Plants as an alternative source of therapeutic proteins

COMMENTARY ON THE LAW

Plants as an alternative source of therapeutic proteins

Marta Łucka 1 , Tomasz Kowalczyk 2 , Janusz Szemraj 3 , Tomasz Sakowicz 2

1. Studentka V roku kier. Biotechnologia UŁ. Katedra Genetyki Ogólnej, Biologii Molekularnej i Biotechnologii Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
2. Katedra Genetyki Ogólnej, Biologii Molekularnej i Biotechnologii Roślin, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
3. Zakład Biochemii Medycznej Uniwersytet Medyczny

Published: 2015-03-22
DOI: 10.5604/17322693.1145824
GICID: 01.3001.0009.6510
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 362-373

 

Abstract

In recent years, there has been an increased interest of researchers in developing efficient plant heterologous expression systems of proteins for a wide range of applications. It represents an alternative to the traditional strategy utilizing bacterial, yeast, insect or mammalian cells. New techniques of identification and characterization and effective methods of plant genetic transformation allow the range of recombinant protein products to be expanded. Great expectations are associated with the use of plants as bioreactors for the production of specific proteins of therapeutic interest. This strategy offers a number of advantages, the most important being: the possibility of a significant reduction in production costs, the safety of the products obtained and full eukaryotic post-translational modifications of proteins. A group of proteins of special interest is pharmaceuticals, and a number of successful experiments have confirmed the possibility of obtaining heterogeneous proteins with therapeutic potential: monoclonal antibodies, vaccine antigens, and a variety of cytokines. This work is focused on selected recombinant proteins belonging to those groups expression of which was achieved in plant cells. These proteins may be used in the future for therapy or prevention of viral, bacterial or cancer diseases.

References

  • 1. Ahmad P., Ashraf M., Younis M., Hu X., Kumar A., Arkam N.A.,Al-Qurainy F.: Role of transgenic plants in agriculture and biopharming.Biotechnol. Adv., 2012; 30: 524-540
    Google Scholar
  • 2. Almquist K.C., McLean M.D., Niu Y., Byrne G., Olea-Popelka F.C.,Murrant C., Barclay J., Hall J.C.: Expression of an anti-botulinum toxinA neutralizing single-chain Fv recombinant antibody in transgenictobacco. Vaccine, 2006; 24: 2079-2086
    Google Scholar
  • 3. Arlen P.A., Falconer R., Cherukumilli S., Cole A., Cole A.M., OishiK.K., Daniell H.: Field production and functional evaluation of chloroplast-derivedinterferon-α2b. Plant Biotechnol. J., 2007; 5: 511-525
    Google Scholar
  • 4. Arlen P.A., Singleton M., Adamovicz J.J., Ding Y., Davoodi-SemiromiA., Daniell H.: Effective plague vaccination via oral delivery ofplant cells expressing F1-V antigens in chloroplasts. Infect. Immun.,2008; 76: 3640-3650
    Google Scholar
  • 5. Aziz M.A., Singh S., Anand Kumar P., Bhatnagar R.: Expression ofprotective antigen in transgenic plants: a step towards edible vaccineagainst anthrax. Biochem. Biophys. Res. Commun., 2002; 299: 345-351
    Google Scholar
  • 6. Bouquin T., Thomsen M., Nielsen L.K., Green T.H., Mundy J., DziegielM.H.: Human anti-rhesus D IgG1 antibody produced in transgenicplants. Transgenic Res., 2002; 11: 115-122
    Google Scholar
  • 7. Brodzik R., Glogowska M., Bandurska K., Okulicz M., Deka D., KoK., van der Linden J., Leusen J.H., Pogrebnyak N., Golovkin M., SteplewskiZ., Koprowski H.: Plant-derived anti-Lewis Y mAb exhibitsbiological activities for efficient immunotherapy against humancancer cells. Proc. Natl. Acad. Sci. USA, 2006; 103: 8804-8809
    Google Scholar
  • 8. Brodzik R., Spitsin S., Pogrebnyak N., Bandurska K., PortocarreroC., Andryszak K., Koprowski H., Golovkin M.: Generation of plant-derivedrecombinant DTP subunit vaccine. Vaccine, 2009; 27: 3730-3734
    Google Scholar
  • 9. Budzianowski J.: Tytoń – wysokowydajny producent szczepionek.Przegl. Lek., 2010; 67: 1071-1076
    Google Scholar
  • 10. Cardi T., Lenzi P., Maliga P.: Chloroplasts as expression platformsfor plant-produced vaccines. Expert Rev. Vaccines, 2010; 9: 893-911
    Google Scholar
  • 11. Carter P.J.: Potent antibody therapeutics by design. Nat. Rev.Immunol., 2006; 6: 343-357
    Google Scholar
  • 12. Chen H., Shaffer P.L., Huang X., Rose P.E.: Rapid screening ofmembrane protein expression in transiently transfected insect cells.Protein Expr. Purif., 2013; 88: 134-142
    Google Scholar
  • 13. Daniell H., Singh N.D., Mason H., Streatfield S.J.: Plant-madevaccine antigens and biopharmaceuticals. Trends Plant Sci., 2009;14: 669-679
    Google Scholar
  • 14. Davoodi-Semiromi A., Schreiber M., Nalapalli S., Verma D., SinghN.D., Banks R.K., Chakrabarti D., Daniell H.: Chloroplast-derived vaccineantigens confer dual immunity against cholera and malariaby oral or injectable delivery. Plant Biotechnol. J., 2010; 8: 223-242
    Google Scholar
  • 15. De Neve M., De Loose M., Jacobs A., Van Houdt H., Kaluza B., WeidleU., Van Montagu M., Depicker A.: Assembly of an antibody andits derived antibody fragment in Nicotiana and Arabidopsis. TransgenicRes., 1993; 2: 227-237
    Google Scholar
  • 16. De Wilde C., De Neve M., De Rycke R., Bruyns A.M., De JaegerG., Van Montagu M., Depicker A., Engler G.: Intact antigen-bindingMAK33 antibody and Fab fragment accumulate in intercellular spacesof Arabidopsis thaliana. Plant Sci., 1996; 114: 233-241
    Google Scholar
  • 17. Desai P.N., Shrivastava N., Padh H.: Production of heterologousproteins in plants: strategies for optimal expression. Biotechnol.Adv., 2010; 28: 427-435
    Google Scholar
  • 18. Fernandez-San Millan A., Ortigosa S.M., Hervás-Stubbs S., Corral-MartínezP., Seguí-Simarro J.M., Gaétan J., Coursaget P., VeramendiJ.: Human papillomavirus L1 protein expressed in tobaccochloroplasts self-assembles into virus-like particles that are highlyimmunogenic. Plant Biotechnol. J., 2008; 6, 427-441
    Google Scholar
  • 19. Fujiwara Y., Aiki Y., Yang L., Takaiwa F., Kosaka A., Tsuji N.M.,Shiraki K., Sekikawa K.: Extraction and purification of human interleukin-10from transgenic rice seeds. Protein Expr. Purif., 2010;72: 125-130
    Google Scholar
  • 20. Girard L.S., Fabis M.J., Bastin M., Courtois D., Pétiard V., KoprowskiH.: Expression of a human anti-rabies virus monoclonalantibody in tobacco cell culture. Biochem. Biophys. Res. Commun.,2006; 345: 602-607
    Google Scholar
  • 21. Giritch A., Marillonnet S., Engler C., van Eldik G., BottermanJ., Klimyuk V., Gleba Y.: Rapid high-yield expression of full-size IgGantibodies in plants coinfected with noncompeting viral vectors.Proc. Natl. Acad. Sci. USA, 2006; 103: 14701-14706
    Google Scholar
  • 22. Gleba Y., Klimyuk V., Marillonnet S.: Magnifection – a new platformfor expressing recombinant vaccines in plants. Vaccine, 2005;23: 2042-2048
    Google Scholar
  • 23. Glenz K., Bouchon B., Stehle T., Wallich R., Simon M.M., WarzechaH.: Production of a recombinant bacterial lipoprotein in higherplant chloroplasts. Nat. Biotechnol., 2006; 24: 76-77
    Google Scholar
  • 24. Góra-Sochacka A., Radkiewicz P., Napiórkowska B., Sirko A.: Wykorzystaniesystemów roślinnych do produkcji rekombinowanychcytokin. Post. Biochem., 2009; 55: 85-94
    Google Scholar
  • 25. Greco R., Michel M., Guetard D., Cervantes-Gonzalez M., PelucchiN., Wain-Hobson S., Sala F., Sala M.: Production of recombinantHIV-1/HBV virus-like particles in Nicotiana tabacum and Arabidopsisthaliana plants for a bivalent plant-based vaccine. Vaccine, 2007;25: 8228-8240
    Google Scholar
  • 26. Gul M., Cömert M., Çakmak G.K., Kurtis G., Ugurbas E., Oner M.O.:Effect of erythropoietin on liver regeneration in an experimentalmodel of partial hepatectomy. Int. J. Surg., 2013; 11: 59-63
    Google Scholar
  • 27. Hamorsky K.T., Grooms-Williams T.W., Husk A.S., Bennett L.J.,Palmer K.E., Matoba N.: Efficient single tobamoviral vector-basedbioproduction of broadly neutralizing anti-HIV-1 monoclonal antibodyVRC01 in Nicotiana benthamiana plants and utility of VRC01 incombination microbicides. Antimicrob. Agents Chemother., 2013;57: 2076-2086
    Google Scholar
  • 28. Haq T.A., Mason H.S., Clements J.D., Arntzen C.J.: Oral immunizationwith a recombinant bacterial antigen produced in transgenicplants. Science, 1995; 268: 714-716
    Google Scholar
  • 29. Hassaine G., Deluz C., Tol M.B., Li X.D., Graff A., Vogel H., NuryH.: Large scale expression and purification of the mouse 5-HT3 receptor.Biochim. Biophys. Acta, 2013; 1828: 2544-2552
    Google Scholar
  • 30. He J., Lai H., Brock C., Chen Q.: A novel system for rapid andcost-effective production of detection and diagnostic reagents ofWest Nile virus in plants. J. Biomed. Biotechnol., 2012, 2012: 1-10
    Google Scholar
  • 31. Hiatt A., Cafferkey R., Bowdish K.: Production of antibodies intransgenic plants. Nature, 1989; 342: 76-78
    Google Scholar
  • 32. Hiatt A., Pauly M.: Monoclonal antibodies from plants: a newspeed record. Proc. Natl. Acad. Sci. USA, 2006; 103: 14645-14646
    Google Scholar
  • 33. Horn M.E., Woodard S.L., Howard J.A.: Plant molecular farming:systems and products. Plant Cell Rep., 2004; 22: 711-720
    Google Scholar
  • 34. James E.A., Wang C., Wang Z., Reeves R., Shin J.H., MagnusonN.S., Lee J.M.: Production and characterization of biologically activehuman GM-CSF secreted by genetically modified plant cells. ProteinExpr. Purif., 2000; 19: 131-138
    Google Scholar
  • 35. Jani D., Meena L.S., Rizwan-ul-Haq Q.M., Singh Y., Sharma A.K.,Tyagi A.K.: Expression of cholera toxin B subunit in transgenic tomatoplants. Transgenic Res., 2002; 11: 447-454
    Google Scholar
  • 36. Jez J., Castilho A., Grass J., Vorauer-Uhl K., Sterovsky T., AltmannF., Steinkellner H.: Expression of functionally active sialylated humanerythropoietin in plants. Biotechnol. J., 2013; 8: 371-382
    Google Scholar
  • 37. Kolenda P., Litwiniuk M.: Kontynuacja terapii trastuzumabempo operacyjnym leczeniu przerzutu do mózgu – opis przypadku.Wsp. Onkol., 2010; 14: 393-396
    Google Scholar
  • 38. Komarova T.V., Kosorukov V.S., Frolova O.Y., Petrunia I.V., SkrypnikK.A., Gleba Y.Y., Dorokhov Y.L.: Plant-made trastuzumab (herceptin)inhibits HER2/Neu+ cell proliferation and retards tumor growth.PLoS One, 2011; 6: e17541
    Google Scholar
  • 39. Koya, V., Moayeri M., Leppla S.H., Daniell H.: Plant-based vaccine:mice immunized with chloroplast-derived anthrax protectiveantigen survive anthrax lethal toxin challenge. Infect. Immun.,2005; 73: 8266-8274
    Google Scholar
  • 40. Lai H., Engle M., Fuchs A., Keller T., Johnson S., Gorlatov S., DiamondM.S., Chen Q.: Monoclonal antibody produced in plants efficientlytreats West Nile virus infection in mice. Proc. Natl. Acad. Sci.USA, 2010; 107: 2419-2424
    Google Scholar
  • 41. Leader B., Baca Q.J., Golan D.E.: Protein therapeutics: a summaryand pharmacological classification. Nat. Rev. Drug Discov.,2008; 7: 21-39
    Google Scholar
  • 42. Lee J.H., Kim N.S., Kwon T.H., Jang Y.S., Yang M.S.: Increasedproduction of human granulocyte-macrophage colony stimulatingfactor (hGM-CSF) by the addition of stabilizing polymer in plantsuspension cultures. J. Biotechnol., 2002; 96: 205-211
    Google Scholar
  • 43. Lee J.H., Park D.Y., Lee K.J., Kim Y.K., So Y.K., Ryu J.S., Oh S.H., HanY.S., Ko K., Choo Y.K., Park S.J., Brodzik R., Lee K.K., Oh D.B., HwangK.A., Koprowski H., Lee Y.S., Ko K.: Intracellular reprogramming ofexpression, glycosylation, and function of a plant-derived antiviraltherapeutic monoclonal antibody. PLoS One, 2013, 8: e68772
    Google Scholar
  • 44. Lewko W.M., Oldham R.K.: Cytokines, W: Principles of CancerBiotherapy, red.: Oldham R.K., Dillman R.O., Springer Netherlands,Nowy Jork, 2009, 155-276
    Google Scholar
  • 45. Lowther W., Lorick K., Lawrence S.D., Yeow W.S.: Expression ofbiologically active human interferon alpha 2 in Aloe vera. TransgenicRes., 2012; 21: 1349-1357
    Google Scholar
  • 46. Luchakivskaya Y., Kishchenko O., Gerasymenko I., OlevinskayaZ., Simonenko Y., Spivak M., Kuchuk M.: High-level expression ofhuman interferon alpha-2b in transgenic carrot (Daucus carota L.)plants. Plant Cell Rep., 2011; 30: 407-415
    Google Scholar
  • 47. Łoś J.M., Węgrzyn G.: Enterokrwotoczne szczepy Escherichiacoli (EHEC) i bakteriofagi kodujące toksyny Shiga. Post. Mikrobiol.,2011; 50: 175-190
    Google Scholar
  • 48. Łoś-Rycharska E., Czerwionka-Szaflarska M.: Biegunki rotawirusowe– dlaczego warto im zapobiegać. Prz. Gastroenterol., 2011;6: 60-68
    Google Scholar
  • 49. Magnuson N.S., Linzmaier P.M., Reeves R., An G., HayGlass K.,Lee J.M.: Secretion of biologically active human interleukin-2 andinterleukin-4 from genetically modified tobacco cells in suspensionculture. Protein Expr. Purif., 1998; 13: 45-52
    Google Scholar
  • 50. Mahmoud K.: Recombinant protein production: strategic technologyand a vital research tool. Res. J. Cell Mol. Biol., 2007; 1: 9-22
    Google Scholar
  • 51. Mason H.S., Haq T.A.; Clements J.D.; Arntzen C.J.: Edible vaccineprotects mice against Escherichia coli heat-labile enterotoxin (LT): potatoesexpressing a synthetic LT-B gene. Vaccine, 1998; 16: 1336-1343
    Google Scholar
  • 52. Matsumoto S., Ishii A., Ikura K., Ueda M., Sasaki R.: Expression ofhuman erythropoietin in cultured tobacco cells. Biosci. Biotechnol.Biochem., 1993; 57: 1249-1252
    Google Scholar
  • 53. Matsumura T., Itchoda N., Tsunemitsu H.: Production of immunogenicVP6 protein of bovine group A rotavirus in transgenicpotato plants. Arch. Virol., 2002; 147: 1263-1270
    Google Scholar
  • 54. Morens D.M., Folkers G.K., Fauci A.S.: The challenge of emergingand re-emerging infectious diseases. Nature, 2004; 430: 242-249
    Google Scholar
  • 55. Nair A.M., Tsai Y.T., Shah K.M., Shen J., Weng H., Zhou J., SunX., Saxena R., Borrelli J.Jr., Tang L.: The effect of erythropoietin onautologous stem cell-mediated bone regeneration. Biomaterials,2013; 34: 7364-7371
    Google Scholar
  • 56. Nakanishi K., Narimatsu S., Ichikawa S., Tobisawa Y., KurohaneK., Niwa Y., Kobayashi H., Imai Y.: Production of hybrid-IgG/IgAplantibodies with neutralizing activity against Shiga toxin 1. PLoSOne, 2013; 8: e80712
    Google Scholar
  • 57. O’Hara J.M., Whaley K., Pauly M., Zeitlin L., Mantis N.J.: Plant–based expression of a partially humanized neutralizing monoclonalIgG directed against an immunodominant epitope on the ricin toxinA subunit. Vaccine, 2012; 30: 1239-1243
    Google Scholar
  • 58. Ohya K., Itchoda N., Ohashi K., Onuma M., Sugimoto C., MatsumuraT.: Expression of biologically active human tumor necrosisfactor-alpha in transgenic potato plant. J. Interferon Cytokine Res.,2002; 22: 371-378
    Google Scholar
  • 59. Olinger G.G.Jr., Pettitt J., Kim D., Working C., Bohorov O., BratcherB., Hiatt E., Hume S.D., Johnson A.K., Morton J., Pauly M., WhaleyK.J., Lear C.M., Biggins J.E., Scully C., Hensley L., Zeitlin L.: Delayedtreatment of Ebola virus infection with plant-derived monoclonalantibodies provides protection in rhesus macaques. Proc. Natl. Acad.Sci. USA, 2012; 109: 18030-18035
    Google Scholar
  • 60. Oszvald M., Kang T.J., Tomoskozi S., Jenes B., Kim T.G., Cha Y.S.,Tamas L., Yang M.S.: Expression of cholera toxin B subunit in transgenicrice endosperm. Mol. Biotechnol., 2008; 40: 261-268
    Google Scholar
  • 61. Pogrebnyak N., Markley K., Smirnov Y., Brodzik R., BandurskaK., Koprowski H., Golovkin M.: Collard and cauliflower as a base forproduction of recombinant antigens. Plant Sci., 2006; 171: 677-685
    Google Scholar
  • 62. Ramessar K., Rademacher T., Sack M., Stadlmann J., Platis D.,Stiegler G., Labrou N., Altmann F., Ma J., Stöger E., Capell T., ChristouP.: Cost-effective production of a vaginal protein microbicideto prevent HIV transmission. Proc. Natl. Acad. Sci. USA, 2008; 105:3727-3732
    Google Scholar
  • 63. Rodríguez M., Pujol M., Pérez L., Gavilondo J.V., Garrido G., AyalaM., Pérez M., Bequet-Romero M., Cabrera G., Ramos O., HernándezI., González E.M., Huerta V., Sánchez B., Mateo C. i wsp.: Transgenicplants of Nicotiana tabacum L. express aglycosylated monoclonalantibody with antitumor activity. Biotecnol. Apl., 2013; 30: 157-161
    Google Scholar
  • 64. Rosales-Mendoza S., Soria-Guerra R.E., López-Revilla R., Moreno-FierrosL., Alpuche-Solís A.G.: Ingestion of transgenic carrotsexpressing the Escherichia coli heat-labile enterotoxin B subunit protectsmice against cholera toxin challenge. Plant Cell Rep., 2008;27: 79-84
    Google Scholar
  • 65. Rosenberg Y., Sack M., Montefiori D., Forthal D., Mao L., Hernandez-AbantoS., Urban L., Landucci G., Fischer R., Jiang X.: Rapidhigh-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoSOne, 2013; 8: e58724
    Google Scholar
  • 66. Ruhlman T., Ahangari R., Devine A., Samsam M., Daniell H.:Expression of cholera toxin B-proinsulin fusion protein in lettuceand tobacco chloroplasts – oral administration protects against developmentof insulitis in non-obese diabetic mice. Plant Biotechnol.J., 2007; 5: 495-510
    Google Scholar
  • 67. Rybicki E.P.: Plant-made vaccines for humans and animals. PlantBiotechnol. J., 2010; 8: 620-637
    Google Scholar
  • 68. Sack M., Paetz A., Kunert R., Bomble M., Hesse F., Stiegler G.,Fischer R., Katinger H., Stoeger E., Rademacher T.: Functional analysisof the broadly neutralizing human anti-HIV-1 antibody 2F5produced in transgenic BY-2 suspension cultures. FASEB J., 2007;21: 1655-1664
    Google Scholar
  • 69. Sakhno L.O., Krasko O.Y., Olevinska Z.M., Spivak M.Y., KuchukM.V.: Creation of transgenic Brassica napus L. plants expressing humanalpha 2b interferon gene. Tsitol. Genet., 2012; 46: 12-18
    Google Scholar
  • 70. Sharp J.M., Doran P.M.: Effect of bacitracin on growth and monoclonalantibody production by tobacco hairy roots and cell suspensions.Biotechnol. Bioprocess Eng., 1999; 4: 253-258
    Google Scholar
  • 71. Shchelkunov S.N., Salyaev R.K., Pozdnyakov S.G., RekoslavskayaN..I, Nesterov A.E., Ryzhova T.S., Sumtsova V.M., PakovaN.V., Mishutina U.O., Kopytina T.V., Hammond R.W.: Immunogenicityof a novel, bivalent, plant-based oral vaccine against hepatitisB and human immunodeficiency viruses. Biotechnol. Lett.,2006; 28: 959-967
    Google Scholar
  • 72. Shin Y.J., Hong S.Y., Kwon T.H., Jang Y.S., Yang M.S.: High levelof expression of recombinant human granulocyte-macrophage colonystimulating factor in transgenic rice cell suspension culture.Biotechnol. Bioeng., 2003; 82: 778-783
    Google Scholar
  • 73. Sirko A., Vaněk T., Góra-Sochacka A., Radkiewicz P.: Recombinantcytokines from plants. Int. J. Mol. Sci., 2011; 12: 3536-3552
    Google Scholar
  • 74. Swiech K., Picanço-Castro V., Covas D.T.: Human cells: new platformfor recombinant therapeutic protein production. Protein Expr.Purif., 2012; 84: 147-153
    Google Scholar
  • 75. Tackaberry E.S, Dudani A.K.; Prior F., Tocchi M., Sardana R.,Altosaar I., Ganz P.R.: Development of biopharmaceuticals in plantexpression systems: cloning, expression and immunological reactivityof human cytomegalovirus glycoprotein B (UL55) in seeds oftransgenic tobacco. Vaccine, 1999; 17: 3020-3029
    Google Scholar
  • 76. Tayal V., Kalra B.S.: Cytokines and anti-cytokines as therapeutics– an update. Eur. J. Pharmacol., 2008; 579: 1-12
    Google Scholar
  • 77. Thanavala Y., Mahoney M., Pal S., Scott A., Richter L., NatarajanN., Goodwin P., Arntzen C.J., Mason H.S.: Immunogenicity inhumans of an edible vaccine for hepatitis B. Proc. Natl. Acad. Sci.USA, 2005; 102: 3378-3382
    Google Scholar
  • 78. Tokuhara D., Álvarez B., Mejima M., Hiroiwa T., Takahashi Y.,Kurokawa S., Kuroda M., Oyama M., Kozuka-Hata H., Nochi T., SagaraH., Aladin F., Marcotte H., Frenken L.G., Iturriza-Gómara M. i wsp.:Rice-based oral antibody fragment prophylaxis and therapy againstrotavirus infection. J. Clin. Invest., 2013; 123: 3829-3838
    Google Scholar
  • 79. Tremblay R., Wang D., Jevnikar A.M., Ma S.: Tobacco, a highlyefficient green bioreactor for production of therapeutic proteins.Biotechnol. Adv., 2010; 28: 214-221
    Google Scholar
  • 80. Triguero A., Cabrera G., Cremata J.A., Yuen C.T., Wheeler J.,Ramírez N.I.: Plant-derived mouse IgG monoclonal antibody fusedto KDEL endoplasmic reticulum-retention signal is N-glycosylatedhomogeneously throughout the plant with mostly high-mannose–type N-glycans. Plant Biotechnol. J., 2005; 3: 449-457
    Google Scholar
  • 81. Vézina L.P., Faye L., Lerouge P., D’Aoust M.A., Marquet-Blouin E.,Burel C., Lavoie P.O., Bardor M., Gomord V.: Transient co-expressionfor fast and high-yield production of antibodies with human-like N–glycans in plants. Plant Biotechnol. J., 2009; 7: 442-455
    Google Scholar
  • 82. Virágh M., Vörös D., Kele Z., Kovács L., Fizil A., Lakatos G., MarótiG., Batta G., Vágvölgyi C., Galgóczy L.: Production of a defensin-likeantifungal protein NFAP from Neosartorya fischeri in Pichia pastorisand its antifungal activity against filamentous fungal isolates fromhuman infections. Protein Expr. Purif., 2014; 94: 79-84
    Google Scholar
  • 83. Wang X., Brandsma M., Tremblay R., Maxwell D., Jevnikar A.M.,Huner N., Ma S.: A novel expression platform for the production ofdiabetes-associated autoantigen human glutamic acid decarboxylase(hGAD65). BMC Biotechnol., 2008; 8: 87
    Google Scholar
  • 84. Wang Y., Deng H., Zhang X., Xiao H., Jiang Y., Song Y., Fang L.,Xiao S., Zhen Y., Chen H.: Generation and immunogenicity of Japaneseencephalitis virus envelope protein expressed in transgenic rice.Biochem. Biophys. Res. Commun., 2009; 380: 292-297
    Google Scholar
  • 85. Wirz H., Sauer-Budge A.F., Briggs J., Sharpe A., Shu S., Sharon A.:Automated production of plant-based vaccines and pharmaceuticals.J. Lab. Autom., 2012; 17: 449-457
    Google Scholar
  • 86. Xu K., Evans D.B., Carrin G., Aguilar-Rivera A.M., Musgrove P.,Evans T.: Protecting households from catastrophic health spending.Health Aff., 2007; 26: 972-983
    Google Scholar
  • 87. Yusibov V., Streatfield S.J., Kushnir N.: Clinical development ofplant-produced recombinant pharmaceuticals: vaccines, antibodiesand beyond. Hum. Vaccin., 2011; 7: 313-321
    Google Scholar
  • 88. Zhang C., Allegretti M., Vonck J., Langer J.D., Marcia M., Peng G.,Michel H.: Production of fully assembled and active Aquifex aeolicus F1FOATP synthase in Escherichia coli. Biochim. Biophys. Acta, 2014; 1840: 34-40
    Google Scholar
  • 89. Zhou F., Badillo-Corona J.A., Karcher D., Gonzalez-Rabade N.,Piepenburg K., Borchers A.M., Maloney A.P., Kavanagh T.A., GrayJ.C., Bock R.: High-level expression of human immunodeficiencyvirus antigens from the tobacco and tomato plastid genomes. PlantBiotechnol. J., 2008; 6: 897-913
    Google Scholar
  • 90. Zhou Y.X, Lee M.Y., Ng J.M., Chye M.L., Yip W.K., Zee S.Y., LamE.: A truncated hepatitis E virus ORF2 protein expressed in tobaccoplastids is immunogenic in mice. World J. Gastroenterol., 2006;12: 306-312
    Google Scholar
  • 91. Zhu Z., Hughes K.W., Huang L., Sun B., Liu C., Li Y., Hou Y., Li X.:Expression of human α-interferon cDNA in transgenic rice plants.Plant Cell Tissue Organ Cult., 1994; 36: 197-204
    Google Scholar

Full text

Skip to content