Polyphenols in preventing endothelial dysfunction

COMMENTARY ON THE LAW

Polyphenols in preventing endothelial dysfunction

Sylwia Biegańska-Hensoldt 1 , Danuta Rosołowska-Huszcz 1

1. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Katedra Dietetyki, Zakład Fizjologii Żywienia

Published: 2017-03-27
DOI: 10.5604/01.3001.0010.3808
GICID: 01.3001.0010.3808
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 227-235

 

Abstract

One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS) and increased production of nitric oxide (NO) and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

References

  • 1. Ahn H.Y., Kim C.H., Ha T.S.: Epigallocatechin-3-gallate regulatesNADPH oxidase expression in human umbilical vein endothelialcells. Korean J. Physiol. Pharmacol., 2010; 14: 325-329
    Google Scholar
  • 2. Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B.: Bioavailabilityof curcumin: problems and promises. Mol. Pharm., 2007;4: 807-818
    Google Scholar
  • 3. Aubin M.C., Lajoie C., Clément R., Gosselin H., Calderone A., PerraultL.P.: Female rats fed a high-fat diet were associated with vasculardysfunction and cardiac fibrosis in the absence of overt obesityand hyperlipidemia: therapeutic potential of resveratrol. J. Pharmacol.Exp. Ther., 2008; 325: 961-968
    Google Scholar
  • 4. Baba S., Osakabe N., Yasuda A., Natsume M., Takizawa T., NakamuraT., Terao J.: Bioavailability of (-)-epicatechin upon intake ofchocolate and cocoa in human volunteers. Free Radic. Res., 2000;33: 635-641
    Google Scholar
  • 5. Bansal S.S., Goel M., Aqil F., Vadhanam M.V., Gupta R.C.: Advanceddrug delivery systems of curcumin for cancer chemoprevention.Cancer Prev. Res., 2011; 4: 1158-1171
    Google Scholar
  • 6. Bhatt J.K., Thomas S., Nanjan M.J.: Resveratrol supplementationimproves glycemic control in type 2 diabetes mellitus. Nutr. Res.,2012; 32: 537-541
    Google Scholar
  • 7. Broda G, Rywik S.: Wieloośrodkowe ogólnopolskie badanie stanuzdrowia ludności – projekt WOBASZ. Zdefiniowanie problem orazcele badania. Kardiol. Pol., 2005; 63: 614-685
    Google Scholar
  • 8. Cantos E., Espin J.C., Tomás-Barberán F.A.: Postharvest stilbeneenrichmentof red and white table grape varieties using UV-C irradiationpulses. J. Agric. Food Chem., 2002; 50: 6322-6329
    Google Scholar
  • 9. Chhabra N.: Endothelial dysfunction – a predictor of atherosclerosis.Internet J. Med. Update, 2009; 4: 33-41
    Google Scholar
  • 10. Dal-Ros S., Zoll J., Lang A.L., Auger C., Keller N., Bronner C.,Geny B., Schini-Kerth V.B.: Chronic intake of red wine polyphenolsby young rats prevents aging-induced endothelial dysfunction anddecline in physical performance: role of NADPH oxidase. Biochem.Biophys. Res. Commun., 2011; 404: 743-749
    Google Scholar
  • 11. Das M., Das D.K.: Resveratrol and cardiovascular health. Mol. Aspects Med., 2010; 31: 503-512
    Google Scholar
  • 12. Deanfield J.E., Halcox J.P., Rabelink T.J.: Endothelial functionand dysfunction: testing and clinical relevance. Circulation, 2007;115: 1285-1295
    Google Scholar
  • 13. Egert S., Bosy-Westphal A., Seiberl J., Kürbitz C., Settler U., Plachta-DanielzikS., Wagner A.E., Frank J., Schrezenmeir J., Rimbach G.,Wolffram S., Müller M.J.: Quercetin reduces systolic blood pressureand plasma oxidised low-density lipoprotein concentrations in overweightsubjects with a high-cardiovascular disease risk phenotype:a double-blinded, placebo-controlled cross-over study. Br. J. Nutr.,2009; 102: 1065-1074
    Google Scholar
  • 14. Estruch R., Sacanella E., Badia E., Antúnez E., Nicolás J.M.,Fernández-Solá J., Rotilio D., de Gaetano G., Rubin E., UrbanoMárquezA.: Different effects of red wine and gin consumption oninflammatory biomarkers of atherosclerosis: a prospective randomizedcrossover trial. Effects of wine on inflammatory markers. Atherosclerosis,2004; 175: 117-123
    Google Scholar
  • 15. Farhangkhoee H., Khan Z.A., Chen S., Chakrabarti S.: Differentialeffects of curcumin on vasoactive factors in the diabetic rat heart.Nutr. Metab., 2006; 3: 27
    Google Scholar
  • 16. Faridi Z., Nijke V.Y., Dutta S., Ali A., Katz D.L.: Acute dark chocolateand cocoa ingestion and endothelial function: a randomizedcontrolled crossover trial. Am. J. Clin. Nutr., 2008; 88: 58-63
    Google Scholar
  • 17. Flammer A.J., Hermann F., Sudano I., Spieker L., Hermann M.,Cooper K.A., Serafini M., Lüscher T., Ruschitzka F., Noll G., Corti R.:Dark chocolate improves coronary vasomotion and reduces plateletreactivity. Circulation, 2007; 116: 2376-2382
    Google Scholar
  • 18. Fujitaka K., Otani H., Jo F., Jo H., Nomura E., Iwasaki M., NishikawaM., Iwasaka T., Das D.K.: Modified resveratrol Longevinex improvesendothelial function in adults with metabolic syndrome receivingstandard treatment. Nutr. Res., 2011; 31: 842-847
    Google Scholar
  • 19. Gómez-Guzmán M., Jiménez R., Sánchez M., Romero M., O›ValleF., Lopez-Sepulveda R., Quintela A.M., Galindo P., Zarzuelo M.J.,Bailón E., Delpón E., Perez-Vizcaino F., Duarte J.: Chronic (-)-epicatechinimproves vascular oxidative and inflammatory status butnot hypertension in chronic nitric oxide-deficient rats. Br. J. Nutr.,2011; 106: 1337-1348
    Google Scholar
  • 20. Gresele P., Cerletti C., Guglielmini G., Pignatelli P., de GaetanoG., Violi F.: Effects of resveratrol and other wine polyphenols onvascular function: an update. J. Nutr. Biochem., 2011; 22: 201-211
    Google Scholar
  • 21. Gresele P., Pignatelli P., Guglielmini G., Carnevale R., MezzasomaA.M., Ghiselli A., Momi S., Violi F.: Resveratrol, at concentrations attainablewith moderate wine consumption, stimulates human plateletnitric oxide production. J. Nutr., 2008; 138: 1602-1608
    Google Scholar
  • 22. Gupta S.C., Patchva S., Aggarwal B.B.: Therapeutic roles of curcumin:lessons learned from clinical trials. AAPS J., 2013; 15: 195-218
    Google Scholar
  • 23. Guzik T.J., Adamek-Guzik T., Jopek A., Korbut R.: Patomechanizmydysfunkcji śródbłonka naczyniowego w miażdżycy. CzynnikiRyzyka, 2004; 1-2: 8-22
    Google Scholar
  • 24. Higashi Y., Noma K., Yoshizumi M., Kihara Y.: Endothelial functionand oxidative stress in cardiovascular diseases. Circ. J., 2009;73: 411-418
    Google Scholar
  • 25. Hooper L., Kay C., Abdelhamid A., Kroon P.A., Cohn J.S., RimmE.B., Cassidy A.: Effects of chocolate, cocoa, and flavan-3-ols on cardiovascularhealth: a systematic review and meta-analysis of randomizedtrials. Am. J. Clin. Nutr., 2012; 95: 740-751
    Google Scholar
  • 26. Ihm S.H., Lee J.O., Kim S.J., Seung K.B., Schini-Kerth V.B., ChangK., Oak M.H.: Catechin prevents endothelial dysfunction in the prediabeticstage of OLETF rats by reducing vascular NADPH oxidaseactivity and expression. Atherosclerosis, 2009; 206: 47-53
    Google Scholar
  • 27. Informacja o sytuacji społeczno-gospodarczej kraju. GłównyUrząd Statystyczny, Warszawa 2012
    Google Scholar
  • 28. Ingawa K., Aruga N., Matsumura Y., Shibata M., Osakabe N.: Alterationof the systemic and microcirculation by a single oral doseof flavan-3-ols. PLoS One, 2014; 9: e94853
    Google Scholar
  • 29. Jackson S.J., Murphy L.L., Venema R.C., Singletary K.W., YoungA.J.: Curcumin binds tubulin, induces mitotic catastrophe, and impedesnormal endothelial cell proliferation. Food Chem. Toxicol.,2013; 60: 431-438
    Google Scholar
  • 30. Jackson S.J., Venema R.C.: Quercetin inhibits eNOS, microtubulepolymerization, and mitotic progression in bovine aortic endothelialcells. J. Nutr., 2006; 136: 1178-1184
    Google Scholar
  • 31. Juan M.E., González-Pons E., Planas J.M.: Multidrug resistanceproteins restrain the intestinal absorption of trans-resweratrol inrats. J. Nutr., 2010; 140: 489-495
    Google Scholar
  • 32. Kang K.T.: Endothelium-derived relaxing factors of small resistancearteries in hypertension. Toxicol. Res., 2014; 30: 141-148
    Google Scholar
  • 33. Kim J.A., Formoso G., Li Y., Potenza M.A., Marasciulo F.L., MontagnaniM., Quon M.J.: Epigallocatechin gallate, a green tea polyphenol,mediates NO-dependent vasodilation using signaling pathways invascular endothelium requiring reactive oxygen species and Fyn. J.Biol. Chem., 2007; 282: 13736-13745
    Google Scholar
  • 34. Kleemann R., Verschuren L., Morrison M., Zadelaar S., van ErkM.J., Wielinga P.Y., Kooistra T.: Anti-inflammatory, anti-proliferativeand anti-atherosclerotic effects of quercetin in human in vitro andin vivo models. Atherosclerosis., 2011; 218: 44-52
    Google Scholar
  • 35. Lee K.H., Park E., Lee H.J., Kim M.O., Cha Y.J., Kim J.M, Lee H.,Shin M.J.: Effects of daily quercetin-rich supplementation on cardiometabolicrisks in male smokers. Nutr. Res. Pract., 2011; 5: 28-33
    Google Scholar
  • 36. Leibowitz A., Faltin Z., Perl A., Eshdat Y., Hagay Y., Peleg E.,Grossman E.: Red grape berry-culturedcells reduce blood pressurein rats with metabolic-like syndrome. Eur. J. Nutr., 2014; 53: 973-980
    Google Scholar
  • 37. Li H.L., Huang Y., Zhang C.N., Liu G., Wei Y.S., Wang A.B., LiuY.Q., Hui R.T., Wei C., Williams G.M., Liu D.P., Liang C.C.: Epigallocathechin-3gallate inhibits cardiac hypertrophy through blockingreactive oxidative species-dependent and – independent signalpathways. Free Radic. Biol. Med., 2006; 40: 1756-1775
    Google Scholar
  • 38. Liu Z., Song Y., Zhang X., Liu Z., Zhang W., Mao W., Wang W., Cui W.,Zhang X., Jia X., Li N., Han C., Liu C.: Effects of trans-resveratrol on hypertension-inducedcardiac hypertrophy using the partially nephrectomizedrat model. Clin. Exp. Pharmacol. Physiol., 2005; 32: 1049-1054
    Google Scholar
  • 39. Loke W.M., Hodgson J.M., Proudfoot J.M., McKinley A.J., PuddeyI.B., Croft K.D.: Pure dietary flavonoids quercetin and (-)-epicatechinaugment nitric oxide products and reduce endothelin-1 acutely inhealthy men. Am. J. Clin. Nutr., 2008; 88: 1018-1025
    Google Scholar
  • 40. Loke W.M., Proudfoot J.M., Hodgson J.M., McKinley A.J., HimeN., Magat M., Stocker R., Croft K.D.: Specific polyphenols attenuateatherosclerosis in apolipoprotein E-knockout mice by alleviatinginflammation and endothelial dysfunction. Atheroscler. Thromb.Vasc. Biol., 2010; 30: 749-757
    Google Scholar
  • 41. Lorenz M., Wessler S., Follmann E., Michaelis W., Düsterhöft T.,Baumann G., Stangl K., Stangl V.: A constituent of green tea, epigallocatechin-3-gallate,activates endothelial nitric oxide synthase bya phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-,and Akt-dependent pathway and leads to endothelial-dependentvasorelaxation. J. Biol. Chem., 2004; 279: 6190-6195
    Google Scholar
  • 42. López-Sepúlveda R., Jiménez R., Romero M., Zarzuelo M.J., SánchezM., Gómez-Guzmán M., Vargas F., O’Valle F., Zarzuelo A., PérezVizcaínoF., Duarte J.: Wine polyphenols improve endothelial functionin large vessels of female spontaneously hypertensive rats.Hypertension, 2008; 51: 1088-1095
    Google Scholar
  • 43. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L.: Polyphenols:food sources and bioavailability. Am. J. Clin. Nutr., 2004;79: 727-747
    Google Scholar
  • 44. Modasiya M.K.,. Patel V.M.: Studies on solubility of curcumin. Int. J. Pharm. Life Sci., 2012; 3: 1490-1497
    Google Scholar
  • 45. Monahan K.D., Feehan R.P., Kunselman A.R., Preston A.G., MillerD.L., Lott M.E.: Dose-dependent increases in flow-mediated dilationfollowing acute cocoa ingestion in healthy older adults. J. Appl.Physiol., 2011; 111: 1568-1574
    Google Scholar
  • 46. Mudau M., Genis A., Lochner A., Strijdom H.: Endothelial dysfunction:the early predictor of atherosclerosis. Cardiovasc. J. Afr.,2012; 23: 222-231
    Google Scholar
  • 47. Oyama J., Maeda T., Kouzuma K., Ochiai R., Tokimitsu I., HiguchiY., Sugano M., Makino N.: Green tea catechins improve human forearmendothelial dysfunction and have antiatheriosclerotic effectsin smokers. Circ. J., 2010; 74: 578-588
    Google Scholar
  • 48. Oyama J., Maeda T., Sasaki M., Kozuma K., Ochiai R., TokimitsuI., Taguchi S., Higuchi Y., Makino N.: Green tea catechins improvehuman forearm vascular function and have potent anti-inflammatoryand anti-apoptotic effects in smokers. Intern. Med., 2010; 49:2553-2559
    Google Scholar
  • 49. Persson I.A., Josefsson M., Persson K., Andersson R.G.: Tea flavanolsinhibit angiotensin-converting enzyme activity and increasenitric oxide production in human endothelial cells. J. Pharm. Pharmacol.,2006; 58: 1139-1144
    Google Scholar
  • 50. Pu Y., Zhang H., Wang P., Zhao Y., Li Q., Wei X., Cui Y., Sun J.,Shang Q., Liu D., Zhu Z.: Dietary curcumin ameliorates aging-relatedcerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell. Physiol. Biochem., 2013; 32: 1167-1177
    Google Scholar
  • 51. Ramaswami G., Chai H., Yao Q., Lin P.H., Lumsden A.B., Chen C.:Curcumin blocks homocysteine-induced endothelial dysfunction inporcine coronary arteries. J. Vasc. Surg., 2004; 40: 1216-1222
    Google Scholar
  • 52. Ras R.T., Zock P.L., Draijer R.: Tea consumption enhances endothelial-dependentvasodilation; a meta-analysis. PLoS One, 2011;6: e16974
    Google Scholar
  • 53. Ried K., Sullivan T.R., Fakler P., Frank O.R., Stocks N.P.: Effectof cocoa on blood pressure. Cochrane Database Syst. Rev., 2012; 8:CD008893
    Google Scholar
  • 54. Rodrigo R., Miranda A., Vergara L.: Modulation of endogenousantioxidant system by wine polyphenols in human disease. Clin.Chim. Acta, 2011; 412: 410-424
    Google Scholar
  • 55. Rungseesantivanon S., Thenchaisri N., Ruangvejvorachai P.,Patumraj S.: Curcumin supplementation could improve diabetesinducedendothelial dysfunction associated with decreased vascularsuperoxide production and PKC inhibition. BCM Complement.Altern. Med., 2010; 10: 1-9
    Google Scholar
  • 56. Sharangi A.: Medicinal and therapeutic potentialities of tea (Camelliasinensis L.) – a review. J. Food Res., 2009; 42: 529-535
    Google Scholar
  • 57. Shen Y., Ward N.C., Hodgson J.M., Puddey I.B., Wang Y., ZhangD., Maghzal G.J., Stocker R., Croft K.D.: Dietary quercetin attenuatesoxidant-induced endothelial dysfunction and atherosclerosis in apolipoproteinE knockout mice fed a high fat diet: a critical role forheme oxygenase-1. Free Radic. Biol. Med., 2013; 65: 908-915
    Google Scholar
  • 58. Shrime M.G., Bauer S.R., McDonald A.C., Chowdhury N.H., ColtartC.E., Ding E.L.: Flavonoid-rich cocoa consumption affects multiplecardiovascular risk factors in a meta-analysis of short-term studies.J. Nutr., 2011; 141: 1982-1988
    Google Scholar
  • 59. Silan C.: The effects of chronic resveratrol treatment on vascularresponsiveness of streptozotocin-induced diabetic rats. Biol. Pharm.Bull., 2008; 31: 897-902
    Google Scholar
  • 60. Simionescu M.: Implications of early structural-functionalchanges in the endothelium for vascular disease. Arterioscler.Thromb. Vasc. Biol., 2007; 27: 266-274
    Google Scholar
  • 61. Steinberg F.M., Bearden M.M., Keen C.L.: Cocoa and chocolateflavonoids: implications for cardiovascular health. J. Am. Diet. Assoc.,2003; 103: 215-223
    Google Scholar
  • 62. Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J.,García-Almagro F.J., Ruiz-Ros J.A., Tomás-Barberán F.A., García-ConesaM.T., Espín J.C.: One-year consumption of a grape nutraceuticalcontaining resveratrol improves the inflammatory and fibrinolyticstatus of patients in primary prevention of cardiovascular disease.Am. J. Cardiol., 2012; 110: 356-363
    Google Scholar
  • 63. Tomé – Carneiro J., Gonzálvez M., Larrosa M., Yáñez-GascónM.J., Garcia-Almagro F.J., Ruiz-Ros R.A., Tomas-Barberan F.A., GarciaComesaM.T., Espin J.C.: Resveratrol in primary and secondary preventionof cardiovascular disease: a dietary and clinical perspective.Ann. N.Y. Acad. Sci., 2013; 1290: 37-51
    Google Scholar
  • 64. Tomé-Carneiro J., Larrosa M., González-Sarrías A., Tomás-BarberánF.A., García-Conesa M.T., Espín J.C.: Resveratrol and clinicaltrials: the crossroad from in vitro studies to human evidence. Curr.Pharm. Des., 2013; 19: 6064-6093
    Google Scholar
  • 65. Trojan P., Janik M., Przybyło M.: Śródbłonek – niedocenianyorgan. 1. Budowa i rola w procesach fizjologicznych. Kosmos, 2014;63, 555-568
    Google Scholar
  • 66. van den Oever I.A., Raterman H.G., Nurmohamed M.T., SimsekS.: Endothelial dysfunction, inflammation, and apoptosis in diabetesmellitus. Mediators Inflamm., 2010; 2010: 792393
    Google Scholar
  • 67. Wallerath T., Deckert G., Ternes T., Anderson H., Li H., Witte K.,Förstermann U.: Resveratrol, a polyphenolic phytoalexin presentin red wine, enhances expression and activity of endothelial nitricoxide synthase. Circulation, 2002; 106: 1652-1658
    Google Scholar
  • 68. Wallerath T., Poleo D., Li H., Förstermann U.: Red wine increasesthe expression of human endothelial nitric oxide synthase: a mechanismthat may contribute to its beneficial cardiovascular effects. J.Am. Coll. Cardiol., 2003; 41: 471-478
    Google Scholar
  • 69. Wang S., Su R., Nie S., Sun M., Zhang J., Wu D., Moustaid-MoussaN.: Application of nanotechnology in improving bioavailabilityand bioactivity of diet-derived phytochemicals. J. Nutr. Biochem.,2014; 25: 363-376
    Google Scholar
  • 70. Wang Y.F., Gu Y.T., Qin G.H., Zhong L., Meng Y.N.: Curcumin amelioratesthe permeability of the blood-brain barrier during hypoxiaby upregulating heme oxygenase-1 expression in brain microvascularendothelial cells. J. Mol. Neurosci., 2013; 51: 344-351
    Google Scholar
  • 71. WHO, Global status report on noncommunicable diseases2014; http://www.who.int/mediacentre/factsheets/fs317/en/(04.03.2015)
    Google Scholar
  • 72. Wolanin K., Piwocka K.: Kurkumina – od medycyny naturalnejdo kliniki. Kosmos, 2008; 57: 53-65
    Google Scholar
  • 73. Wong R.H., Howe P.R., Bucley J.D., Coates A.M., Kunz I., BerryN.M.: Acute resveratrol supplementation improves flow-mediateddilation in overweight/obese individuals with mildly elevated bloodpressure. Nutr. Metab. Cardiovasc. Dis., 2011; 21: 851-856
    Google Scholar
  • 74. Yang H.L., Chen S.C., Lin K.Y., Wang M.T., Chen Y.C., Huang H.C.,Cho H.J., Wang L., Kumar K.J., Hseu Y.C.: Antioxidant activities ofaqueous leaf extracts of Toona sinensis on free radical-induced endothelialcell damage. J. Ethnopharmacol., 2011; 137: 669-680
    Google Scholar
  • 75. Yin S.T., Tang M.L., Su L., Chen L., Hu P., Wang H.L., Wang M.,Ruan D.Y.: Effects of epigallocatechin-3-gallate on lead-induced oxidativedamage. Toxicology, 2008; 249: 45-54
    Google Scholar
  • 76. Zhu B.T.: Catechol-O-methyltransferase (COMT)-mediated methylationmetabolism of endogenous bioactive catechols and modulationby endobiotics and xenobiotics: importance in pathophysiologyand pathogenesis. Curr. Drug Metab., 2002; 3: 321-349
    Google Scholar

Full text

Skip to content