M., Liu H.L., Chen C.: Investigationof cation-pi interactions in sugar-binding proteins. Protoplasma,2010; 247: 13-24
    Google Scholar
  • 25. Faraldos J.A., Antonczak A.K., Gonzalez V., Fullerton R., TippmannE.M., Allemann R.K.: Probing eudesmane cation-π interactionsin catalysis by aristolochene synthase with non-canonical aminoacids. J. Am. Chem. Soc., 2011; 133: 13906-13909
    Google Scholar
  • 26. Folch B., Dehouck Y., Rooman M.: Thermo- and mesostabilizingprotein interactions identified by temperature-dependent statisticalpotentials. Biophys. J., 2010; 98: 667-677
    Google Scholar
  • 27. Gapeev A., Dunbar R.C.: Cation-pi interactions and the gas-phasethermochemistry of the Na+/phenylalanine complex. J. Am. Chem.Soc., 2001; 123: 8360-8365
    Google Scholar
  • 28. Goldstein R., Cheng J., Stec B., Roberts M.F.: Structure of theS. aureus PI-specific phospholipase C reveals modulation of activesite access by a titratable π-cation latched loop. Biochemistry,2012; 51: 2579-2587
    Google Scholar
  • 29. Grauffel C., Yang B., He T., Roberts M.F., Gershenson A., Reuter N.:Cation-π interactions as lipid-specific anchors for phosphatidylinositol-specificphospholipase C. J. Am. Chem. Soc., 2013; 135: 5740-5750
    Google Scholar
  • 30. Gromiha M.M., Santhosh C., Ahmad S.: Structural analysis ofcation-π interactions in DNA binding proteins. Int. J. Biol. Macromol.,2004; 34: 203-211
    Google Scholar
  • 31. Guo B.C., Purnell J.W., Castleman A.W.Jr.: The clustering reactionsof benzene with sodium and lead ions. Chem. Phys. Lett.,1990; 168: 155-160
    Google Scholar
  • 32. Hauschner H., Landau M., Seligsohn U., Rosenberg N.: A uniqueinteraction between αIIb and β3 in the head region is essentialfor outside-in signaling-related functions of αIIbβ3 integrin. Blood,2010; 115: 4542-4550
    Google Scholar
  • 33. Hu J., Barbour L.J., Gokel G.W.: Probing alkali metal-π interactionswith the side chain residue of tryptophan. Proc. Natl. Acad.Sci. USA, 2002; 99: 5121-5126
    Google Scholar
  • 34. Hu J., Barbour L.J., Gokel G.W.: The indole side chain of tryptophanas a versatile π-donor. J. Am. Chem. Soc., 2002; 124: 10940-10941
    Google Scholar
  • 35. Huang M., Grant G.H., Richards W.G.: Binding modes of diketo–acid inhibitors of HIV-1 integrase: a comparative molecular dynamicssimulation study. J. Mol. Graph. Model., 2011; 29: 956-964
    Google Scholar
  • 36. Hughes R.M., Wiggins K.R., Khorasanizadeh S., Waters M.L.: Recognitionof trimethyllysine by a chromodomain is not driven by thehydrophobic effect. Proc. Natl. Acad. Sci. USA, 2007; 104: 11184-11188
    Google Scholar
  • 37. Ito L., Shiraki K., Matsuura T., Okumura M., Hasegawa K., BabaS., Yamaguchi H., Kumasaka T.: High-resolution X-ray analysis revealsbinding of arginine to aromatic residues of lysozyme surface:implication of suppression of protein aggregation by arginine. ProteinEng. Design Selection, 2011; 24: 269-274
    Google Scholar
  • 38. Jehle S., Rajagopal P., Bardiaux B., Markovic S., Kuhne R., StoutJ.R., Higman V.A., Klevit R.E., van Rossum B.J., Oschkinat H.: Solid-stateNMR and SAXS studies provide a structural basis for theactivation of alphaB-crystallin oligomers. Nat. Struct. Mol. Biol.,2010; 17: 1037-1042
    Google Scholar
  • 39. Jing W., Demcoe A.R., Vogel H.J.: Conformation of a bactericidaldomain of puroindoline a: structure and mechanism of action of a13-residue antimicrobial peptide. J. Bacteriol., 2003; 185: 4938-4947
    Google Scholar
  • 40. Kadlubanski P., Calderon-Mojica K., Rodriguez W.A., MajumdarD., Roszak S., Leszczynski J.: Role of the multipolar electrostatic interactionenergy components in strong and weak cation-pi interactions.J. Phys. Chem. A, 2013; 117: 7989-8000
    Google Scholar
  • 41. Kesters D., Thompson A.J., Brams M., van Elk R., Spurny R., GeitmannM., Villalgordo J.M., Guskov A., Danielson U.H., Lummis S.C.,Smit A.B., Ulens C.: Structural basis of ligand recognition in 5-HT3receptors. EMBO Rep., 2013; 14: 49-56
    Google Scholar
  • 42. Kniazeff J., Shi L., Loland C.J., Javitch J.A., Weinstein H., Gether U.:An intracellular interaction network regulates conformational transitionsin the dopamine transporter. J. Biol. Chem., 2008; 283: 17691-17701
    Google Scholar
  • 43. Kumpf R.A., Dougherty D.A.: A mechanism for ion selectivity inpotassium channels – computational studies of cation-π interactions.Science, 1993; 261: 1708-1710
    Google Scholar
  • 44. Larrucea J.: Solvent effect on cation-π interactions with Al3+. J.Mol. Model, 2012; 18: 4349-4354
    Google Scholar
  • 45. Lavanya P., Ramaiah S., Anbarasu A.: Cation-π interactions inβ-lactamases: the role in structural stability. Cell Biochem. Biophys.,2013; 66: 147-155
    Google Scholar
  • 46. Li J., Zhuo M., Pei L., Yu A.S.: Conserved aromatic residue conferscation selectivity in claudin-2 and claudin-10b. J. Biol. Chem.,2013; 288: 22790-22797
    Google Scholar
  • 47. Lim K., Chua R.R., Saravanan R., Basu A., Mishra B., TambyahP.A., Ho B., Leong S.S.: Immobilization studies of an engineered arginine-tryptophan-richpeptide on a silicone surface with antimicrobialand antibiofilm activity. ACS Appl. Mater. Interfaces, 2013;5: 6412-6422
    Google Scholar
  • 48. Lummis S.C., Harrison N.J., Lester H.A., Dougherty D.A.: Acation-π binding interaction with a tyrosine in the binding site ofthe GABAC receptor. Chem. Biol., 2005; 12: 993-997
    Google Scholar
  • 49. Mecozzi S., West A.P., Dougherty D.A.: Cation-π interactions inaromatics of biological and medicinal interest: electrostatic potentialsurfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. USA,1996; 93: 10566-10571
    Google Scholar
  • 50. Mecozzi S., West A.P., Dougherty D.A.: Cation-π interactions insimple aromatics: Electrostatics provide a predictive tool. J. Am.Chem. Soc., 1996; 118: 2307-2308
    Google Scholar
  • 51. Olson C.A., Shi Z., Kallenbach N.R.: Polar interactions with aromaticside chains in alpha-helical peptides: Ch…O H-bonding andcation-π interactions. J. Am. Chem. Soc., 2001; 123: 6451-6452
    Google Scholar
  • 52. Otomo K., Toyama A., Miura T., Takeuchi H.: Interactions betweenhistidine and tryptophan residues in the BM2 proton channelfrom influenza B virus. J. Biochem., 2009; 145: 543-554
    Google Scholar
  • 53. Pan J., Chen Q., Willenbring D., Yoshida K., Tillman T., KashlanO.B., Cohen A., Kong X.P., Xu Y., Tang P.: Structure of the pentamericligand-gated ion channel ELIC cocrystallized with its competitiveantagonist acetylcholine. Nature Commun., 2012; 3: 714
    Google Scholar
  • 54. Pan Y., Zhang K., Qi J., Yue J., Springer T.A., Chen J.: Cation-π interactionregulates ligand-binding affinity and signaling of integrinα4β7. Proc. Natl. Acad. Sci. USA, 2010; 107: 21388-21393
    Google Scholar
  • 55. Parrill A.L., Wanjala I.W., Pham T.C., Baker D.L.: Computationalidentification and experimental characterization of substrate bindingdeterminants of nucleotide pyrophosphatase/phosphodiesterase
    Google Scholar
  • 56. Pless S.A., Galpin J.D., Frankel A., Ahern C.A.: Molecular basisfor class Ib anti-arrhythmic inhibition of cardiac sodium channels.Nature Commun., 2011; 2: 351
    Google Scholar
  • 57. Prajapati R.S., Sirajuddin M., Durani V., Sreeramulu S., VaradarajanR.: Contribution of cation-π interactions to protein stability.Biochemistry, 2006; 45: 15000-15010
    Google Scholar
  • 58. Queralt-Rosinach N., Mestres J.: A canonical cation-π interactionstabilizes the agonist conformation of estrogen-like nuclearreceptors. Eur. Biophys. J., 2010; 39: 1471-1475
    Google Scholar
  • 59. Raines D.E., Gioia F., Claycomb R.J., Stevens R.J.: The N-methyl–D-aspartate receptor inhibitory potencies of aromatic inhaled drugsof abuse: evidence for modulation by cation-π interactions. J. Pharmacol.Exp. Ther., 2004; 311: 14-21
    Google Scholar
  • 60. Rao J.S., Zipse H., Sastry G.N.: Explicit solvent effect on cation–pi interactions: a first principle investigation. J. Phys. Chem. B,2009; 113: 7225-7236
    Google Scholar
  • 61. Reddy A.S., Sastry G.N.: Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+,NH4+, and NMe4+] interactions with the aromatic motifs of naturallyoccurring amino acids: a theoretical study. J. Phys. Chem. A, 2005;109: 8893-8903
    Google Scholar
  • 62. Reddy A.S., Zipse H., Sastry G.N.: Cation-π interactions of bareand coordinatively saturated metal ions: contrasting structural andenergetic characteristics. J. Phys. Chem. B, 2007; 111: 11546-11553
    Google Scholar
  • 63. Redmond T.M., Poliakov E., Kuo S., Chander P., Gentleman S.:RPE65, visual cycle retinol isomerase, is not inherently 11-cis-specific:support for a carbocation mechanism of retinol isomerization.J. Biol. Chem., 2010; 285: 1919-1927
    Google Scholar
  • 64. Remko M., Soralova S.: Effect of water coordination on competitionbetween π and non-π cation binding sites in aromatic aminoacids: L-phenylalanine, L-tyrosine, and L-tryptophan Li+, Na+, andK+ complexes. J. Biol. Inorg. Chem., 2012; 17: 621-630
    Google Scholar
  • 65. Roderick S.L., Chan W.W., Agate D.S., Olsen L.R., Vetting M.W.,Rajashankar K.R., Cohen D.E.: Structure of human phosphatidylcholinetransfer protein in complex with its ligand. Nat. Struct. Biol.,2002; 9: 507-511
    Google Scholar
  • 66. Ruan C., Yang Z., Hallowita N., Rodgers M.T.: Cation-π interactionswith a model for the side chain of tryptophan: structures andabsolute binding energies of alkali metal cation-indole complexes.J. Phys. Chem. A, 2005; 109: 11539-11550
    Google Scholar
  • 67. Ruan C.H., Rodgers M.T.: Cation-π interactions: Structures andenergetics of complexation of Na+ and K+ with the aromatic aminoacids, phenylalanine, tyrosine, and tryptophan. J. Am. Chem. Soc.,2004; 126: 14600-14610
    Google Scholar
  • 68. Ryzhov V., Dunbar R.C., Cerda B., Wesdemiotis C.: Cation-π effectsin the complexation of Na+ and K+ with Phe, Tyr, and Trp in thegas phase. J. Am. Soc. Mass Spectr., 2000; 11: 1037-1046
    Google Scholar
  • 69. Santarelli V.P., Eastwood A.L., Dougherty D.A., Horn R., AhernC.A.: A cation-π interaction discriminates among sodium channelsthat are either sensitive or resistant to tetrodotoxin block. J. Biol.Chem., 2007; 282: 8044-8051
    Google Scholar
  • 70. Shi Z.S., Olson C.A., Kallenbach N.R.: Cation-pi interaction inmodel alpha-helical peptides. J. Am. Chem. Soc., 2002; 124: 3284-3291
    Google Scholar
  • 71. Siu F.M., Ma N.L., Tsang C.W.: Competition between π and non-πcation-binding sites in aromatic amino acids: A theoretical study ofalkali metal cation (Li+, Na+, K+)-phenylalanine complexes. Chem.Eur. J., 2004; 10: 1966-1976
    Google Scholar
  • 72. Sophiya K., Anbarasu A.: Structural stability studies in adhesionmolecules – role of cation-pi interactions. Protoplasma, 2011;248: 673-682
    Google Scholar
  • 73. Soteras I., Orozco M., Luque F.J.: Induction effects in metal cation-benzenecomplexes. Phys. Chem. Chem. Phys., 2008; 10: 2616-2624
    Google Scholar
  • 74. Sunner J., Nishizawa K., Kebarle P.: Ion-solvent molecule interactionsin the gas-phase – the potassium-ion and benzene. J. Phys.Chem-Us, 1981; 85: 1814-1820
    Google Scholar
  • 75. Tantry S., Ding F.X., Dumont M., Becker J.M., Naider F.: Binding offluorinated phenylalanine α-factor analogues to Ste2p: evidence fora cation-π binding interaction between a peptide ligand and its cognateG protein-coupled receptor. Biochemistry, 2010; 49: 5007-5015
    Google Scholar
  • 76. Tatko C.D., Waters M.L.: The geometry and efficacy of cation-πinteractions in a diagonal position of a designed β-hairpin. ProteinSci., 2003; 12: 2443-2452
    Google Scholar
  • 77. Tavares Xda S., Blum A.P., Nakamura D.T., Puskar N.L., ShanataJ.A., Lester H.A., Dougherty D.A.: Variations in binding among severalagonists at two stoichiometries of the neuronal, α4β2 nicotinicreceptor. J. Am. Chem. Soc., 2012; 134: 11474-11480
    Google Scholar
  • 78. Tayubi I.A., Sethumadhavan R.: Nature of cation-π interactionsand their role in structural stability of immunoglobulin proteins.Biochemistry, 2010; 75: 912-918
    Google Scholar
  • 79. Tsuzuki S., Yoshida M., Uchimaru T., Mikami M.: The origin ofthe cation/π interaction: the significant importance of the inductionin Li+ and Na+ complexes. J. Phys. Chem. A, 2001; 105: 769-773
    Google Scholar
  • 80. Uchime O., Fields W., Kielian M.: The role of E3 in pH protectionduring alphavirus assembly and exit. J. Virol., 2013; 87: 10255-10262
    Google Scholar
  • 81. Vijay D., Sastry G.N.: Exploring the size dependence of cyclicand acyclic π-systems on cation-π binding. Phys. Chem. Chem. Phys.,2008; 10: 582-590
    Google Scholar
  • 82. Vivoli M., Angelucci F., Ilari A., Morea V., Angelaccio S., di SalvoM.L., Contestabile R.: Role of a conserved active site cation-πinteraction in Escherichia coli serine hydroxymethyltransferase.Biochemistry, 2009; 48: 12034-12046
    Google Scholar
  • 83. Waters M.L.: Aromatic interactions in peptides: impact on structureand function. Biopolymers, 2004; 76: 435-445
    Google Scholar
  • 84. Williams J.K., Zhang Y., Schmidt-Rohr K., Hong M.: pH-dependentconformation, dynamics, and aromatic interaction of the gatingtryptophan residue of the influenza M2 proton channel fromsolid-state NMR. Biophys. J., 2013; 104: 1698-1708
    Google Scholar
  • 85. Wintjens R., Lievin J., Rooman M., Buisine E.: Contribution ofcation-π interactions to the stability of protein-DNA complexes. J.Mol. Biol., 2000; 302: 395-410
    Google Scholar
  • 86. Wu D., Hu Q., Yan Z., Chen W., Yan C., Huang X., Zhang J., YangP., Deng H., Wang J., Deng X., Shi Y.: Structural basis of ultraviolet-Bperception by UVR8. Nature, 2012; 484: 214-219
    Google Scholar
  • 87. Xiu X., Puskar N.L., Shanata J.A., Lester H.A., Dougherty D.A.:Nicotine binding to brain receptors requires a strong cation-π interaction.Nature, 2009; 458: 534-537
    Google Scholar
  • 88. Yu R., Kaas Q., Craik D.J.: Delineation of the unbinding pathwayof α-conotoxin ImI from the α7 nicotinic acetylcholine receptor. J.Phys. Chem. B, 2012; 116: 6097-6105
    Google Scholar
  • 89. Zhang M., Cho E.J., Burstein G., Siegel D., Zhang Y.: Selectiveinactivation of a human neuronal silencing phosphatase by a smallmolecule inhibitor. ACS Chem, Biol., 2011; 6: 511-519
    Google Scholar
  • 90. Zhong W., Gallivan J.P., Zhang Y., Li L., Lester H.A., DoughertyD.A.: From ab initio quantum mechanics to molecular neurobiology:a cation-π binding site in the nicotinic receptor. Proc. Natl. Acad.Sci. USA, 1998; 95: 12088-12093
    Google Scholar

Full text

Skip to content