Osteoarthritis: etiology, risk factors, molecular mechanisms
Michał Chojnacki 1 , Adam Kwapisz 2 , Marek Synder 2 , Janusz Szemraj 1Abstract
Osteoartroza jest to nieuleczalna choroba stawów objawiająca się stopniowo postępującymi zmianami zwyrodnieniowym, prowadzącymi do przedwczesnej niepełnosprawności ruchowej. Główną przyczyną powstawania tych zmian są zaburzenia równowagi pomiędzy procesami degeneracji a regeneracji struktur chrząstki stawowej. Dotychczas zidentyfikowano wiele czynników ryzyka sprzyjających rozwojowi choroby zwyrodnieniowej stawów. Wśród nich można wyróżnić: wiek, masę ciała, przebyte urazy stawów, aktywność sportowa, płeć oraz obciążenia genetyczne. Najnowsze doniesienia naukowe potwierdzają, że patogeneza zmian osteoartrotycznych w stawach jest złożona i przebiega na wielu płaszczyznach. Główną rolę w procesie degeneracji chrząstki stawowej odgrywają enzymy z rodziny metaloproteinaz. Aktywność tych enzymów regulowana jest przez liczne cytokiny prozapalne, czynniki transkrypcyjne oraz miRNA. Dokładna analiza wszystkich procesów zachodzących w stawie objętym procesem chorobowym jest niezbędna do opracowania skutecznych strategii terapeutycznych.
References
- 1. Aida Y., Maeno M., Suzuki N., Namba A., Motohashi M., MatsumotoM., Makimura M., Matsumura H.: The effect of IL-1β on theexpression of inflammatory cytokines and their receptors in humanchondrocytes. Life Sci., 2006; 79: 764-771
Google Scholar - 2. Akhtar N., Rasheed Z., Ramamurthy S., Anbazhagan A.N., VossF.R., Haqqi T.M.: MicroRNA-27b regulates the expression of matrixmetalloproteinase 13 in human osteoarthritis chondrocytes. ArthritisRheum., 2010; 62: 1361-1371
Google Scholar - 3. Amour A., Slocombe P.M., Webster A., Butler M., Knight C.G.,Smith B.J., Stephens P.E., Shelley C., Hutton M., Knäuper V., DochertyA.J., Murphy G.: TNF-α converting enzyme (TACE) is inhibited byTIMP-3. FEBS Lett., 1998; 435: 39-44
Google Scholar - 4. Andreini C., Banci L., Bertini I., Elmi S., Rosato A.: Comparativeanalysis of the ADAM and ADAMTS families. J. Proteome Res., 2005;4: 881-888
Google Scholar - 5. Araldi E., Schipani E.: MicroRNA-140 and the silencing of osteoarthritis.Genes Dev., 2010; 24: 1075-1080
Google Scholar - 6. Bao J.P., Chen W.P., Feng J., Hu P.F., Shi Z.L., Wu L.D.: Leptin plays a catabolicrole on articular cartilage. Mol. Biol. Rep., 2011; 37: 3265-3272
Google Scholar - 7. Becerra J., Andrades J.A., Guerado E., Zamora-Navas P., López-PuertasJ.M., Reddi A.H.: Articular cartilage: structure and regeneration.Tissue Eng. Part B Rev., 2010; 16: 617-627
Google Scholar - 8. Blagojevic M., Jinks C., Jeffery A., Jordan K.P.: Risk factors for onsetof osteoarthritis of the knee in older adults: a systematic review andmeta-analysis. Osteoarthritis Cartilage, 2010; 18: 24-33
Google Scholar - 9. Bluteau G., Conrozier T., Mathieu P., Vignon E., Herbage D., Mallein-GerinF.: Matrix metalloproteinase-1, -3, -13 and aggrecanase-1and -2 are differentially expressed in experimental osteoarthritis.Biochim. Biophys. Acta, 2001; 1526: 147-158
Google Scholar - 10. Buckwalter J.A., Martin J.A.: Sports and osteoarthritis. Curr.Opin. Rheumatol., 2004; 16: 634-639
Google Scholar - 11. Burrage P.S., Brinckerhoff C.E.: Molecular targets in osteoarthritis:metalloproteinases and their inhibitors. Curr. Drug Targets,2007; 8: 293-303
Google Scholar - 12. Busija L., Bridgett L., Williams S.R., Osborne R.H., BuchbinderR., March L., Fransen M.: Osteoarthritis. Best Pract. Res. Clin. Rheumatol.2010; 24: 757-768
Google Scholar - 13. Calich A.L., Domiciano D.S., Fuller R.: Osteoarthritis: can anti–cytokine therapy play a role in treatment? Clin. Rheumatol. 2010;29: 451-455
Google Scholar - 14. Centers for Disease Control and Prevention (CDC). Prevalenceof disabilities and associated health conditions among adults–UnitedStates, 1999. MMWR Morb. Mortal. Wkly Rep., 2001; 50: 120-125
Google Scholar - 15. Chirco R., Liu X.W., Jung K.K., Kim H.R.: Novel functions of TIMPsin cell signaling. Cancer Metastasis Rev., 2006; 25: 99-113
Google Scholar - 16. Cornelis F.M., Luyten F.P., Lories R.J.: Functional effects of susceptibilitygenes in osteoarthritis. Discov. Med., 2011; 12: 129-139
Google Scholar - 17. de Klerk B.M., Schiphof D., Groeneveld F.P., Koes B.W., van OschG.J., van Meurs J.B., Bierma-Zeinstra S.M.: Limited evidence for a protectiveeffect of unopposed oestrogen therapy for osteoarthritis ofthe hip: a systematic review. Rheumatology, 2009; 48: 104-112
Google Scholar - 18. DeGroot J.: The AGE of the matrix: chemistry, consequence andcure. Curr. Opin. Pharmacol., 2004; 4: 301-305
Google Scholar - 19. Dumond H., Presle N., Terlain B., Mainard D., Loeuille D., NetterP., Pottie P.: Evidence for a key role of leptin in osteoarthritis.Arthritis Rheum., 2003; 48: 3118-3129
Google Scholar - 20. Durigova M., Nagase H., Mort J.S., Roughley P.J.: MMPs are lessefficient than ADAMTS5 in cleaving aggrecan core protein. MatrixBiol., 2011; 30: 145-153
Google Scholar - 21. Elders M.J.: The increasing impact of arthritis on public health.J. Rheumatol. Suppl., 2000; 60: 6-8
Google Scholar - 22. Felson D.T., Zhang Y.: An update on the epidemiology of kneeand hip osteoarthritis with a view to prevention. Arthritis Rheum.,1998; 41: 1343-1355
Google Scholar - 23. Felson D.T., Zhang Y., Hannan M.T., Naimark A., Weissman B.N.,Aliabadi P., Levy D.: The incidence and natural history of knee osteoarthritisin the elderly: The Framingham Osteoarthritis Study.Arthritis Rheum., 1995; 38: 1500-1505
Google Scholar - 24. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Metaloproteinazyw miażdżycy naczyń krwionośnych. Postępy Hig. Med. Dośw., 2011;65: 16-27
Google Scholar - 25. Flannery C.R., Lark M.W., Sandy J.D.: Identification of a stromelysincleavage site within the interglobular domain of human aggrecan.Evidence for proteolysis at this site in vivo in human articularcartilage. J. Biol. Chem., 1992; 267: 1008-1014
Google Scholar - 26. Foye P.M., Stitik T.P., Chen B., Nadler S.F.: Osteoarthritis andbody weight. Nutrition Res., 2000; 20: 899-903
Google Scholar - 27. Garstang S.V., Stitik T.P.: Osteoarthritis: epidemiology, risk factors,and pathophysiology. Am. J. Phys. Med. Rehabil., 2006; 85: S2-S11
Google Scholar - 28. Gelber A.C., Hochberg M.C., Mead L.A., Wang N.Y., Wigley F.M.,Klag M.J.: Joint injury in young adults and risk for subsequent kneeand hip osteoarthritis. Ann. Intern. Med., 2000; 133: 321-328
Google Scholar - 29. Gendron C., Kashiwagi M., Lim N.H., Enghild J.J., Thøgersen I.B.,Hughes C., Caterson B., Nagase H.: Proteolytic activities of humanADAMTS-5: comparative studies with ADAMTS-4. J. Biol. Chem.,2007; 282: 18294-18306
Google Scholar - 30. Goodwin J.L., Kraemer J.J., Bajwa Z.H.: The use of opioids in thetreatment of osteoarthritis: when, why, and how? Curr. Rheumatol.Rep., 2009; 11: 5-14
Google Scholar - 31. Groblewska M., Mroczko B., Szmitkowski M.: The role of selectedmatrix metalloproteinases and their inhibitors in colorectal cancerdevelopment. Postępy Hig. Med. Dośw., 2010; 64: 22-30
Google Scholar - 32. Han Y.P., Yan C., Garner W.L.: Proteolytic activation of matrixmetalloproteinase-9 in skin wound healing is inhibited by alpha-1-antichymotrypsin. J. Invest. Dermatol., 2008; 128: 2334-2342
Google Scholar - 33. Heinegård D.: Proteoglycans and more-from molecules to biology.Int. J. Exp. Pathol., 2009; 90: 575-586
Google Scholar - 34. Hendren L., Beeson P.A.: A review of the differences betweennormal and osteoarthritis articular cartilage in human knee andankle joints. Foot (Edinb.), 2009; 19: 171-176
Google Scholar - 35. Hu P.F., Bao J.P., Wu L.D.: The emerging role of adipokines inosteoarthritis: a narrative review. Mol. Biol. Rep., 2011; 38: 873-878
Google Scholar - 36. Huang K., Wu L.D.: Aggrecanase and aggrecan degradation inosteoarthritis: a review. J. Int. Med. Res., 2008; 36: 1149-1160
Google Scholar - 37. Jones S.W., Watkins G., Le Good N., Roberts S., Murphy C.L.,Brockbank S.M., Needham M.R., Read S.J., Newham P.: The identificationof differentially expressed microRNA in osteoarthritic tissuethat modulate the production of TNF-alpha and MMP13. OsteoarthritisCartilage, 2009; 17: 464-472
Google Scholar - 38. Kashiwagi M., Tortorella M., Nagase H., Brew K.: TIMP-3 isa potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2(ADAM-TS5). J. Biol. Chem., 2001; 276: 12501-12504
Google Scholar - 39. Kean W.F., Kean R., Buchanan W.W.: Osteoarthritis: symptoms,signs and source of pain. Inflammopharmacology, 2004; 12: 3-31
Google Scholar - 40. Klein T., Bischoff R.: Physiology and pathophysiology of matrixmetalloproteases. Amino Acids, 2011; 41: 271-290
Google Scholar - 41. Knudson C.B., Knudson W.: Proteoglycans and glycosaminoglycans.Semin. Cell. Dev. Biol., 2001; 12: 69-78
Google Scholar - 42. Koshy P.J., Lundy C.J., Rowan A.D., Porter S., Edwards D.R., HoganA., Clark I.M., Cawston T.E.: The modulation of matrix metalloproteinaseand ADAM gene expression in human chondrocytes byinterleukin-1 and oncostatin M: a time-course study using real-timequantitative reverse transcription-polymerase chain reaction. ArthritisRheum., 2002; 46: 961-967
Google Scholar - 43. Koskinen A., Vuolteenaho K., Nieminen R., Moilanen T., MoilanenE.: Leptin enhances MMP-1, MMP-3 and MMP-13 productionin human osteoarthritic cartilage and correlates with MMP-1 andMMP-3 in synovial fluid from OA patients. Clin. Exp. Rheumatol.,2011; 29: 57-64
Google Scholar - 44. Kotani K., Sakane N., Kamimoto M., Taniguchi N.: Levels of reactiveoxygen metabolites in patients with knee osteoarthritis. Australas.J. Ageing, 2011; 30: 231-233
Google Scholar - 45. Kuno K., Matsushima K.: ADAMTS-1 protein anchors at the extracellularmatrix through the thrombospondin type I motifs and itsspacing region. J. Biol. Chem., 1998; 273: 13912-13917
Google Scholar - 46. Laine L., White W.B., Rostom A., Hochberg M.: COX-2 selectiveinhibitors in the treatment of osteoarthritis. Semin. ArthritisRheum., 2008; 38: 165-187
Google Scholar - 47. Lambert E., Dasse E., Haye B., Petitfrere E.: TIMPs as multifacialproteins. Crit. Rev. Oncol. Hematol., 2004; 49: 187-198
Google Scholar - 48. Lawrence R.C., Felson D.T., Helmick C.G., Arnold L.M., Choi H.,Deyo R.A., Gabriel S., Hirsch R., Hochberg M.C., Hunder G.G., Jordan.JM., Katz J.N., Kremers H.M., Wolfe F.: Estimates of the prevalence ofarthritis and other rheumatic conditions in the United States. PartII. Arthritis Rheum., 2008; 58: 26-35
Google Scholar - 49. Li X., Gibson G., Kim J.S., Kroin J., Xu S., van Wijnen A.J., Im H.J.:MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis.Gene, 2011; 480: 34-41
Google Scholar - 50. Lin E.A., Liu C.J.: The role of ADAMTSs in arthritis. Protein Cell,2010; 1: 33-47
Google Scholar - 51. Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura i funkcja.Postępy Hig. Med. Dośw., 2008; 62: 328-336
Google Scholar - 52. Loeser R.F.: Aging and osteoarthritis. Curr. Opin. Rheumatol.,2011; 23: 492-496
Google Scholar - 53. Lohmander L.S., Englund P.M., Dahl L.L., Roos E.M.: The longtermconsequence of anterior cruciate ligament and meniscus injuries:osteoarthritis. Am. J. Sports Med., 2007; 35: 1756-1769
Google Scholar - 54. Marcu K.B., Otero M., Olivotto E., Borzi R.M., Goldring M.B.: NFkappaBsignaling: multiple angles to target OA. Curr. Drug Targets,2010; 11: 599-613
Google Scholar - 55. Martel-Pelletier J.: Pathophysiology of osteoarthritis. OsteoarthritisCartilage, 2004; 12, Suppl. A: S31-S33
Google Scholar - 56. May M.J., Ghosh S.: Signal transduction through NF-κB. Immunol.Today, 1998; 19: 80-88
Google Scholar - 57. Migliore A., Bizzi E., Massafra U., Vacca F., Alimonti A., IannessiF., Tormenta S.: Viscosupplementation: a suitable option forhip osteoarthritis in young adults. Eur. Rev. Med. Pharmacol. Sci.,2009; 13: 465-472
Google Scholar - 58. Miyaki S., Sato T., Inoue A., Otsuki S., Ito Y., Yokoyama S., KatoY., Takemoto F., Nakasa T., Yamashita S., Takada S., Lotz M.K., Ueno–Kudo H., Asahara H.: MicroRNA-140 plays dual roles in both cartilagedevelopment and homeostasis. Genes Dev., 2010; 24: 1173-1185
Google Scholar - 59. Moreland L.W.: Intra-articular hyaluronan (hyaluronic acid) andhylans for the treatment of osteoarthritis: mechanisms of action.Arthritis Res. Ther., 2003; 5: 54–67
Google Scholar - 60. Moseley T.A., Haudenschild D.R., Rose L., Reddi A.H.: Interleukin-17family and IL-17 receptors. Cytokine Growth Factor Rev.,2003; 14: 155-174
Google Scholar - 61. Mueller M.B., Tuan R.S.: Anabolic/catabolic balance in pathogenesisof osteoarthritis: identifying molecular targets. PM R, 2011; 3: S3-S11
Google Scholar - 62. Murphy G., Willenbrock F.: Tissue inhibitors of matrix metalloendopeptidases.Methods Enzymol., 1995; 248: 496-510
Google Scholar - 63. Nagase H., Itoh Y., Binner S.: Interaction of alpha 2-macroglobulinwith matrix metalloproteinases and its use for identification oftheir active forms. Ann. N. Y. Acad. Sci., 1994; 732: 294-302
Google Scholar - 64. Nagase H., Visse R., Murphy G.: Structure and function of matrixmetalloproteinases and TIMPs. Cardiovasc. Res., 2006; 69: 562-573
Google Scholar - 65. Nakasa T., Shibuya H., Nagata Y., Niimoto T., Ochi M.: The inhibitoryeffect of microRNA-146a expression on bone destruction incollagen-induced arthritis. Arthritis Rheum., 2011; 63: 1582-1590
Google Scholar - 66. Oeckinghaus A., Ghosh S.: The NF-κB family of transcriptionfactors and its regulation. Cold Spring Harb. Perspect. Biol., 2009;1: a000034
Google Scholar - 67. Onishi R.M., Gaffen S.L.: Interleukin-17 and its target genes:mechanisms of interleukin-17 function in disease. Immunology,2010; 129: 311-321
Google Scholar - 68. Otero M., Plumb D.A., Tsuchimochi K., Dragomir C.L., HashimotoK., Peng H., Olivotto E., Bevilacqua M., Tan L., Yang Z., Zhan Y.,Oettgen P., Li Y., Marcu K.B., Goldring M.B.: E74-like factor 3 (ELF3)impacts on matrix metalloproteinase 13 (MMP13) transcriptionalcontrol in articular chondrocytes under pro-inflammatory stress.J. Biol. Chem., 2012; 287: 3559-3572
Google Scholar - 69. Palotie A., Väisänen P., Ott J., Ryhänen L., Elima K., Vikkula M.,Cheah K., Vuorio E., Peltonen L.: Predisposition to familial osteoarthrosislinked to type II collagen gene. Lancet, 1989; 1: 924-927
Google Scholar - 70. Perumal S., Antipova O., Orgel J.P.: Collagen fibril architecture,domain organization, and triple-helical conformation govern itsproteolysis. Proc. Natl. Acad. Sci. USA, 2008; 105: 2824-2829
Google Scholar - 71. Plaas A., Velasco J., Gorski D.J., Li J., Cole A., Christopherson K.,Sandy J.D.: The relationship between fibrogenic TGFβ1 signaling inthe joint and cartilage degradation in post-injury osteoarthritis.Osteoarthritis Cartilage, 2011; 19: 1081-1090
Google Scholar - 72. Porter S., Clark I.M., Kevorkian L., Edwards D.R.: The ADAMTSmetalloproteinases. Biochem. J., 2005; 386: 15-27
Google Scholar - 73. Pratta M.A., Scherle P.A., Yang G., Liu R.Q., Newton R.C.: Inductionof aggrecanase 1 (ADAM-TS4) by interleukin-1 occurs throughactivation of constitutively produced protein. Arthritis Rheum.,2003; 48: 119-133
Google Scholar - 74. Richmond R.S., Carlson C.S., Register T.C., Shanker G., Loeser R.F.:Functional estrogen receptors in adult articular cartilage: estrogenreplacement therapy increases chondrocyte synthesis of proteoglycansand insulin-like growth factor binding protein 2. ArthritisRheum., 2000; 43: 2081-2090
Google Scholar - 75. Roughley P.J.: The structure and function of cartilage proteoglycans.Eur. Cell Mater., 2006; 12: 92-101
Google Scholar - 76. Sandy J.D., Neame P.J., Boynton R.E., Flannery C.R.: Catabolism ofaggrecan in cartilage explants. Identification of a major cleavage sitewithin the interglobular domain. J. Biol. Chem., 1991; 266: 8683-8685
Google Scholar - 77. Schiller M., Javelaud D., Mauviel A.: TGF-β-induced SMAD signalingand gene regulation: consequences for extracellular matrixremodeling and wound healing. J. Dermatol. Sci., 2004; 35: 83-92
Google Scholar - 78. Scott J.L., Gabrielides C., Davidson R.K., Swingler T.E., Clark I.M.,Wallis G.A., Boot-Handford R.P., Kirkwood T.B., Taylor R.W., YoungD.A.: Superoxide dismutase downregulation in osteoarthritis progressionand end-stage disease. Ann. Rheum. Dis., 2010; 69: 1502-1510
Google Scholar - 79. Sondergaard B.C., Schultz N., Madsen S.H., Bay-Jensen A.C.,Kassem M., Karsdal M.A.: MAPK are essential upstream signalingpathways in proteolytic cartilage degradation – divergence in pathwaysleading to aggrecanase and MMP-mediated articular cartilagedegradation. Osteoarthritis Cartilage, 2010; 18: 279-288
Google Scholar - 80. Song R.H., Tortorella M.D., Malfait A.M., Alston J.T., Yang Z.,Arner E.C., Griggs D.W.: Aggrecan degradation in human articularcartilage explants is mediated by both ADAMTS-4 and ADAMTS-5.Arthritis Rheum., 2007; 56: 575-585
Google Scholar - 81. Stevens-Lapsley J.E., Kohrt W.M.: Osteoarthritis in women:effects of estrogen, obesity and physical activity. Womens Health(Lond. Engl.), 2010; 6: 601-615
Google Scholar - 82. Tallant C., Marrero A., Gomis-Rüth F.X., Tallant C., Marrero A.,Gomis-Rüth F.X.: Matrix metalloproteinases: fold and function oftheir catalytic domains. Biochim. Biophys. Acta, 2010; 1803: 20-28
Google Scholar - 83. Tanigawa S., Aida Y., Kawato T., Honda K., Nakayama G., MotohashiM., Suzuki N., Ochiai K., Matsumura H., Maeno M.: Interleukin–17F affects cartilage matrix turnover by increasing the expressionof collagenases and stromelysin-1 and by decreasing the expressionof their inhibitors and extracellular matrix components in chondrocytes.Cytokine, 2011; 56: 376-386
Google Scholar - 84. Tardif G., Hum D., Pelletier J.P., Duval N., Martel-Pelletier J.:Regulation of the IGFBP-5 and MMP-13 genes by the microRNAsmiR-140 and miR-27a in human osteoarthritic chondrocytes. BMCMusculoskelet Disord., 2009; 10: 148
Google Scholar - 85. Tchetina E.V.: Developmental mechanisms in articular cartilagedegradation in osteoarthritis. Arthritis, 2011; 2011: 683970
Google Scholar - 86. Tseng C.C., Wolfe M.M.: Nonsteroidal anti-inflammatory drugs.Med. Clin. North Am., 2000; 84: 1329-1344
Google Scholar - 87. Van der Kraan P.M., Blaney Davidson E.N., Van den Berg W.B.: A rolefor age-related changes in TGFβ signaling in aberrant chondrocytedifferentiation and osteoarthritis. Arthritis Res. Ther., 2010; 12: 201
Google Scholar - 88. Van Lint P., Libert C.: Chemokine and cytokine processing bymatrix metalloproteinases and its effect on leukocyte migration andinflammation. J. Leukoc. Biol., 2007; 82: 1375-1381
Google Scholar - 89. Van Wart H.E., Birkedal-Hansen H.: The cysteine switch: a principleof regulation of metalloproteinase activity with potential applicabilityto the entire matrix metalloproteinase gene family. Proc.Natl. Acad. Sci. USA, 1990; 87: 5578-5582
Google Scholar - 90. Verma P., Dalal K.: ADAMTS-4 and ADAMTS-5: key enzymes inosteoarthritis. J. Cell. Biochem., 2011; 112: 3507-3514
Google Scholar - 91. Vincenti M.P., Brinckerhoff C.E.: Transcriptional regulation ofcollagenase (MMP-1, MMP-13) genes in arthritis: integration of complexsignaling pathways for the recruitment of gene-specific transcriptionfactors. Arthritis Res., 2002; 4: 157-164
Google Scholar - 92. Visse R., Nagase H.: Matrix metalloproteinases and tissue inhibitorsof metalloproteinases: structure, function, and biochemistry.Circ. Res., 2003; 92: 827-839
Google Scholar - 93. Wang M., Shen J., Jin H., Im H.J., Sandy J., Chen D.: Recent progressin understanding molecular mechanisms of cartilage degenerationduring osteoarthritis. Ann. N. Y. Acad. Sci., 2011; 1240: 61-69
Google Scholar - 94. Wassilew G.I., Lehnigk U., Duda G.N., Taylor W.R., Matziolis G.,Dynybil C.: The expression of proinflammatory cytokines and matrixmetalloproteinases in the synovial membranes of patients withosteoarthritis compared with traumatic knee disorders. Arthroscopy,2010; 26: 1096-1104
Google Scholar - 95. Williams C.J., Jimenez S.A.: Heritable diseases of cartilage causedby mutations in collagen genes. J. Rheumatol. Suppl., 1995; 43: 28-33
Google Scholar - 96. Xu L., Peng H., Glasson S., Lee P.L., Hu K., Ijiri K., Olsen B.R., GoldringM.B., Li Y.: Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in thepathogenesis of osteoarthritis. Arthritis Rheum., 2007; 56: 2663-2673
Google Scholar - 97. Xu L., Servais J., Polur I., Kim D., Lee P.L., Chung K., Li Y.: Attenuationof osteoarthritis progression by reduction of discoidin domainreceptor 2 in mice. Arthritis Rheum., 2010; 62: 2736-2744
Google Scholar - 98. Yamasaki K., Nakasa T., Miyaki S., Ishikawa M., Deie M., AdachiN., Yasunaga Y., Asahara H., Ochi M.: Expression of microRNA-146ain osteoarthritis cartilage. Arthritis Rheum., 2009; 60: 1035-1041
Google Scholar - 99. Zhang W., Moskowitz R.W., Nuki G., Abramson S., Altman R.D.,Arden N., Bierma-Zeinstra S., Brandt K.D., Croft P., Doherty M., DougadosM., Hochberg M., Hunter D.J., Kwoh K., Lohmander L.S., TugwellP.: OARSI recommendations for the management of hip andknee osteoarthritis, Part II: OARSI evidence-based, expert consensusguidelines. Osteoarthritis Cartilage, 2008; 16: 137-162
Google Scholar - 100. Zhang Y., Jordan J. M.: Epidemiology of osteoarthritis. Clin.Geriatr. Med., 2010; 26: 355-369
Google Scholar - 101. Ziskoven C., Jäger M., Zilkens C., Bloch W., Brixius K., KrauspeR.: Oxidative stress in secondary osteoarthritis: from cartilage destructionto clinical presentation? Orthop. Rev. (Pavia), 2010; 2: e23
Google Scholar - 102. Zitka O., Kukacka J., Krizkova S., Huska D., Adam V., MasarikM., Prusa R., Kizek R.: Matrix metalloproteinases. Curr. Med. Chem.,2010; 17: 3751-3768
Google Scholar