Pathophysiology and molecular basis of selected metabolic abnormalities in Huntington’s disease

COMMENTARY ON THE LAW

Pathophysiology and molecular basis of selected metabolic abnormalities in Huntington’s disease

Jolanta Krzysztoń-Russjan 1

1. Zakład Biochemii i Biofarmaceutyków, Narodowy Instytut Leków w Warszawie

Published: 2016-12-30
DOI: 10.5604/17322693.1227557
GICID: 01.3001.0009.6910
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1331-1342

 

Abstract

Huntington’s disease (HD) is an incurable, devastating neurodegenerative disease with a known genetic background and autosomally dominant inheritance pattern. HTT gene mutation (mHTT) is associated with polymorphic fragment elongation above 35 repeats of the CAG triplet. The mHTT product is an altered protein with a poly-Q elongated fragment, with the highest expression determined in the central nervous system (CNS) and with differentiated expression outside the CNS. A drastic loss of striatal and deeper layers of the cerebral cortex neurons was determined in the CNS, but muscle and body weight mass loss with dysfunction of many organs was also observed. HD symptoms include neurological disturbances, such as choreal movements with dystonia, speech and swallowing impairments, and additionally a variety of psychiatric and behavioral symptoms with cognitive decline have been described.They are the result of disturbances of several cellular pathways related to signal transmission, mitochondrial dysfunction and energy metabolism impairment shown by gene and protein expression and alteration of their functions. Impairment of energy processes demonstrated by a decrease of ATP production and increase of oxidative stress markers was determined in- and outside of the CNS in glycolysis, the Krebs cycle and the electron transport chain. A correlation between the increase of energy metabolism impairment level and the increase in number of CAG repeats in HTT has often been described. The energy metabolism study is an initial stage of sensitive biomarkers and a new therapeutic investigative option for early application in order to inhibit pathological processes in HD.Identification of pathological changes outside the CNS requires a reevaluation of diagnostic and therapeutic rules in HD.

References

  • 1. Allen K.L., Waldvogel H.J., Glass M., Faull R.L.: Cannabinoid (CB1),GABAA and GABAB receptor subunit changes in the globus pallidus inHuntington’s disease. J. Chem. Neuroanat., 2009; 37: 266-281
    Google Scholar
  • 2. Antoniades C.A., Altham P.M., Mason S.L., Barker R.A., CarpenterR.: Saccadometry: a new tool for evaluating presymptomatic Huntingtonpatients. Neuroreport, 2007; 18: 1133-1136
    Google Scholar
  • 3. Aquilani R., Iadarola P., Contardi A., Boselli M., Verri M., PastorisO., Boschi F., Arcidiaco P., Viglio S.: Branched-chain amino acidsenhance the cognitive recovery of patients with severe traumaticbrain injury. Arch. Phys. Med. Rehabil., 2005; 86: 1729-1735
    Google Scholar
  • 4. Arany Z., Wagner B.K., Ma Y., Chinsomboon J., Laznik D., SpiegelmanB.M.: Gene expression-based screening identifies microtubuleinhibitors as inducers of PGC-1α and oxidative phosphorylation.Proc. Natl. Acad. Sci. USA, 2008; 105: 4721-4726
    Google Scholar
  • 5. Atwal R.S., Xia J., Pinchev D., Taylor J., Epand R.M., Truant R.:Huntingtin has a membrane association signal that can modulatehuntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet.,2007; 16: 2600-2615
    Google Scholar
  • 6. Borovecki F., Lovrecic L., Zhou J., Jeong H., Then F., Rosas H.D.,Hersch S.M., Hogarth P., Bouzou B., Jensen R.V., Krainc D.: Genome–wide expression profiling of human blood reveals biomarkers forHuntington’s disease. Proc. Natl. Acad Sci. USA, 2005; 102: 11023-11028
    Google Scholar
  • 7. Borrell-Pages M., Canals J.M., Cordelieres F.P., Parker J.A., PinedaJ.R., Grange G., Bryson E.A., Guillermier M., Hirsch E., HantrayeP., Cheetham M.E., Néri C., Alberch J., Brouillet E., Saudou F., HumbertS.: Cystamine and cysteamine increase brain levels of BDNF inHuntington disease via HSJ1b and transglutaminase. J. Clin. Invest.,2006; 116: 1410-1424
    Google Scholar
  • 8. Brosnan J.T., Brosnan M.E.: Branched-chain amino acids: enzymeand substrate regulation. J. Nutr., 2006; 136 (Suppl. 1): 207S-211S
    Google Scholar
  • 9. Browne S.E.: Mitochondria and Huntington’s disease pathogenesis:insight from genetic and chemical models. Ann. N.Y. Acad.Sci. 2008; 1147: 358-382
    Google Scholar
  • 10. Bubko I., Gruber B.M., Anuszewska E.L.: The role of the proteasomefor therapy of incurable diseases. Postępy Hig. Med. Dośw.,2010; 64: 314-325
    Google Scholar
  • 11. Carta A.R., Pisanu A.: Modulating microglia activity with PPAR-γagonists: a promising therapy for Parkinson’s disease? Neurotox.Res., 2013; 23: 112-123
    Google Scholar
  • 12. Caviston J.P., Holzbaur E.L.: Huntingtin as an essential integratorof intracellular vesicular trafficking. Trends Cell Biol., 2009;19: 147-155
    Google Scholar
  • 13. Charrin B.C., Saudou F., Humbert S.: Axonal transport failurein neurodegenerative disorders: the case of Huntington’s disease.Pathol. Biol., 2005; 53: 189-192
    Google Scholar
  • 14. Chen L.L., Wu J.C., Wang L.H., Wang J., Qin Z.H., Difiglia M., LinF.: Rapamycin prevents the mutant huntingtin-suppressed GLT-1expression in cultured astrocytes. Acta Pharmacol Sin., 2012; 33:385-392
    Google Scholar
  • 15. Cho S.R., Benraiss A., Chmielnicki E., Samdani A., Economides A.,Goldman S.A.: Induction of neostriatal neurogenesis slows diseaseprogression in a transgenic murine model of Huntington disease. J.Clin. Invest., 2007; 117: 2889-2902
    Google Scholar
  • 16. Chuang D.M., Leng Y., Marinova Z., Kim H.J., Chiu C.T.: Multipleroles of HDAC inhibition in neurodegenerative conditions. TrendsNeurosci., 2009; 32: 591-601
    Google Scholar
  • 17. Cui L., Jeong H., Borovecki F., Parkhurst C.N., Tanese N., KraincD.: Transcriptional repression of PGC-1α by mutant huntingtinleads to mitochondrial dysfunction and neurodegeneration. Cell,2006; 127: 59-69
    Google Scholar
  • 18. Domercq M., Matute C.: Neuroprotection by tetracyclines.Trends Pharmacol. Sci., 2004; 25: 609-612
    Google Scholar
  • 19. Doria J.G., de Souza J.M., Andrade J.N., Rodrigues H.A., GuimaraesI.M., Carvalho T.G., Guatimosim C., Dobransky T., Ribeiro F.M.: ThemGluR5 positive allosteric modulator, CDPPB, ameliorates pathologyand phenotypic signs of a mouse model of Huntington’s disease.Neurobiol Dis., 2015; 73: 163-173
    Google Scholar
  • 20. Fernandes H.B., Baimbridge K.G., Church J., Hayden M.R., RaymondL.A.: Mitochondrial sensitivity and altered calcium handlingunderlie enhanced NMDA-induced apoptosis in YAC128 model ofHuntington’s disease. J. Neurosci., 2007; 27: 13614-13623
    Google Scholar
  • 21. Ferrante R.J.: Mouse models of Huntington’s disease and methodologicalconsiderations for therapeutic trials. Biochim. Biophys.Acta, 2009; 1792: 506-520
    Google Scholar
  • 22. Finkbeiner S., Cuervo A.M., Morimoto R.I., Muchowski P.J.: Disease-modifyingpathways in neurodegeneration. J. Neurosci., 2006;26: 10349-10357
    Google Scholar
  • 23. Gao Y.G., Yan X.Z., Song A.X., Chang Y.G., Gao X.C., Jiang N., ZhangQ., Hu H.Y.: Structural insights into the specific binding of huntingtinproline-rich region with the SH3 and WW domains. Structure,2006; 14: 1755-1765
    Google Scholar
  • 24. Group THsDCR: A novel gene containing a trinucleotide repeatthat is expanded and unstable on Huntington’s disease chromosomes.Cell, 1993; 72: 971-983
    Google Scholar
  • 25. Gruber B., Kłaczkow G., Jaworska M., Krzysztoń-Russjan J., AnuszewskaE.L., Zielonka D., Klimberg A., Marcinkowski J.T.: Huntington’disease – imbalance of amino acid levels in plasma of patientsand mutation carriers. Ann. Agric. Environ. Med., 2013; 20: 779-783
    Google Scholar
  • 26. Gulyás B., Sovago J., Gomez-Mancilla B., Jia Z., Szigeti C., GulyaK., Schumacher M., Maguire R.P., Gasparini F., Halldin C.: Decreaseof mGluR5 receptor density goes parallel with changes in enkephalinand substance P immunoreactivity in Huntington’s disease: a preliminary investigation in the postmortem human brain. BrainStruct. Funct., 2015; 220: 3043-3051
    Google Scholar
  • 27. Guo X., Disatnik M.H., Monbureau M., Shamloo M., Mochly-RosenD., Qi X.: Inhibition of mitochondrial fragmentation diminishesHuntington’s disease-associated neurodegeneration. J. Clin. Invest.,2013; 123: 5371-5388
    Google Scholar
  • 28. Gusella J.F., Macdonald M.: Genetic criteria for Huntington’sdisease pathogenesis. Brain Res. Bull., 2007; 72: 78-82
    Google Scholar
  • 29. Gusella J.F., MacDonald M.E.: Huntington’s disease: the case forgenetic modifiers. Genome Med., 2009; 1: 80
    Google Scholar
  • 30. Harris R.A., Joshi M., Jeoung N.H., Obayashi M.: Overview of themolecular and biochemical basis of branched-chain amino acid catabolism.J. Nutr., 2005; 135 (Suppl. 6): 1527S-1530S
    Google Scholar
  • 31. Jiang Y.J., Che M.X., Yuan J.Q., Xie Y.Y., Yan X.Z., Hu H.Y.: Interactionwith polyglutamine-expanded huntingtin alters cellulardistribution and RNA processing of huntingtin yeast two-hybridprotein A (HYPA). J. Biol. Chem., 2011; 286: 25236-25245
    Google Scholar
  • 32. Kaltenbach L.S., Romero E., Becklin R.R., Chettier R., Bell R.,Phansalkar A., Strand A., Torcassi C., Savage J., Hurlburt A., Cha G.H.,Ukani L., Chepanoske C.L., Zhen Y., Sahasrabudhe S. i wsp.: Huntingtininteracting proteins are genetic modifiers of neurodegeneration.PLoS Genet., 2007; 3: e82
    Google Scholar
  • 33. Kassubek J., Juengling F.D., Ecker D., Landwehrmeyer G.B.: Thalamicatrophy in Huntington’s disease co-varies with cognitive performance:a morphometric MRI analysis. Cereb. Cortex, 2005; 15: 846-853
    Google Scholar
  • 34. Kim M.W., Chelliah Y., Kim S.W., Otwinowski Z., BezprozvannyI.: Secondary structure of Huntingtin amino-terminal region. Structure,2009; 17: 1205-1212
    Google Scholar
  • 35. Kosinski C.M., Schlangen C., Gellerich F.N., Gizatullina Z., DeschauerM., Schiefer J., Young A.B., Landwehrmeyer G.B., ToykaK.V., Sellhaus B., Lindenberg K.S.: Myopathy as a first symptom ofHuntington’s disease in a Marathon runner. Mov. Disord., 2007; 22:1637-1640
    Google Scholar
  • 36. Krzysztoń-Russjan J., Zielonka D., Jackiewicz J., Kuśmirek S.,Bubko I., Klimberg A., Marcinkowski J.T., Anuszewska E.L.: A studyof molecular changes relating to energy metabolism and cellularstress in people with Huntington’s disease: looking for biomarkers.J. Bioenerg. Biomembr., 2013; 45: 71-85
    Google Scholar
  • 37. Leoni V., Mariotti C., Tabrizi S.J., Valenza M., Wild E.J., HenleyS.M., Hobbs N.Z., Mandelli M.L., Grisoli M., Björkhem I., Cattaneo E.,Di Donato S.: Plasma 24S-hydroxycholesterol and caudate MRI in pre–manifest and early Huntington’s disease. Brain, 2008; 131: 2851-2859
    Google Scholar
  • 38. Li S.H., Li X.J.: Huntingtin and its role in neuronal degeneration.Neuroscientist, 2004; 10: 467-475
    Google Scholar
  • 39. Maiese K., Chong Z.Z., Shang Y.C., Wang S.: Targeting diseasethrough novel pathways of apoptosis and autophagy. Expert Opin.Ther. Targets, 2012; 16: 1203-1214
    Google Scholar
  • 40. McGill J.K., Beal M.F.: PGC-1α, a new therapeutic target in Huntington’sdisease? Cell, 2006; 127: 465-468
    Google Scholar
  • 41. Mielcarek M., Landles C., Weiss A., Bradaia A., Seredenina T.,Inuabasi L., Osborne G.F., Wadel K., Touller C., Butler R., RobertsonJ., Franklin S.A., Smith D.L., Park L., Marks P.A. i wsp.: HDAC4 reduction:a novel therapeutic strategy to target cytoplasmic huntingtinand ameliorate neurodegeneration. PLoS Biol., 2013; 11: e1001717
    Google Scholar
  • 42. Milakovic T., Johnson G.V.: Mitochondrial respiration and ATPproduction are significantly impaired in striatal cells expressingmutant huntingtin. J. Biol. Chem., 2005; 280: 30773-30782
    Google Scholar
  • 43. Mochel F., Charles P., Seguin F., Barritault J., Coussieu C., PerinL., Le Bouc Y., Gervais C., Carcelain G., Vassault A., Feingold J., RabierD., Durr A.: Early energy deficit in Huntington disease: identificationof a plasma biomarker traceable during disease progression.PLoS One, 2007; 2: e647
    Google Scholar
  • 44. Mori M., Adachi Y., Mori N., Kurihara S., Kashiwaya Y., KusumiM., Takeshima T., Nakashima K.: Double-blind crossover study ofbranched-chain amino acid therapy in patients with spinocerebellardegeneration. J. Neurol. Sci., 2002; 195: 149-152
    Google Scholar
  • 45. Naia L., Ferreira I.L., Cunha-Oliveira T., Duarte A.I., Ribeiro M.,Rosenstock T.R., Laço M.N., Ribeiro M.J., Oliveira C.R., Saudou F.,Humbert S., Rego A.C.: Activation of IGF-1 and insulin signalingpathways ameliorate mitochondrial function and energy metabolismin Huntington’s Disease human lymphoblasts. Mol. Neurobiol.,2015; 51: 331-348
    Google Scholar
  • 46. Napoli E., Wong S., Hung C., Ross-Inta C., Bomdica P., Giulivi C.:Defective mitochondrial disulfide relay system, altered mitochondrialmorphology and function in Huntington’s disease. Hum. Mol.Genet., 2013; 22: 989-1004
    Google Scholar
  • 47. Perez-De La Cruz V., Santamaria A.: Integrative hypothesis forHuntington’s disease: a brief review of experimental evidence. Physiol.Res., 2007; 56: 513-526
    Google Scholar
  • 48. Quarrell O.W., Rigby A.S., Barron L., Crow Y., Dalton A., DennisN., Fryer A.E., Heydon F., Kinning E., Lashwood A., Losekoot M., MargerisonL., McDonnell S., Morrison P.J., Norman A., Peterson M., RaymondF.L., Simpson S., Thompson E., Warner J.: Reduced penetrancealleles for Huntington’s disease: a multi-centre direct observationalstudy. J. Med. Genet., 2007; 44: e68
    Google Scholar
  • 49. Reinius B., Blunder M., Brett F.M., Eriksson A., Patra K., JonssonJ., Jazin E., Kullander K.: Conditional targeting of medium spinyneurons in the striatal matrix. Front Behav Neurosci., 2015; 9: 71
    Google Scholar
  • 50. Runne H., Kuhn A., Wild E.J., Pratyaksha W., Kristiansen M., IsaacsJ.D., Régulier E., Delorenzi M., Tabrizi S.J., Luthi-Carter R.: Analysisof potential transcriptomic biomarkers for Huntington’s diseasein peripheral blood. Proc. Natl. Acad. Sci. USA, 2007; 104: 14424-14429
    Google Scholar
  • 51. Sassone J., Colciago C., Cislaghi G., Silani V., Ciammola A.: Huntington’sdisease: the current state of research with peripheral tissues.Exp. Neurol., 2009; 219: 385-397
    Google Scholar
  • 52. Semaka A., Kay C., Belfroid R.D., Bijlsma E.K., Losekoot M., vanLangen I.M., van Maarle M.C., Oosterloo M., Hayden M.R., van BelzenM.J.: A new mutation for Huntington disease following maternaltransmission of an intermediate allele. Eur. J. Med. Genet.,2015; 58: 28-30
    Google Scholar
  • 53. Seong I.S., Woda J.M., Song J.J., Lloret A., Abeyrathne P.D., WooC.J., Gregory G., Lee J.M., Wheeler V.C., Walz T., Kingston R.E., GusellaJ.F., Conlon R.A., MacDonald M.E.: Huntingtin facilitates polycombrepressive complex 2. Hum. Mol. Genet., 2010; 19: 573-583
    Google Scholar
  • 54. Shoulson I., Young A.B.: Milestones in huntington disease. Mov.Disord., 2011; 26: 1127-1133
    Google Scholar
  • 55. Sipilä J.O., Hietala M., Siitonen A., Päivärinta M., Majamaa K.:Epidemiology of Huntington’s disease in Finland. Parkinsonism Relat.Disord., 2015; 21: 46-49
    Google Scholar
  • 56. St-Pierre J., Drori S., Uldry M., Silvaggi J.M., Rhee J., Jäger S.,Handschin C., Zheng K., Lin J., Yang W., Simon D.K., Bachoo R., SpiegelmanB.M.: Suppression of reactive oxygen species and neurodegenerationby the PGC-1 transcriptional coactivators. Cell, 2006;127: 397-408
    Google Scholar
  • 57. Strand A.D., Aragaki A.K., Shaw D., Bird T., Holton J., Turner C.,Tapscott S.J., Tabrizi S.J., Schapira A.H., Kooperberg C., Olson J.M.:Gene expression in Huntington’s disease skeletal muscle: a potentialbiomarker. Hum. Mol. Genet., 2005; 14: 1863-1876
    Google Scholar
  • 58. Szczudlik A., Rudzińska M., Zielonka D.: Choroba Huntingtona –obecny stan wiedzy. Pol. Prz. Neur., 2008; 4 (Suppl. A): 95-97
    Google Scholar
  • 59. Tebano M.T., Martire A., Chiodi V., Ferrante A., Popoli P.: Roleof adenosine A2A receptors in modulating synaptic functions andbrain levels of BDNF: a possible key mechanism in the pathophysiologyof Huntington’s disease. ScientificWorldJournal, 2010; 10:1768-1782
    Google Scholar
  • 60. van der Burg J.M., Björkqvist M., Brundin P.: Beyond the brain:widespread pathology in Huntington’s disease. Lancet Neurol.,2009; 8: 765-774
    Google Scholar
  • 61. Vassos E., Panas M., Kladi A., Vassilopoulos D.: Effect of CAGrepeat length on psychiatric disorders in Huntington’s disease. J.Psychiatr. Res., 2008; 42: 544-549
    Google Scholar
  • 62. Villar-Menéndez I., Blanch M., Tyebji S., Pereira-Veiga T., AlbasanzJ.L., Martín M., Ferrer I., Pérez-Navarro E., Barrachina M.: Increased5-methylcytosine and decreased 5-hydroxymethylcytosinelevels are associated with reduced striatal A2AR levels in Huntington’sdisease. Neuromolecular Med., 2013; 15: 295-309
    Google Scholar
  • 63. Walker F.O.: Huntington’s disease. Lancet, 2007; 369: 218-228
    Google Scholar
  • 64. Weydt P., Pineda V.V., Torrence A.E., Libby R.T., Satterfield T.F.,Lazarowski E.R., Gilbert M.L., Morton G.J., Bammler T.K., Strand A.D.,Cui L., Beyer R.P., Easley C.N., Smith A.C., Krainc D., Luquet S., SweetI.R., Schwartz M.W., La Spada A.R.: Thermoregulatory and metabolicdefects in Huntington’s disease transgenic mice implicatePGC-1α in Huntington’s disease neurodegeneration. Cell Metab.,2006; 4: 349-362
    Google Scholar
  • 65. Zielonka D.: Objawy, patogeneza i dostępne obecnie możliwościleczenia farmakologicznego choroby Huntingtona. Europejska SiećChoroby Huntingtona. Neuropsychiatr. Neuropsychol., 2009; 4: 10-16
    Google Scholar

Full text

Skip to content