Participation of heat shock proteins in modulation of NF-кB transcription factor activation during bacterial infections

COMMENTARY ON THE LAW

Participation of heat shock proteins in modulation of NF-кB transcription factor activation during bacterial infections

Justyna Struzik 1 , Lidia Szulc-Dąbrowska 1 , Marek Niemiałtowski 1

1. Zakład Immunologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Published: 2015-01-02
DOI: 10.5604/17322693.1165199
GICID: 01.3001.0009.6567
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 969-977

 

Abstract

Nuclear factor kappa-light-chain enhancer of activated B-cells (NF-кB) is a pleiotropic transcription factor, which regulates processes of immune response and inflammation. NF-кB can undergo activation as a result of bacterial infections via Toll-like receptors (TLR), which recognize pathogen-associated molecular patterns (PAMP), such as lipopolysaccharides (LPS). Stimulation of the cells results in phosphorylation of inhibitor кB (IкB) and the translocation of NF-кB to the nucleus, where the transcription of genes encoding molecules, such as proinflammatory cytokines and chemokines takes place. Activation of NF-кB undergoes modulation upon heat shock, which induces the expression of heat shock proteins (HSP). NF-кB, in turn, is involved in the regulation of transcription of genes encoding HSP, while members of HSP family are modulators of NF-кB activation, which occurs as a result bacterial infections and leads to the development of inflammation. HSP90 is a major chaperone, which is associated with IкB kinase (IKK) subunits. HSP90 inhibitors enable dissociation of such complexes, thus blocking NF-кB and inflammatory process during bacterial infections. HSP72 and HSP70, in turn, modulate the expression of NF-кB controlled genes during sepsis and play a protective role, whereas exogenous HSP70 may enhance the inflammatory response. Bacterial HSP, such as HSP60 of Chlamydia pneumophila and Helicobacter pylori, or GroL of Porphyromonas gingivalis, as well as HSP65 and HSP70 of Mycobacterium tuberculosis and DnaK of Francisella tularensis activate NF-κB and inflammation. Knowledge of these interactions is extremely helpful in the development of therapeutic strategies.

References

  • 1. Ahn K.S., Aggarwal B.B.: Transcritption factor NF-кB: a sensor forsmoke and stress signals. Ann. N. Y. Acad. Sci., 2005; 1056: 218-233
    Google Scholar
  • 2. Ammirante M., Rosati A., Gentilella A., Festa M., Petrella A., MarzulloL., Pascale M., Belisario M.A., Leone A., Turco M.C.: The activityof hsp90α promoter is regulated by NF-кB transcription factors.Oncogene, 2008; 27: 1175-1178
    Google Scholar
  • 3. Anand P.K., Anand E., Bleck C.K., Anes E., Griffiths G.: ExosomalHsp70 induces a pro-inflammatory response to foreign particlesincluding mycobacteria. PLoS One, 2010; 5: e10136
    Google Scholar
  • 4. Anckar J., Sistonen L.: Heat shock factor 1 as a coordinator of stressand developmental pathways. Adv. Exp. Med. Biol., 2007; 594: 78-88
    Google Scholar
  • 5. Argueta J.G., Shiota S., Yamaguchi N., Masuhiro Y., HanazawaS.: Induction of Porphyromonas gingivalis GroEL signaling via bindingto Toll-like receptors 2 and 4. Oral Microbiol. Immunol., 2006;21: 245-251
    Google Scholar
  • 6. Asea A., Rehli M., Kabingu E., Boch J.A., Bare O., Auron P.E., StevensonM.A., Calderwood S.K.: Novel signal transduction pathwayutilized by extracellular HSP70: role of toll-like receptor (TLR) 2 andTLR4. J. Biol. Chem., 2002; 277: 15028-15034
    Google Scholar
  • 7. Ashtekar A.R., Zhang P., Katz J., Deivanayagam C.C., RallabhandiP., Vogel S.N., Michalek S.M.: TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J.Leukoc. Biol., 2008; 84: 1434-1446
    Google Scholar
  • 8. Bulut Y., Michelsen K.S., Hayrapetian L., Naiki Y., Spallek R., SinghM., Arditi M.: Mycobacterium tuberculosis heat shock proteins usediverse Toll-like receptor pathways to activate pro-inflammatorysignals. J. Biol. Chem., 2005; 280: 20961-20967
    Google Scholar
  • 9. Chen D., Pan J., Du B., Sun D.: Induction of the heat shock responsein vivo inhibits NF-кB activity and protects murine liver fromendotoxemia-induced injury. J. Clin. Immunol., 2005; 25: 452-461
    Google Scholar
  • 10. Chen H.W., Kuo H.T., Wang S.J., Lu T.S., Yang R.C.: In vivo heatshock protein assembles with septic liver NF-кB/I-кB complex regulatingNF-кB activity. Shock, 2005; 24: 232-238
    Google Scholar
  • 11. Christmas P.: Toll-like receptors: sensors that detect infection.Nature Education, 2010; 3: 85
    Google Scholar
  • 12. Dokladny K., Lobb R., Wharton W., Ma T.Y., Moseley P.L.: LPSinducedcytokine levels are repressed by elevated expression ofHSP70 in rats: possible role of NF-κB. Cell Stress Chaperones, 2010,15: 153-163
    Google Scholar
  • 13. Dunsmore K.E., Denenberg A.G., Page K., Wong H.R.: Mechanismand function of heat shock-dependent IκBα expression. Inflamm.Res., 2006; 55: 254-259
    Google Scholar
  • 14. Feinstein D.L., Galea E., Reis D.J.: Suppression of glial nitric oxidesynthase induction by heat shock: effects on proteolytic degradationof IкB-α. Nitric Oxide, 1997; 1: 167-176
    Google Scholar
  • 15. Gally F., Minor M.N., Smith S.K., Case S.R., Chu H.W.: Heat shockfactor 1 protects against lung Mycoplasma pneumoniae infection inmice. J. Innate Immun., 2012; 4: 59-68
    Google Scholar
  • 16. Glushkova O.V., Novoselova T.V., Khrenov M.O., Parfenyuk S.B.,Lunin S.M., Fesenko E.E., Novoselova E.G.: Role of heat shock proteinhsp90 in formation of protective reactions in acute toxic stress. Biochemistry,2010; 75: 702-707
    Google Scholar
  • 17. Ialenti A., Di Meglio P., D’Acquisto F., Pisano B., Maffia P., GrassiaG., Di Rosa M., Ianaro A.: Inhibition of cyclooxygenase-2 gene expressionby the heat shock response in J774 murine macrophages.Eur. J. Pharmacol., 2005; 509: 89-96
    Google Scholar
  • 18. Jha H.C., Srivastava P., Prasad J., Mittal A.: Chlamydia pneumoniaeheat shock protein 60 enhances expression of ERK, TLR-4 and IL-8 inatheromatous plaques of coronary artery disease patients. Immonol.Invest., 2011; 40: 206-222
    Google Scholar
  • 19. Jin S., Song Y.C., Emili A., Sherman P.M., Chan V.L.: JlpA of Campylobacterjejuni interacts with surface-exposed heat shock protein90α and triggers signalling pathways leading to the activation ofNF-кB and p38 MAP kinase in epithelial cells. Cell. Microbiol., 2003;5: 165-174
    Google Scholar
  • 20. Joussen A.M., Poulaki V., Qin W., Kirchhof B., Mitsiades N., WiegandS.J., Rudge J., Yancopoulos G.D., Adamis A.P.: Retinal vascularendothelial growth factor induces intercellular adhesion molecule-1and endothelial nitric oxide synthase expression and initiates earlydiabetic retinal leukocyte adhesion in vivo. Am. J. Pathol., 2002;160: 501-509
    Google Scholar
  • 21. Kim J.M., Kim J.S., KimY.J., Oh Y.K., Kim I.Y., Chee Y.J., Han J.S.,Jung H.C.: Conjugated linoleic acids produced by Lactobacillus dissociatesIKK-γ and Hsp90 complex in Helicobacter pylori-infected gastricepithelial cells. Lab. Invest., 2008; 88: 541-552
    Google Scholar
  • 22. Kim J.M., Lee D.H., Kim J.S., Lee J.Y., Park H.G., Kim Y.J., Oh Y.K.,Jung H.C., Kim S.I.: 5,7-dihydroxy-3,4,6-trimethoxyflavone inhibitsthe inflammatory effects induced by Bacteroides fragilis enterotoxinvia dissociating the complex of heat shock protein 90 and IκBα andIκB kinase-γ in intestinal epithelial cell culture. Clin. Exp. Immunol.,2009; 155: 541-551
    Google Scholar
  • 23. Knowlton A.A.: NFкB, heat shock proteins, HSF-1, and inflammation.Cardiovasc. Res., 2006; 69: 7-8
    Google Scholar
  • 24. Ko S.H., Yoo D.Y., Kim Y.J., Choi S.M., Kang K.K., Kim H., Kim N.,Kim J.S., Kim J.M.: A mechanism for the action of the compoundDA-6034 on NF-κB pathway activation in Helicobacter pylori-infectedgastric epithelial cells. Scand. J. Immunol., 2011; 74: 253-263
    Google Scholar
  • 25. Kol A., Bourcier T., Lichtman A.H., Libby P.: Chlamydial andhuman heat shock protein 60s activate human vascular endothelium,smooth muscle cells, and macrophages. J. Clin. Invest., 1999;103: 571-577
    Google Scholar
  • 26. Malhotra V., Wong H.R.: Interactions between the heat shockresponse and the nuclear factor-κB signaling pathway. Crit. CareMed., 2002; 30 (Suppl.): S89-S95
    Google Scholar
  • 27. Morimoto R.I.: The heat shock response: systems biology ofproteotoxic stress in aging and disease. Cold Spring Harb. Symp.Quant. Biol., 2011; 76: 91-99
    Google Scholar
  • 28. Murphy T.L., Cleveland M.G., Kulesza P., Magram, J., MurphyK.M.: Regulation of interleukin 12 p40 expression through an NF-κBhalf-site. Mol. Cell. Biol., 1995; 15: 5258-5267
    Google Scholar
  • 29. Oeckinghaus A., Ghosh S.: The NF-κB family of transcriptionfactors and its regulation. Cold Spring Harb. Perspect. Biol., 2009;1: a000034
    Google Scholar
  • 30. Poulaki V., Iliaki E., Mitsiades N., Mitsiades C.S., Paulus Y.N.,Bula D.V., Gragoudas E.S., Miller J.W.: Inhibition of Hsp90 attenuatesinflammation in endotoxin-induced uveitis. FASEB J., 2007; 21:2113-2123
    Google Scholar
  • 31. Santoro M.G.: Heat shock factors and the control of the stressresponse. Biochem. Pharmacol., 2000; 59: 55-63
    Google Scholar
  • 32. Schell M.T., Spitzer A.L., Johnson J.A., Lee D., Harris H.W.: Heatshock inhibits NF-κB activation in a dose- and time-dependent manner.J. Surg. Res., 2005; 129: 90-93
    Google Scholar
  • 33. Sen R., Smale S.T.: Selectivity of the NF-κB response. Cold SpringHarb. Perspect. Biol., 2010; 2: a000257
    Google Scholar
  • 34. Sun D., Chen D., Du B., Pan J.: Heat shock response inhibits NF-кB activation and cytokine production in murine Kupffer cells. J.Surg. Res., 2005; 129: 114-121
    Google Scholar
  • 35. Takenaka R., Yokota K., Ayada K., Mizuno M., ZhaoY., FujinamiY., Lin S.N., Toyokawa T., Okada H., Shiratori Y., Oguma K.: Helicobacterpylori heat-shock protein 60 induces inflammatory responsesthrough the Toll-like receptor-triggered pathway in cultured humangastric epithelial cells. Microbiology, 2004; 150: 3913-3922
    Google Scholar
  • 36. Teruya H., Higa F., Akamine M., Ishikawa C., Okudaira T., TomimoriK., Mukaida N., Tateyama M., Heuner K., Fujita J., Mori N.:Mechanisms of Legionella pneumophila-induced interleukin-8 expressionin human lung epithelial cells. BMC Microbiol., 2007; 7: 102
    Google Scholar
  • 37. Wieten L., Broere F., van der Zee R., Koerkamp E.K., WagenaarJ., van Eden W.: Cell stress induced HSP are targets of regulatoryT cells: a role for HSP inducing compounds as anti-inflammatoryimmuno-modulators? FEBS Lett., 2007; 581: 3716-3722
    Google Scholar
  • 38. Yeo M., Park H.K., Lee K.M., Lee K.J., Kim J.H., Cho S.W., HahmK.B.: Blockage of HSP 90 modulates Helicobacter pylori-induced IL-8productions through the inactivation of transcriptional factors ofAP-1 and NF-кB. Biochem. Biophys. Res. Commun., 2004; 320: 816-824
    Google Scholar

Full text

Skip to content