Pharmacological features of osthole

COMMENTARY ON THE LAW

Pharmacological features of osthole

Agata Jarząb 1 , Aneta Grabarska 1 , Krystyna Skalicka-Woźniak 2 , Andrzej Stepulak 1

1. Katedra i Zakład Biochemii i Biologii Molekularnej Uniwersytetu Medycznego w Lublinie
2. Katedra i Zakład Farmakognozji z Pracownią Roślin Leczniczych Uniwersytetu Medycznego w Lublinie

Published: 2017-05-15
DOI: 10.5604/01.3001.0010.3824
GICID: 01.3001.0010.3824
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 411-421

 

Abstract

Coumarins are a group of naturally occurring compounds common in the plant world. These substances and their derivatives exhibit a broad range of biological activities.One of the naturally occurring coumarins is osthole, which can most frequently be found in plants of the Apiaceae family. Cnidium monnieri (L.) Cusson ex Juss. Angelica pubescens Maxim. and Peucedanum ostruthium (L.). It has anti-proliferative, anti-inflammatory, anti-convulsant, and antiallergic properties; apart from that, inhibition of platelet aggregation has also been proved. The impact of osthole on bone metabolism has been demonstrated; also its hepatoprotective and neuroprotective properties have been confirmed. The inhibitory effect of this metokcompound on the development of neurodegenerative diseases has been proved in experimental models. Anticancer features of osthole have been also demonstrated both in vitro on different cell lines, and in vivo using animals xenografts. Osthole inhibited proliferation, motility and invasiveness of tumor cells, which may be associated with the induction of apoptosis and cell cycle slowdown. The exact molecular mechanism of osthole anti-cancer mode of action has not been fully elucidated. A synergistic effect of osthole with other anti-tumor substances has been also reported. Modification of its chemical structure led to the synthesis of many derivatives with significant anticancer effects.To sum up, osthole is an interesting therapeutic option, due to both its direct effect on tumor cells, as well as its neuroprotective or anti-inflammatory properties. Thus, there is a chance to use osthole or its synthetic derivatives in the treatment of cancer.

References

  • 1. Barthomeuf C., Lim S., Iranshahi M., Chollet P.: Umbellipreninfrom Ferula szowitsiana inhibits the growth of human M4Beu metastaticpigmented malignant melanoma cells through cell-cyclearrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine,2008; 15: 103-111
    Google Scholar
  • 2. Begriche K., Massart J., Robin M.A., Borgne-Sanchez A., FromentyB.: Drug-induced toxicity on mitochondria and lipid metabolism:mechanistic diversity and deleterious consequences for the liver. J.Hepatol., 2011: 54: 773-794
    Google Scholar
  • 3. Borges F., Roleira F., Milhazes N., Santana L., Uriarte E.: Simplecoumarins and analogues in medicinal chemistry: occurrence, synthesisand biological activity. Curr. Med. Chem., 2005; 12: 887-916
    Google Scholar
  • 4. Ceresa C., Cavaletti G.: Drug transporters in chemotherapy inducedperipheral neurotoxicity: current knowledge and clinicalimplications. Curr. Med. Chem., 2011; 18: 329-341
    Google Scholar
  • 5. Chen T., Liu W., Chao X., Qu Y., Zhang L., Luo P., Xie K., Huo J., FeiZ.: Neuroprotective effect of osthole against oxygen and glucose deprivationin rat cortical neurons: involvement of mitogen-activatedprotein kinase pathway. Neuroscience, 2011; 183: 203-211
    Google Scholar
  • 6. Chen X., Pi R., Zou Y., Liu M., Ma X., Jiang Y., Mao X., Hu X.: Attenuationof experimental autoimmune encephalomyelitis in C57BL/6 mice by osthole, a natural coumarin. Eur. J. Pharmacol., 2010;629: 40-46
    Google Scholar
  • 7. Chiu P.R., Lee W.T., Chu Y.T., Lee M.S., Jong Y.J., Hung C.H.: Effectof the Chinese herb extract osthol on IL-4-induced eotaxin expressionin BEAS-2B cells. Pediatr. Neonatol., 2008; 49: 135-140
    Google Scholar
  • 8. Chou S.Y., Hsu C.S., Wang K.T., Wang M.C., Wang C.C.: Antitumoreffects of Osthol from Cnidium monnieri: an in vitro and in vivo study.Phytother. Res., 2007; 21: 226-230
    Google Scholar
  • 9. Cisowski W.: Biologiczne właściwości kumaryn. Cz.1. Działaniena rośliny oraz właściwości farmakologiczne i przeciwbakteryjne.Herba Polonica, 1983; 29: 301-318
    Google Scholar
  • 10. Du R., Xue J., Wang H.B., Zhang Y., Xie M.L.: Osthol amelioratesfat milk-induced fatty liver in mice by regulation of hepatic sterolregulatory element-binding protein-1c/2-mediated target gene expression.Eur. J. Pharmacol., 2011; 666: 183-188
    Google Scholar
  • 11. Elinos-Báez C.M., Leon F., Santos E.: Effects of coumarin and 7OHcoumarinon bcl-2 and Bax expression in two human lung cancercell lines in vitro. Cell Biol. Int., 2005; 29: 703-708
    Google Scholar
  • 12. Fruman D.A., Meyers R.E., Cantley L.C.: Phosphoinositide kinases.Annu. Rev. Biochem., 1998; 67: 481-507
    Google Scholar
  • 13. Gencer B., Moradpour D., Rodondi N.: Lipid-lowering treatmentand liver dysfunction. Rev. Med. Suisse, 2012; 8: 507-508, 510-512
    Google Scholar
  • 14. Guh J.H., Yu S.M., Ko F.N., Wu T.S., Teng C.M.: Antiproliferativeeffect in rat vascular smooth muscle cells by osthole, isolated fromAngelica pubescens. Eur. J. Pharmacol., 1996; 298: 191-197
    Google Scholar
  • 15. Guo B.F., Liu S., Ye Y.Y., Han X.H.: Inhibitory effects of osthole,psoralen and aconitine on invasive activities of breast cancer MDAMB-231BOcell line and the mechanisms. Zhong Xi Yi Jie He Xue Bao,2011: 9: 1110-1117
    Google Scholar
  • 16. Han X.H., Ye Y.Y., Guo B.F., Liu S.: Effects of platycodin D incombination with different active ingredients of Chinese herbs onproliferation and invasion of 4T1 and MDA-MB-231 breast cancercell lines. Zhong Xi Yi Jie He Xue Bao, 2012; 10: 67-75
    Google Scholar
  • 17. He Y., Qu S., Wang J., He X., Lin W., Zhen H., Zhang X.: Neuroprotectiveeffects of osthole pretreatment against traumatic braininjury in rats. Brain Res., 2012; 1433: 127-136
    Google Scholar
  • 18. Hou X.H., Cao B., Liu H.Q., Wang Y.Z., Bai S.F., Chen H.: Effects ofosthole on apoptosis and TGF-beta1 of hypertrophic scar fibroblasts.J. Asian Nat. Prod. Res., 2009; 11: 663-669
    Google Scholar
  • 19. Hoult J.R., Payá M.: Pharmacological and biochemical actionsof simple coumarins: natural products with therapeutic potential.Gen. Pharmacol., 1996; 27: 713-722
    Google Scholar
  • 20. Huang R.L., Chen C.C., Huang Y.L., Hsieh D.J., Hu C.P., Chen C.F.,Chang C.: Osthole increases glycosylation of hepatitis B surface antigenand suppresses the secretion of hepatitis B virus in vitro. Hepatology,1996; 24: 508-515
    Google Scholar
  • 21. Huang W.J., Chen C.C., Chao S.W., Lee S.S., Hsu F.L., Lu Y.L., HungM.F., Chang C.I.: Synthesis of N-hydroxycinnamides capped witha naturally occurring moiety as inhibitors of histone deacetylase.Chem. Med. Chem., 2010; 5: 598-607
    Google Scholar
  • 22. Huang W.J., Chen C.C., Chao S.W., Yu C.C., Yang C.Y., Guh J.H.,Lin Y.C., Kuo C.I., Yang P., Chang C.I.: Synthesis and evaluation of aliphatic-chainhydroxamates capped with osthole derivatives as histonedeacetylase inhibitors. Eur. J. Med. Chem., 2011; 46: 4042-4049
    Google Scholar
  • 23. Hung C.M., Kuo D.H., Chou C.H., Su Y.C., Ho C.T., Way T.D.: Ostholesuppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymaltransition via repression of the c-Met/Akt/mTORpathway in human breast cancer cells. J. Agric. Food Chem., 2011;59: 9683-9690
    Google Scholar
  • 24. Jarząb A., Grabarska A., Kiełbus M., Jeleniewicz W., DmoszyńskaGraniczkaM., Skalicka-Woźniak K., Sieniawska E., Polberg K., StepulakA.: Osthole induces apoptosis, suppresses cell-cycle progressionand proliferation of cancer cells. Anticancer Res., 2014; 34: 6473-6480
    Google Scholar
  • 25. Ji H.J., Hu J.F., Wang Y.H., Chen X.Y., Zhou R., Chen N.H.: Ostholeimproves chronic cerebral hypoperfusion induced cognitivedeficits and neuronal damage in hippocampus. Eur. J. Pharmacol.,2010; 636: 96-101
    Google Scholar
  • 26. Kao S.J., Su J.L., Chen C.K., Yu M.C., Bai K.J., Chang J.H., Bien M.Y.,Yang S.F., Chien M.H.: Osthole inhibits the invasive ability of humanlung adenocarcinoma cells via suppression of NF-κB-mediatedmatrix metalloproteinase-9 expression. Toxicol. Appl. Pharmacol.,2012; 261: 105-115
    Google Scholar
  • 27. Kohlmunzer S.: Farmakognozja. Podręcznik dla studentów farmacji:Wydawnictwo Lekarskie PZWL Warszawa; 1998
    Google Scholar
  • 28. Kozawa T., Sakai K., Uchida M., Okuyama T., Shibata S.: Calciumantagonistic action of a coumarin isolated from „Qian-Hu”, a Chinesetraditional medicine. J. Pharm. Pharmacol., 1981; 33: 317-320
    Google Scholar
  • 29. Kuo P.L., Hsu Y.L., Chang C.H., Chang J.K.: Osthole-mediated celldifferentiation through bone morphogenetic protein-2/p38 and extracellularsignal-regulated kinase 1/2 pathway in human osteoblastcells. J. Pharmacol. Exp. Ther., 2005; 314: 1290-1299
    Google Scholar
  • 30. Lacy A., O’Kennedy R.: Studies on coumarins and coumarinrelatedcompounds to determine their therapeutic role in the treatmentof cancer. Curr. Pharm. Des., 2004; 10: 3797-3811
    Google Scholar
  • 31. Lee Y.Y., Lee S., Jin J.L., Yun-Choi H.S.: Platelet anti-aggregatoryeffects of coumarins from the roots of Angelica genuflexa and A. gigas.Arch. Pharm. Res., 2003; 26: 723-726
    Google Scholar
  • 32. Leung Y.M., Kuo Y.H., Chao C.C., Tsou Y.H., Chou C.H., Lin C.H.,Wong K.L.: Osthol is a use-dependent blocker of voltage-gated Na+channels in mouse neuroblastoma N2A cells. Planta Med., 2010;76: 34-40
    Google Scholar
  • 33. Li X.X., Hara I., Matsumiya T.: Effects of osthole on postmenopausalosteoporosis using ovariectomized rats; comparison to theeffects of estradiol. Biol. Pharm. Bull., 2002; 25: 738-742
    Google Scholar
  • 34. Liang H.J., Suk F.M., Wang C.K., Hung L.F., Liu D.Z., Chen N.Q.,Chen Y.C., Chang C.C., Liang Y.C.: Osthole, a potential antidiabeticagent, alleviates hyperglycemia in db/db mice. Chem. Biol. Interact.,2009; 181: 309-315
    Google Scholar
  • 35. Liao P.C., Chien S.C., Ho C.L., Wang E.I., Lee S.C., Kuo Y.H., JeyashokeN., Chen J., Dong W.C., Chao L.K., Hua K.F.: Osthole regulatesinflammatory mediator expression through modulating NF-κB,mitogen-activated protein kinases, protein kinase C, and reactiveoxygen species. J. Agric. Food Chem., 2010; 58: 10445-10451
    Google Scholar
  • 36. Lin V.C., Chou C.H., Lin Y.C., Lin J.N., Yu C.C., Tang C.H., Lin H.Y.,Way T.D.: Osthole suppresses fatty acid synthase expression in HER2–overexpressing breast cancer cells through modulating Akt/mTORpathway. J. Agric. Food Chem., 2010; 58: 4786-4793
    Google Scholar
  • 37. Liu W.B., Zhou J., Qu Y., Li X., Lu C.T., Xie K.L., Sun X.L., Fei Z.:Neuroprotective effect of osthole on MPP+-induced cytotoxicity inPC12 cells via inhibition of mitochondrial dysfunction and ROS production.Neurochem. Int., 2010; 57: 206-215
    Google Scholar
  • 38. Liu Y.W., Chiu Y.T., Fu S.L., Huang Y.T.: Osthole ameliorates hepaticfibrosis and inhibits hepatic stellate cell activation. J. Biomed.Sci., 2015; 22: 63
    Google Scholar
  • 39. Luszczki J.J., Andres-Mach M., Cisowski W., Mazol I., GlowniakK., Czuczwar S.J.: Osthole suppresses seizures in the mouse maximalelectroshock seizure model. Eur. J. Pharmacol., 2009; 607: 107-109
    Google Scholar
  • 40. Luszczki J.J., Wojda E., Andres-Mach M., Cisowski W., Glensk M.,Glowniak K., Czuczwar S.J.: Anticonvulsant and acute neurotoxiceffects of imperatorin, osthole and valproate in the maximal electroshockseizure and chimney tests in mice: a comparative study.Epilepsy Res., 2009; 85: 293-299
    Google Scholar
  • 41. Mao X., Yin W., Liu M., Ye M., Liu P., Liu J., Lian Q., Xu S., Pi R.:Osthole, a natural coumarin, improves neurobehavioral functionsand reduces infarct volume and matrix metalloproteinase-9 activityafter transient focal cerebral ischemia in rats. Brain Res., 2011;1385: 275-280
    Google Scholar
  • 42. Matsuda H., Tomohiro N., Ido Y., Kubo M.: Anti-allergic effectsof cnidii monnieri fructus (dried fruits of Cnidium monnieri) andits major component, osthol. Biol. Pharm. Bull., 2002; 25: 809-812
    Google Scholar
  • 43. Meng F., Xiong Z., Sun Y., Li F.: Coumarins from Cnidium monnieri(L.) and their proliferation stimulating activity on osteoblast-likeUMR106 cells. Pharmazie, 2004; 59: 643-645
    Google Scholar
  • 44. Ming L.G., Ge B.F., Chen K.M., Ma H.P., Zhai Y.K., Zhou J., Li Z.F.:Effect of Osthol on the proliferation and differentiate of osteoblastsin vitro. Zhongguo Gu Shang, 2010; 23: 688-691
    Google Scholar
  • 45. Ming L.G., Zhou J., Cheng G.Z., Ma H.P., Chen K.M.: Osthol, a coumarinisolated from common cnidium fruit, enhances the differentiationand maturation of osteoblasts in vitro. Pharmacology, 2011;88: 33-43
    Google Scholar
  • 46. Nozaki K., Nishimura M., Hashimoto N.: Mitogen-activated proteinkinases and cerebral ischemia. Mol. Neurobiol., 2001; 23: 1-19
    Google Scholar
  • 47. Ogawa H., Sasai N., Kamisako T., Baba K.: Effects of osthol onblood pressure and lipid metabolism in stroke-prone spontaneouslyhypertensive rats. J. Ethnopharmacol., 2007; 112: 26-31
    Google Scholar
  • 48. Okamoto T., Kawasaki T., Hino O.: Osthole prevents anti-Fasantibody-induced hepatitis in mice by affecting the caspase-3-mediatedapoptotic pathway. Biochem. Pharmacol., 2003; 65: 677-681
    Google Scholar
  • 49. Okamoto T., Kobayashi T., Yoshida S.: Synthetic derivatives ofosthole for the prevention of hepatitis. Med. Chem., 2007; 3: 35-44
    Google Scholar
  • 50. Pathak M.A., Fitzpatrick T.B.: The evolution of photochemotherapywith psoralens and UVA (PUVA): 2000 BC to 1992 AD. J.Photochem. Photobiol. B, 1992; 14: 3-22
    Google Scholar
  • 51. Qi Z., Xue J., Zhang Y., Wang H., Xie M.: Osthole ameliorates insulinresistance by increment of adiponectin release in high-fat andhigh-sucrose-induced fatty liver rats. Planta Med., 2011; 77: 231-235
    Google Scholar
  • 52. Radhakrishnan S.K., Kamalakaran S.: Pro-apoptotic role of NF-κB: implications for cancer therapy. Biochim. Biophys. Acta, 2006;1766: 53-62
    Google Scholar
  • 53. Riveiro M.E., De Kimpe N., Moglioni A., Vázquez R., Monczor F.,Shayo C., Davio C.: Coumarins: old compounds with novel promisingtherapeutic perspectives. Curr. Med. Chem., 2010; 17: 1325-1338
    Google Scholar
  • 54. Riveiro M.E., Shayo C., Monczor F., Fernández N., Baldi A., DeKimpe N., Rossi J., Debenedetti S., Davio C.: Induction of cell differentiationin human leukemia U-937 cells by 5-oxygenated-6,7-methylenedioxycoumarins from Pterocaulon polystachyum. CancerLett., 2004; 210: 179-188
    Google Scholar
  • 55. Sarker S.D., Nahar L.: Natural medicine: the genus Angelica. Curr.Med. Chem., 2004; 11: 1479-1500
    Google Scholar
  • 56. Sawe N., Steinberg G., Zhao H.: Dual roles of the MAPK/ERK1/2cell signaling pathway after stroke. J. Neurosci. Res., 2008; 86: 1659-1669
    Google Scholar
  • 57. Shen L.X., Jin L.Q., Zhang D.S., Xue G.P.: Effect of osthol on memoryimpairment of mice in AlCl3-induced acute senile model. YaoXue Xue Bao, 2002; 37: 178-180
    Google Scholar
  • 58. Sheng L., Wu C.Y., Chen X.F.: Inhibitory acting mechanism ofpsoralen-osthole on bone metastasis of breast cancer – an expatiationviewing from OPG/RANKL/RANK system. Zhongguo Zhong XiYi Jie He Za Zhi, 2011; 31: 684-689
    Google Scholar
  • 59. Shin E., Lee C., Sung S.H., Kim Y.C., Hwang B.Y., Lee M.K.: Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6hepatic stellate cells. J. Nat. Med., 2011; 65: 370-374
    Google Scholar
  • 60. Singhuber J., Baburin I., Ecker G.F., Kopp B., Hering S.: Insightsinto structure-activity relationship of GABAA receptor modulatingcoumarins and furanocoumarins. Eur. J. Pharmacol., 2011; 668: 57-64
    Google Scholar
  • 61. Smyth T., Ramachandran V.N., Smyth W.F.: A study of the antimicrobialactivity of selected naturally occurring and syntheticcoumarins. Int. J. Antimicrob. Agents, 2009; 33: 421-426
    Google Scholar
  • 62. Song F., Xie M.L., Zhu L.J., Zhang K.P., Xue J., Gu Z.L.: Experimentalstudy of osthole on treatment of hyperlipidemic and alcoholicfatty liver in animals. World J. Gastroenterol., 2006; 12: 4359-4363
    Google Scholar
  • 63. Stanisławowski M., Kmieć Z.: Udział RANK, RANKL i OPG w osteolizietowarzyszącej nowotworom. Postępy Hig. Med. Dośw., 2009;63: 234-241
    Google Scholar
  • 64. Sun F., Xie M.L., Xue J., Wang H.B.: Osthol regulates hepaticPPARα-mediated lipogenic gene expression in alcoholic fatty livermurine. Phytomedicine, 2010; 17: 669-673
    Google Scholar
  • 65. Sun F., Xie M.L., Zhu L.J., Xue J., Gu Z.L.: Inhibitory effect of ostholeon alcohol-induced fatty liver in mice. Dig. Liver Dis., 2009;41: 127-133
    Google Scholar
  • 66. Tamura S., Fujitani T., Kaneko M., Murakami N.: Prenylcoumarinwith Rev-export inhibitory activity from Cnidii Monnieris Fructus.Bioorg. Med. Chem. Lett., 2010; 20: 3717-3720
    Google Scholar
  • 67. Tang D.Z., Hou W., Zhou Q., Zhang M., Holz J., Sheu T.J., Li T.F.,Cheng S.D., Shi Q., Harris S.E., Chen D., Wang Y.J.: Osthole stimulatesosteoblast differentiation and bone formation by activation ofbeta-catenin-BMP signaling. J. Bone Miner. Res., 2010; 25: 1234-1245
    Google Scholar
  • 68. Vadas O., Burke J.E., Zhang X., Berndt A., Williams R.L.: Structuralbasis for activation and inhibition of class I phosphoinositide3-kinases. Sci. Signal., 2011; 4: re2
    Google Scholar
  • 69. Wang S.J., Lin T.Y., Lu C.W., Huang W.J.: Osthole and imperatorin,the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamaterelease from rat hippocampal nerve terminals. Neurochem.Int., 2008; 53: 416-423
    Google Scholar
  • 70. Wei Y., Zhang T., Ito Y.: Preparative isolation of osthol and xanthotoxolfrom common cnidium fruit (Chinese traditional herb)using stepwise elution by high-speed counter-current chromatography.J. Chromatogr. A, 2004; 1033: 373-377
    Google Scholar
  • 71. Wu S.N., Lo Y.K., Chen C.C., Li H.F., Chiang H.T.: Inhibitory effect of the plant-extract osthole on L-type calcium current in NG108-15 neuronal cells. Biochem. Pharmacol., 2002; 63: 199-206
    Google Scholar
  • 72. Xiang Y.Z., Kang L.Y., Gao X.M., Shang H.C., Zhang J.H., ZhangB.L.: Strategies for antiplatelet targets and agents. Thromb. Res.,2008; 123: 35-49
    Google Scholar
  • 73. Xu X., Zhang Y., Qu D., Jiang T., Li S.: Osthole induces G2/M arrestand apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathway. J. Exp. Clin. Cancer Res., 2011; 30: 33
    Google Scholar
  • 74. Yang D., Gu T., Wang T., Tang Q., Ma C.: Effects of osthole onmigration and invasion in breast cancer cells. Biosci. Biotechnol.Biochem., 2010; 74: 1430-1434
    Google Scholar
  • 75. Yang L.L., Wang M.C., Chen L.G., Wang C.C.: Cytotoxic activityof coumarins from the fruits of Cnidium monnieri on leukemia celllines. Planta Med., 2003; 69: 1091-1095
    Google Scholar
  • 76. You L., An R., Wang X., Li Y.: Discovery of novel osthole derivativesas potential anti-breast cancer treatment. Bioorg. Med. Chem.Lett., 2010; 20: 7426-7428
    Google Scholar
  • 77. Zhang J., Xue J., Wang H., Zhang Y., Xie M.: Osthole improvesalcohol-induced fatty liver in mice by reduction of hepatic oxidativestress. Phytother. Res., 2011; 25: 638-643
    Google Scholar
  • 78. Zhang Q., Qin L., He W., Van Puyvelde L., Maes D., Adams A.,Zheng H., De Kimpe N.: Coumarins from Cnidium monnieri and theirantiosteoporotic activity. Planta Med., 2007; 73: 13-19
    Google Scholar
  • 79. Zhang W., Ma D., Zhao Q., Ishida T.: The effect of the major componentsof Fructus cnidii on osteoblasts in vitro. J. Acupunct. MeridianStud., 2010; 3: 32-37
    Google Scholar
  • 80. Zhang Y., Xie M., Xue J., Gu Z.: Osthole improves fat milk-inducedfatty liver in rats: modulation of hepatic PPAR-alpha/gamma–mediated lipogenic gene expression. Planta Med., 2007; 73: 718-724
    Google Scholar
  • 81. Zhang Y., Xie M.L., Xue J., Gu Z.L.: Osthole regulates enzymeprotein expression of CYP7A1 and DGAT2 via activation of PPARalpha/gammain fat milk-induced fatty liver rats. J. Asian Nat. Prod.Res., 2008; 10: 807-812
    Google Scholar
  • 82. Zhang Y., Xie M.L., Zhu L.J., Gu Z.L.: Therapeutic effect of ostholeon hyperlipidemic fatty liver in rats. Acta Pharmacol. Sin., 2007;28: 398-403
    Google Scholar

Full text

Skip to content