Pathophysiology and molecular basis of selected metabolic abnormalities in Huntington’s disease
Jolanta Krzysztoń-Russjan 1Abstract
Huntington’s disease (HD) is an incurable, devastating neurodegenerative disease with a known genetic background and autosomally dominant inheritance pattern. HTT gene mutation (mHTT) is associated with polymorphic fragment elongation above 35 repeats of the CAG triplet. The mHTT product is an altered protein with a poly-Q elongated fragment, with the highest expression determined in the central nervous system (CNS) and with differentiated expression outside the CNS. A drastic loss of striatal and deeper layers of the cerebral cortex neurons was determined in the CNS, but muscle and body weight mass loss with dysfunction of many organs was also observed. HD symptoms include neurological disturbances, such as choreal movements with dystonia, speech and swallowing impairments, and additionally a variety of psychiatric and behavioral symptoms with cognitive decline have been described.They are the result of disturbances of several cellular pathways related to signal transmission, mitochondrial dysfunction and energy metabolism impairment shown by gene and protein expression and alteration of their functions. Impairment of energy processes demonstrated by a decrease of ATP production and increase of oxidative stress markers was determined in- and outside of the CNS in glycolysis, the Krebs cycle and the electron transport chain. A correlation between the increase of energy metabolism impairment level and the increase in number of CAG repeats in HTT has often been described. The energy metabolism study is an initial stage of sensitive biomarkers and a new therapeutic investigative option for early application in order to inhibit pathological processes in HD.Identification of pathological changes outside the CNS requires a reevaluation of diagnostic and therapeutic rules in HD.
References
- 1. Allen K.L., Waldvogel H.J., Glass M., Faull R.L.: Cannabinoid (CB1),GABAA and GABAB receptor subunit changes in the globus pallidus inHuntington’s disease. J. Chem. Neuroanat., 2009; 37: 266-281
Google Scholar - 2. Antoniades C.A., Altham P.M., Mason S.L., Barker R.A., CarpenterR.: Saccadometry: a new tool for evaluating presymptomatic Huntingtonpatients. Neuroreport, 2007; 18: 1133-1136
Google Scholar - 3. Aquilani R., Iadarola P., Contardi A., Boselli M., Verri M., PastorisO., Boschi F., Arcidiaco P., Viglio S.: Branched-chain amino acidsenhance the cognitive recovery of patients with severe traumaticbrain injury. Arch. Phys. Med. Rehabil., 2005; 86: 1729-1735
Google Scholar - 4. Arany Z., Wagner B.K., Ma Y., Chinsomboon J., Laznik D., SpiegelmanB.M.: Gene expression-based screening identifies microtubuleinhibitors as inducers of PGC-1α and oxidative phosphorylation.Proc. Natl. Acad. Sci. USA, 2008; 105: 4721-4726
Google Scholar - 5. Atwal R.S., Xia J., Pinchev D., Taylor J., Epand R.M., Truant R.:Huntingtin has a membrane association signal that can modulatehuntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet.,2007; 16: 2600-2615
Google Scholar - 6. Borovecki F., Lovrecic L., Zhou J., Jeong H., Then F., Rosas H.D.,Hersch S.M., Hogarth P., Bouzou B., Jensen R.V., Krainc D.: Genome–wide expression profiling of human blood reveals biomarkers forHuntington’s disease. Proc. Natl. Acad Sci. USA, 2005; 102: 11023-11028
Google Scholar - 7. Borrell-Pages M., Canals J.M., Cordelieres F.P., Parker J.A., PinedaJ.R., Grange G., Bryson E.A., Guillermier M., Hirsch E., HantrayeP., Cheetham M.E., Néri C., Alberch J., Brouillet E., Saudou F., HumbertS.: Cystamine and cysteamine increase brain levels of BDNF inHuntington disease via HSJ1b and transglutaminase. J. Clin. Invest.,2006; 116: 1410-1424
Google Scholar - 8. Brosnan J.T., Brosnan M.E.: Branched-chain amino acids: enzymeand substrate regulation. J. Nutr., 2006; 136 (Suppl. 1): 207S-211S
Google Scholar - 9. Browne S.E.: Mitochondria and Huntington’s disease pathogenesis:insight from genetic and chemical models. Ann. N.Y. Acad.Sci. 2008; 1147: 358-382
Google Scholar - 10. Bubko I., Gruber B.M., Anuszewska E.L.: The role of the proteasomefor therapy of incurable diseases. Postępy Hig. Med. Dośw.,2010; 64: 314-325
Google Scholar - 11. Carta A.R., Pisanu A.: Modulating microglia activity with PPAR-γagonists: a promising therapy for Parkinson’s disease? Neurotox.Res., 2013; 23: 112-123
Google Scholar - 12. Caviston J.P., Holzbaur E.L.: Huntingtin as an essential integratorof intracellular vesicular trafficking. Trends Cell Biol., 2009;19: 147-155
Google Scholar - 13. Charrin B.C., Saudou F., Humbert S.: Axonal transport failurein neurodegenerative disorders: the case of Huntington’s disease.Pathol. Biol., 2005; 53: 189-192
Google Scholar - 14. Chen L.L., Wu J.C., Wang L.H., Wang J., Qin Z.H., Difiglia M., LinF.: Rapamycin prevents the mutant huntingtin-suppressed GLT-1expression in cultured astrocytes. Acta Pharmacol Sin., 2012; 33:385-392
Google Scholar - 15. Cho S.R., Benraiss A., Chmielnicki E., Samdani A., Economides A.,Goldman S.A.: Induction of neostriatal neurogenesis slows diseaseprogression in a transgenic murine model of Huntington disease. J.Clin. Invest., 2007; 117: 2889-2902
Google Scholar - 16. Chuang D.M., Leng Y., Marinova Z., Kim H.J., Chiu C.T.: Multipleroles of HDAC inhibition in neurodegenerative conditions. TrendsNeurosci., 2009; 32: 591-601
Google Scholar - 17. Cui L., Jeong H., Borovecki F., Parkhurst C.N., Tanese N., KraincD.: Transcriptional repression of PGC-1α by mutant huntingtinleads to mitochondrial dysfunction and neurodegeneration. Cell,2006; 127: 59-69
Google Scholar - 18. Domercq M., Matute C.: Neuroprotection by tetracyclines.Trends Pharmacol. Sci., 2004; 25: 609-612
Google Scholar - 19. Doria J.G., de Souza J.M., Andrade J.N., Rodrigues H.A., GuimaraesI.M., Carvalho T.G., Guatimosim C., Dobransky T., Ribeiro F.M.: ThemGluR5 positive allosteric modulator, CDPPB, ameliorates pathologyand phenotypic signs of a mouse model of Huntington’s disease.Neurobiol Dis., 2015; 73: 163-173
Google Scholar - 20. Fernandes H.B., Baimbridge K.G., Church J., Hayden M.R., RaymondL.A.: Mitochondrial sensitivity and altered calcium handlingunderlie enhanced NMDA-induced apoptosis in YAC128 model ofHuntington’s disease. J. Neurosci., 2007; 27: 13614-13623
Google Scholar - 21. Ferrante R.J.: Mouse models of Huntington’s disease and methodologicalconsiderations for therapeutic trials. Biochim. Biophys.Acta, 2009; 1792: 506-520
Google Scholar - 22. Finkbeiner S., Cuervo A.M., Morimoto R.I., Muchowski P.J.: Disease-modifyingpathways in neurodegeneration. J. Neurosci., 2006;26: 10349-10357
Google Scholar - 23. Gao Y.G., Yan X.Z., Song A.X., Chang Y.G., Gao X.C., Jiang N., ZhangQ., Hu H.Y.: Structural insights into the specific binding of huntingtinproline-rich region with the SH3 and WW domains. Structure,2006; 14: 1755-1765
Google Scholar - 24. Group THsDCR: A novel gene containing a trinucleotide repeatthat is expanded and unstable on Huntington’s disease chromosomes.Cell, 1993; 72: 971-983
Google Scholar - 25. Gruber B., Kłaczkow G., Jaworska M., Krzysztoń-Russjan J., AnuszewskaE.L., Zielonka D., Klimberg A., Marcinkowski J.T.: Huntington’disease – imbalance of amino acid levels in plasma of patientsand mutation carriers. Ann. Agric. Environ. Med., 2013; 20: 779-783
Google Scholar - 26. Gulyás B., Sovago J., Gomez-Mancilla B., Jia Z., Szigeti C., GulyaK., Schumacher M., Maguire R.P., Gasparini F., Halldin C.: Decreaseof mGluR5 receptor density goes parallel with changes in enkephalinand substance P immunoreactivity in Huntington’s disease: a preliminary investigation in the postmortem human brain. BrainStruct. Funct., 2015; 220: 3043-3051
Google Scholar - 27. Guo X., Disatnik M.H., Monbureau M., Shamloo M., Mochly-RosenD., Qi X.: Inhibition of mitochondrial fragmentation diminishesHuntington’s disease-associated neurodegeneration. J. Clin. Invest.,2013; 123: 5371-5388
Google Scholar - 28. Gusella J.F., Macdonald M.: Genetic criteria for Huntington’sdisease pathogenesis. Brain Res. Bull., 2007; 72: 78-82
Google Scholar - 29. Gusella J.F., MacDonald M.E.: Huntington’s disease: the case forgenetic modifiers. Genome Med., 2009; 1: 80
Google Scholar - 30. Harris R.A., Joshi M., Jeoung N.H., Obayashi M.: Overview of themolecular and biochemical basis of branched-chain amino acid catabolism.J. Nutr., 2005; 135 (Suppl. 6): 1527S-1530S
Google Scholar - 31. Jiang Y.J., Che M.X., Yuan J.Q., Xie Y.Y., Yan X.Z., Hu H.Y.: Interactionwith polyglutamine-expanded huntingtin alters cellulardistribution and RNA processing of huntingtin yeast two-hybridprotein A (HYPA). J. Biol. Chem., 2011; 286: 25236-25245
Google Scholar - 32. Kaltenbach L.S., Romero E., Becklin R.R., Chettier R., Bell R.,Phansalkar A., Strand A., Torcassi C., Savage J., Hurlburt A., Cha G.H.,Ukani L., Chepanoske C.L., Zhen Y., Sahasrabudhe S. i wsp.: Huntingtininteracting proteins are genetic modifiers of neurodegeneration.PLoS Genet., 2007; 3: e82
Google Scholar - 33. Kassubek J., Juengling F.D., Ecker D., Landwehrmeyer G.B.: Thalamicatrophy in Huntington’s disease co-varies with cognitive performance:a morphometric MRI analysis. Cereb. Cortex, 2005; 15: 846-853
Google Scholar - 34. Kim M.W., Chelliah Y., Kim S.W., Otwinowski Z., BezprozvannyI.: Secondary structure of Huntingtin amino-terminal region. Structure,2009; 17: 1205-1212
Google Scholar - 35. Kosinski C.M., Schlangen C., Gellerich F.N., Gizatullina Z., DeschauerM., Schiefer J., Young A.B., Landwehrmeyer G.B., ToykaK.V., Sellhaus B., Lindenberg K.S.: Myopathy as a first symptom ofHuntington’s disease in a Marathon runner. Mov. Disord., 2007; 22:1637-1640
Google Scholar - 36. Krzysztoń-Russjan J., Zielonka D., Jackiewicz J., Kuśmirek S.,Bubko I., Klimberg A., Marcinkowski J.T., Anuszewska E.L.: A studyof molecular changes relating to energy metabolism and cellularstress in people with Huntington’s disease: looking for biomarkers.J. Bioenerg. Biomembr., 2013; 45: 71-85
Google Scholar - 37. Leoni V., Mariotti C., Tabrizi S.J., Valenza M., Wild E.J., HenleyS.M., Hobbs N.Z., Mandelli M.L., Grisoli M., Björkhem I., Cattaneo E.,Di Donato S.: Plasma 24S-hydroxycholesterol and caudate MRI in pre–manifest and early Huntington’s disease. Brain, 2008; 131: 2851-2859
Google Scholar - 38. Li S.H., Li X.J.: Huntingtin and its role in neuronal degeneration.Neuroscientist, 2004; 10: 467-475
Google Scholar - 39. Maiese K., Chong Z.Z., Shang Y.C., Wang S.: Targeting diseasethrough novel pathways of apoptosis and autophagy. Expert Opin.Ther. Targets, 2012; 16: 1203-1214
Google Scholar - 40. McGill J.K., Beal M.F.: PGC-1α, a new therapeutic target in Huntington’sdisease? Cell, 2006; 127: 465-468
Google Scholar - 41. Mielcarek M., Landles C., Weiss A., Bradaia A., Seredenina T.,Inuabasi L., Osborne G.F., Wadel K., Touller C., Butler R., RobertsonJ., Franklin S.A., Smith D.L., Park L., Marks P.A. i wsp.: HDAC4 reduction:a novel therapeutic strategy to target cytoplasmic huntingtinand ameliorate neurodegeneration. PLoS Biol., 2013; 11: e1001717
Google Scholar - 42. Milakovic T., Johnson G.V.: Mitochondrial respiration and ATPproduction are significantly impaired in striatal cells expressingmutant huntingtin. J. Biol. Chem., 2005; 280: 30773-30782
Google Scholar - 43. Mochel F., Charles P., Seguin F., Barritault J., Coussieu C., PerinL., Le Bouc Y., Gervais C., Carcelain G., Vassault A., Feingold J., RabierD., Durr A.: Early energy deficit in Huntington disease: identificationof a plasma biomarker traceable during disease progression.PLoS One, 2007; 2: e647
Google Scholar - 44. Mori M., Adachi Y., Mori N., Kurihara S., Kashiwaya Y., KusumiM., Takeshima T., Nakashima K.: Double-blind crossover study ofbranched-chain amino acid therapy in patients with spinocerebellardegeneration. J. Neurol. Sci., 2002; 195: 149-152
Google Scholar - 45. Naia L., Ferreira I.L., Cunha-Oliveira T., Duarte A.I., Ribeiro M.,Rosenstock T.R., Laço M.N., Ribeiro M.J., Oliveira C.R., Saudou F.,Humbert S., Rego A.C.: Activation of IGF-1 and insulin signalingpathways ameliorate mitochondrial function and energy metabolismin Huntington’s Disease human lymphoblasts. Mol. Neurobiol.,2015; 51: 331-348
Google Scholar - 46. Napoli E., Wong S., Hung C., Ross-Inta C., Bomdica P., Giulivi C.:Defective mitochondrial disulfide relay system, altered mitochondrialmorphology and function in Huntington’s disease. Hum. Mol.Genet., 2013; 22: 989-1004
Google Scholar - 47. Perez-De La Cruz V., Santamaria A.: Integrative hypothesis forHuntington’s disease: a brief review of experimental evidence. Physiol.Res., 2007; 56: 513-526
Google Scholar - 48. Quarrell O.W., Rigby A.S., Barron L., Crow Y., Dalton A., DennisN., Fryer A.E., Heydon F., Kinning E., Lashwood A., Losekoot M., MargerisonL., McDonnell S., Morrison P.J., Norman A., Peterson M., RaymondF.L., Simpson S., Thompson E., Warner J.: Reduced penetrancealleles for Huntington’s disease: a multi-centre direct observationalstudy. J. Med. Genet., 2007; 44: e68
Google Scholar - 49. Reinius B., Blunder M., Brett F.M., Eriksson A., Patra K., JonssonJ., Jazin E., Kullander K.: Conditional targeting of medium spinyneurons in the striatal matrix. Front Behav Neurosci., 2015; 9: 71
Google Scholar - 50. Runne H., Kuhn A., Wild E.J., Pratyaksha W., Kristiansen M., IsaacsJ.D., Régulier E., Delorenzi M., Tabrizi S.J., Luthi-Carter R.: Analysisof potential transcriptomic biomarkers for Huntington’s diseasein peripheral blood. Proc. Natl. Acad. Sci. USA, 2007; 104: 14424-14429
Google Scholar - 51. Sassone J., Colciago C., Cislaghi G., Silani V., Ciammola A.: Huntington’sdisease: the current state of research with peripheral tissues.Exp. Neurol., 2009; 219: 385-397
Google Scholar - 52. Semaka A., Kay C., Belfroid R.D., Bijlsma E.K., Losekoot M., vanLangen I.M., van Maarle M.C., Oosterloo M., Hayden M.R., van BelzenM.J.: A new mutation for Huntington disease following maternaltransmission of an intermediate allele. Eur. J. Med. Genet.,2015; 58: 28-30
Google Scholar - 53. Seong I.S., Woda J.M., Song J.J., Lloret A., Abeyrathne P.D., WooC.J., Gregory G., Lee J.M., Wheeler V.C., Walz T., Kingston R.E., GusellaJ.F., Conlon R.A., MacDonald M.E.: Huntingtin facilitates polycombrepressive complex 2. Hum. Mol. Genet., 2010; 19: 573-583
Google Scholar - 54. Shoulson I., Young A.B.: Milestones in huntington disease. Mov.Disord., 2011; 26: 1127-1133
Google Scholar - 55. Sipilä J.O., Hietala M., Siitonen A., Päivärinta M., Majamaa K.:Epidemiology of Huntington’s disease in Finland. Parkinsonism Relat.Disord., 2015; 21: 46-49
Google Scholar - 56. St-Pierre J., Drori S., Uldry M., Silvaggi J.M., Rhee J., Jäger S.,Handschin C., Zheng K., Lin J., Yang W., Simon D.K., Bachoo R., SpiegelmanB.M.: Suppression of reactive oxygen species and neurodegenerationby the PGC-1 transcriptional coactivators. Cell, 2006;127: 397-408
Google Scholar - 57. Strand A.D., Aragaki A.K., Shaw D., Bird T., Holton J., Turner C.,Tapscott S.J., Tabrizi S.J., Schapira A.H., Kooperberg C., Olson J.M.:Gene expression in Huntington’s disease skeletal muscle: a potentialbiomarker. Hum. Mol. Genet., 2005; 14: 1863-1876
Google Scholar - 58. Szczudlik A., Rudzińska M., Zielonka D.: Choroba Huntingtona –obecny stan wiedzy. Pol. Prz. Neur., 2008; 4 (Suppl. A): 95-97
Google Scholar - 59. Tebano M.T., Martire A., Chiodi V., Ferrante A., Popoli P.: Roleof adenosine A2A receptors in modulating synaptic functions andbrain levels of BDNF: a possible key mechanism in the pathophysiologyof Huntington’s disease. ScientificWorldJournal, 2010; 10:1768-1782
Google Scholar - 60. van der Burg J.M., Björkqvist M., Brundin P.: Beyond the brain:widespread pathology in Huntington’s disease. Lancet Neurol.,2009; 8: 765-774
Google Scholar - 61. Vassos E., Panas M., Kladi A., Vassilopoulos D.: Effect of CAGrepeat length on psychiatric disorders in Huntington’s disease. J.Psychiatr. Res., 2008; 42: 544-549
Google Scholar - 62. Villar-Menéndez I., Blanch M., Tyebji S., Pereira-Veiga T., AlbasanzJ.L., Martín M., Ferrer I., Pérez-Navarro E., Barrachina M.: Increased5-methylcytosine and decreased 5-hydroxymethylcytosinelevels are associated with reduced striatal A2AR levels in Huntington’sdisease. Neuromolecular Med., 2013; 15: 295-309
Google Scholar - 63. Walker F.O.: Huntington’s disease. Lancet, 2007; 369: 218-228
Google Scholar - 64. Weydt P., Pineda V.V., Torrence A.E., Libby R.T., Satterfield T.F.,Lazarowski E.R., Gilbert M.L., Morton G.J., Bammler T.K., Strand A.D.,Cui L., Beyer R.P., Easley C.N., Smith A.C., Krainc D., Luquet S., SweetI.R., Schwartz M.W., La Spada A.R.: Thermoregulatory and metabolicdefects in Huntington’s disease transgenic mice implicatePGC-1α in Huntington’s disease neurodegeneration. Cell Metab.,2006; 4: 349-362
Google Scholar - 65. Zielonka D.: Objawy, patogeneza i dostępne obecnie możliwościleczenia farmakologicznego choroby Huntingtona. Europejska SiećChoroby Huntingtona. Neuropsychiatr. Neuropsychol., 2009; 4: 10-16
Google Scholar