Pharmaceutical applications of graphene
Justyna Żwawiak 1 , Lucjusz Zaprutko 1Abstract
Nowadays, dynamic development in nanotechnological sciences is observed. Nanoparticles are frequently used in medicine and pharmacy as delivery systems for different kinds of active substances. One of the latest developed substances, with an unusually wide scope of utility, is graphene. The ways of its use in different fields of industry, not only pharmaceutical and medical, have been a subject of study for many research groups since the moment of its development in 2004. Graphene in pure form is highly hydrophobic. However, the presence of defects on its surface allows chemical modifications to be made, e.g. introduction of oxygen groups by covalent bonding. Also, non-covalent modifications are extensively used, including van der Waals forces, hydrogen bonding, coordination bonds, electrostatic and π-π stacking interactions. Due to the large surface area, graphene can be used in combination therapy, consisting in simultaneous administration of two or more pharmacologically active agents. Another interesting approach is gene therapy. Application of the PEI-graphene oxide system increased the efficacy of transfection. Possibilities of graphene and graphene oxide are not limited to their use as active substance delivery systems. These compounds by themselves were also found to be bacteriostatic and antibacterial agents.
References
- 1. Caicedo M.S., Pennekamp P.H., McAllister K., Jacobs J.J., Hallab N.J.: Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity. J. Biomed. Mater. Res. A, 2010; 93: 1312-1321
Google Scholar - 2. Chen B., Liu M., Zhang L., Huang J., Yao J., Zhang Z.: Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem., 2011; 21: 7736-7741
Google Scholar - 3. Faghihi S., Gheysour M., Karimi A., Salarian R.: Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J. Appl. Phys., 2014; 115: 83513
Google Scholar - 4. Feng L., Zhang S., Liu Z.: Graphene based gene transfection. Nanoscale, 2011; 3: 1252-1257
Google Scholar - 5. Geim A.K., Novoselov K.S.: The rise of graphene. Nat. Mater., 2007; 6: 183-191
Google Scholar - 6. Goenka S., Sant V., Sant S.: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release, 2014; 173: 75-88
Google Scholar - 7. Gollavelli G., Ling Y.C.: Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials, 2012; 33: 2532-2545
Google Scholar - 8. Hebda M., Łopata A.: Grafen – materiał przyszłości. CzT, 2012; 22: 45-53
Google Scholar - 9. Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C.: Graphene-based antibacterial paper. ACS Nano, 2010; 4: 4317-4323
Google Scholar - 10. Jacobs J.J., Hallab N.J.: Loosening and osteolysis associated with metal-on-metal bearings: a local effect of metal hypersensitivity? J. Bone Joint Surg., 2006; 88: 1171-1172
Google Scholar - 11. Jaworski S., Sawosz E., Grodzik M., Winnicka A., Prasek M., Wi erzbicki M., Chwalibog A.: In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. Int. J. Nanomedicine, 2013; 8: 413-420
Google Scholar - 12. Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S.V., Tamura H.: Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011; 29: 322-337
Google Scholar - 13. Kędziora A., Gerasymchuk Y., Sroka E., Bugla-Płoskońska G., Doroszkiewicz W., Rybak Z., Hreniak D., Stręk W.: Wykorzystanie materiałów opartych na częściowo redukowanym tlenku grafenu z nanocząstkami srebra jako środków bakteriostatycznych i bakteriobójczych. Polym. Med., 2013; 43: 129-134
Google Scholar - 14. Li J., Wang G., Zhu H., Zhang M., Zheng X., Di Z., Liu X., Wang X.: Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep., 2014; 4: 4359
Google Scholar - 15. Liu J., Cui L., Losic D.: Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013; 9: 9243-9257
Google Scholar - 16. Liu K., Zhang J.J., Cheng F.F., Zheng T.T., Wang C., Zhu J.J.: Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem., 2011; 21: 12034-12040
Google Scholar - 17. Liu Z., Robinson J.T., Sun X., Dai H.: PEGylated nanographene oxide for delivery of water insoluble cancer drugs. J. Am. Chem. Soc., 2008; 130: 10876-10877
Google Scholar - 18. Lu Y.J., Yang H.W., Hung S.C., Huang C.Y., Li S.M., Ma C.C., Chen P.Y., Tsai H.C., Wei K.C., Chen J.P.: Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. Int. J. Nanomedicine, 2012; 7: 1737-1747
Google Scholar - 19. MacNeil S.: Biomaterials for tissue engineering of skin. Mater. Today, 2008; 11: 26-35
Google Scholar - 20. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science, 2004; 306: 666-669
Google Scholar - 21. Prasai D., Tuberquia J.C., Harl R.R., Jennings G.K., Rogers B.R., Bolotin K.I.: Graphene: corrosion-inhibiting coating. ACS Nano, 2012; 6: 1102-1108
Google Scholar - 22. Shan C., Wang L., Han D., Li F., Zhang Q., Zhang X., Niu L.: Polyethyleneimine-functionalized graphene and its layer-by-layer assembly with Prussian blue. Thin Solid Films, 2013; 534: 572-576
Google Scholar - 23. Shan C., Yang H., Han D., Zhang Q., Ivaska A., Niu L.: Water-soluble graphene covalently functionalized by biocompatible poly-Llysine. Langmuir, 2009; 25: 12030-12033
Google Scholar - 24. Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S.: Graphene based materials: Past, present and future. Prog. Mat. Sci., 2011; 56: 1178-1271
Google Scholar - 25. Yang K., Wan J., Zhang S., Zhang Y., Lee S.T., Liu Z.: In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 2011; 5: 516-522
Google Scholar - 26. Yang X., Zhang X., Liu Z., Ma Y., Huang Y., Chen Y.: High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008; 112: 17554-17558
Google Scholar - 27. Yao J., Sun Y., Yang M., Duan Y.: Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem., 2012; 22: 14313-14329
Google Scholar - 28. Zhang L., Lu Z., Zhao Q., Huang J., Shen H., Zhang Z.: Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011; 7: 460-464
Google Scholar - 29. Zhang L., Wang Z., Xu C., Li Y., Gao J., Wang W., Liu Y.: High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem., 2011; 21: 10399-10406
Google Scholar - 30. Zhang L., Xia J., Zhao Q., Liu L., Zhang Z.: Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010; 6: 537-544
Google Scholar - 31. Zhang W., Lee S., McNear K.L., Chung T.F., Lee S., Lee K., Crist S.A., Ratliff T.L., Zhong Z., Chen Y.P., Yang C.: Use of graphene as protection film in biological environments. Sci. Rep., 2014; 4: 4097
Google Scholar - 32. Zhou T., Zhou X., Xing D.: Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials, 2014; 35: 4185-4194
Google Scholar