Possible involvement of 5-HT7 receptor in pathophysiology of affective disorders and action of antidepressant drugs

COMMENTARY ON THE LAW

Possible involvement of 5-HT7 receptor in pathophysiology of affective disorders and action of antidepressant drugs

Krzysztof Tokarski 1 , Magdalena Kusek 1 , Joanna Sowa 1 , Bartosz Bobula 1

1. Zakład Fizjologii, Instytut Farmakologii, Polskiej Akademii Nauk w Krakowie

Published: 2014-09-12
DOI: 10.5604/17322693.1120929
GICID: 01.3001.0003.1285
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 1104-1113

 

Abstract

The 5-HT7 receptor has recently received considerable attention since its involvement has been implicated in cognitive disturbances, sleep and circadian rhythmicity disorders, anxiety and depression. At the cellular level, 5-HT7 receptors increase the excitability of excitatory cells and appear to modulate both glutamatergic and GABAergic transmission in the hippocampus. It has been proposed that 5-HT7 receptors also modulate glutamatergic and GABAergic transmission in the raphe nuclei and these effects may play a role in the regulation of circadian rhythms. Repeated administration of the selective 5-HT7 receptor antagonist induced functional desensitization of the 5-HT7 receptor system at the level of its reactivity and effector proteins. These effects resemble the outcome of treatment of rats with antidepressant drugs. Chronic stress and elevated level of corticosterone increase the reactivity of 5-HT7 receptors in the hippocampus. Treatment of rats with a selective 5-HT7 receptor antagonist also results in attenuation of glutamatergic transmission in the frontal cortex and it prevents the occurrence of stress-induced modifications of glutamatergic transmission and long-term synaptic plasticity. These results are consistent with the hypothesis that 5-HT7 receptor antagonism might, potentially, be used for the treatment of cognitive deficits and mood disorders.

References

  • 1. Alt A., Nisenbaum E.S., Bleakman D., Witkin J.M.: A role for AMPAreceptors in mood disorders. Biochem. Pharmacol., 2007; 71: 1273-1288
    Google Scholar
  • 2. Antle M.C., Ogilvie M.D., Pickard G.E., Mistlberger R.E.: Responseof the mouse circadian system to serotonin 1A/2/7 agonists in vivo:surprisingly little. J. Biol. Rhythms., 2003; 18: 145-158
    Google Scholar
  • 3. Bacon W.L., Beck S.G.: 5-Hydroxytryptamine7 receptor activationdecreases slow afterhyperpolarization amplitude in CA3 hippocampalpyramidal cells. J. Pharmacol. Exp. Ther., 2000; 294: 672-679
    Google Scholar
  • 4. Bermack J., Lavoie N., Dryver E., Debonnel G.: Effects of sigmaligands on NMDA receptor function in the bulbectomy model ofdepression: a behavioural study in the rat. Int. J. Neuropsychopharmacol.,2002; 5: 53-62
    Google Scholar
  • 5. Bickmeyer U., Heine M., Manzke T., Richter D.W.: Differential modulationof Ih by 5-HT receptors in mouse CA1 hippocampal neurons.Eur. J. Neurosci., 2002; 16: 209-218
    Google Scholar
  • 6. Bijak M., Misgeld U.: Effects of serotonin through serotonin1Aand serotonin4 receptors on inhibition in the guinea-pig dentategyrus in vitro. Neuroscience, 1997; 78: 1017-1026
    Google Scholar
  • 7. Bobula B., Wabno J., Hess G.: Imipramine counteracts corticosterone-inducedenhancement of glutamatergic transmission andimpairment of long-term potentiation in the rat frontal cortex.Pharmacol. Rep., 2011; 63: 1404-1412
    Google Scholar
  • 8. Bonaventure P., Kelly L., Aluisio L., Shelton J., Lord B., Galici R.,Miller K., Atack J., Lovenberg T.W., Dugovic C.: Selective blockade of5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission,antidepressant-like behavior, and rapid eye movement sleepsuppression induced by citalopram in rodents. J. Pharmacol. Exp.Ther., 2007; 321: 690-698
    Google Scholar
  • 9. Bremner J.D., Narayan M., Anderson E.R., Staib L.H., Miller H.L.,Charney D.S.: Hippocampal volume reduction in major depression.Am. J. Psychiatry, 2000; 157: 115-118
    Google Scholar
  • 10. Cardenas C.G., Mar L.P., Vysokanov A.V., Arnold P.B., CardenasL.M., Surmeier D.J., Scroggs R.S.: Serotonergic modulation of hyperpolarization-activatedcurrent in acutely isolated rat dorsal rootganglion neurons. J. Physiol., 1999; 518: 507-523
    Google Scholar
  • 11. Castro E.M., Diaz A., del Olmo E., Pazos A.: Chronic fluoxetine inducesopposite changes in G protein coupling at pre and postsynaptic5-HT1A receptors in rat brain. Neuropharmacology, 2003; 44: 93-101
    Google Scholar
  • 12. Chapin E.M., Andrade R.: A 5-HT7 receptor-mediated depolarizationin the anterodorsal thalamus. I. Pharmacological characterization.J. Pharmacol. Exp. Ther., 2001; 297: 395-402
    Google Scholar
  • 13. Chapin E.M., Andrade R.: A 5-HT7 receptor-mediated depolarizationin the anterodorsal thalamus. II. Involvement of the hyperpolarization-activatedcurrent Ih. J. Pharmacol. Exp. Ther., 2001; 297: 403-409
    Google Scholar
  • 14. Corset V., Nguyen-Ba-Charvet K.T., Forcet C., Moyse E., ChédotalA., Mehlen P.: Netrin-1-mediated axon outgrowth and cAMP productionrequires interaction with adenosine A2b receptor. Nature,2000; 407: 747-750
    Google Scholar
  • 15. Croarkin P.E., Levinson A.J., Daskalakis Z.J.: Evidence for GABAergicinhibitory deficits in major depressive disorder. Neurosci.Biobehav. Rev., 2011; 35: 818-825
    Google Scholar
  • 16. Czéh B., Michaelis T., Watanabe T., Frahm J., de Biurrun G., vanKampen M., Bartolomucci A., Fuchs E.: Stress-induced changes incerebral metabolites, hippocampal volume, and cell proliferationare prevented by antidepressant treatment with tianeptine. Proc.Natl. Acad. Sci. USA, 2001; 98: 12796-12801
    Google Scholar
  • 17. Doly S., Fischer J., Brisorgueil M.J., Vergé D., Conrath M.: Preandpostsynaptic localization of the 5-HT7 receptor in rat dorsalspinal cord: immunocytochemical evidence. J. Comp. Neurol., 2005;490: 256-269
    Google Scholar
  • 18. Duncan M.J., Franklin K.M.: Expression of 5-HT7 receptor mRNAin the hamster brain: effect of aging and association with calbindin–D28K expression. Brain Res., 2007; 1143: 70-77
    Google Scholar
  • 19. Duncan M.J., Temel S., Jennes L.: Localisation of serotonin 5-HT7receptor immunoreactivity in the rat brain. Soc. Neurosci. Abstr.,2001; 380, 18
    Google Scholar
  • 20. Ehlen J.C., Grossman G.H., Glass J.D.: In vivo resetting of thehamster circadian clock by 5-HT7 receptors in the suprachiasmaticnucleus. J. Neurosci., 2001; 21: 5351-5357
    Google Scholar
  • 21. Gadek-Michalska A., Bugajski J.: Repeated handling, restraint,or chronic crowding impair the hypothalamic‑pituitary‑adrenocorticalresponse to acute restraint stress. J. Physiol. Pharmacol.,2003; 54: 449-459
    Google Scholar
  • 22. Garcia-Iglesias B.B., Mendoza-Garrido M.E., Gutiérrez-OspinaG., Rangel-Barajas C., Noyola-Diaz M., Terrón J.A.: Sensitization ofrestraint-induced corticosterone secretion after chronic restraintin rats: involvement of 5-HT7 receptors. Neuropharmacology, 2013;71: 216-227
    Google Scholar
  • 23. Gill C.H., Soffin E.M., Hagan J.J., Davies C.H.: 5-HT7 receptorsmodulate synchronized network activity in rat hippocampus. Neuropharmacology,2002; 42: 82-92
    Google Scholar
  • 24. Glass J.D., Grossman G.H., Farnbauch L., DiNardo L.: Midbrainraphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. J. Neurosci.,2003; 23: 7451-7460
    Google Scholar
  • 25. Gregus A., Wintink A.J., Davis A.C., Kalynchuk L.E.: Effect ofrepeated corticosterone injections and restraint stress on anxietyand depression-like behavior in male rats. Behav. Brain Res., 2005;156: 105-114
    Google Scholar
  • 26. Guscott M., Bristow L.J., Hadingham K., Rosahl T.W., Beer M.S.,Stanton J.A., Bromidge F., Owens A.P., Huscroft I., Myers J., RupniakN.M., Patel S., Whiting P.J., Hutson P.H., Fone K.C., Biello S.M., KulagowskiJ.J., McAllister G.: Genetic knockout and pharmacologicalblockade studies of the 5-HT7 receptor suggest therapeutic potentialin depression. Neuropharmacology, 2005; 48: 492-502
    Google Scholar
  • 27. Harsing L.G.Jr., Prauda I., Barkoczy J., Matyus P., Juranyi Z.:A 5-HT7 heteroreceptor-mediated inhibition of [3H]serotonin releasein raphe nuclei slices of the rat: evidence for a serotonergic–glutamatergic interaction. Neurochem. Res., 2004; 29: 1487-1497
    Google Scholar
  • 28. Hedlund P.B., Huitron-Resendiz S., Henriksen S.J., Sutcliffe J.G.:5-HT7 receptor inhibition and inactivation induce antidepressantlikebehavior and sleep pattern. Biol. Psychiatry, 2005; 58: 831-837
    Google Scholar
  • 29. Hedlund P.B., Sutcliffe J.G.: Functional, molecular and pharmacologicaladvances in 5-HT7 receptor research. Trends Pharmacol.Sci., 2004; 25: 481-486
    Google Scholar
  • 30. Horikawa K., Yokota S., Fuji K., Akiyama M., Moriya T., OkamuraH., Shibata S.: Nonphotic entrainment by 5-HT1A/7 receptor agonistsaccompanied by reduced Perl and Per2 mRNA levels in the suprachiasmaticnuclei. J. Neurosci., 2000; 20: 5867-5873
    Google Scholar
  • 31. Hoyer D., Hannon J.P., Martin G.R.: Molecular, pharmacologicaland functional diversity of 5-HT receptors. Pharmacol. Biochem.Behav., 2002; 71: 533-554
    Google Scholar
  • 32. Iyo A.H., Feyissa A.M., Chandran A., Austin M.C., Regunathan S.,Karolewicz B.: Chronic corticosterone administration down-regulatesmetabotropic glutamate receptor 5 protein expression in the rathippocampus. Neuroscience, 2010; 169: 1567-1574
    Google Scholar
  • 33. Jacobs B.L., Azmitia E.C.: Structure and function of the brainserotonin system. Physiol. Rev., 1992; 72: 165-229
    Google Scholar
  • 34. Jin R., Clark S., Weeks A.M., Dudman J.T., Gouaux E., Partin K.M.:Mechanism of positive allosteric modulators acting on AMPA receptors.J. Neurosci., 2005; 25: 9027-9036
    Google Scholar
  • 35. Kawahara F., Saito H., Katsuki H.: Inhibition by 5-HT7 receptorstimulation of GABAA receptor-activated current in cultured rat suprachiasmaticneurones. J. Physiol., 1994; 478: 67-73
    Google Scholar
  • 36. Keedwell P.A., Andrew C., Williams S.C., Brammer M.J., PhillipsM.L.: The neural correlates of anhedonia in major depressive disorder.Biol. Psychiatry, 2005; 58: 843-853
    Google Scholar
  • 37. Krishnan V., Nestler E.J.: The molecular neurobiology of depression.Nature, 2008; 455: 894-902
    Google Scholar
  • 38. Kugaya A., Sanacora G.: Beyond monoamines: glutamatergicfunction in mood disorders. CNS Spectr., 2005; 10: 808-819
    Google Scholar
  • 39. Kvachnina E., Liu G., Dityatev A., Renner U., Dumuis A., RichterD.W., Dityateva G., Schachner M., Voyno-Yasenetskaya T.A., PonimaskinE.G.: 5-HT7 receptor is coupled to Ga subunits of heterotrimericG12-protein to regulate gene transcription and neuronal morphology.J. Neurosci., 2005; 25: 7821-7830
    Google Scholar
  • 40. Lapin I.P., Oxenkrug G.F.: Intensification of the central serotoninergicprocesses as a possible determinant of the thymolepticeffect. Lancet, 1969; 1: 132-136
    Google Scholar
  • 41. Lesch K.P., Aulakh C.S., Tolliver T.J., Hill J.L., Murphy D.L.: Regulationof G proteins by chronic antidepressant drug treatment inrat brain: tricyclics but not clorgyline increase Go alpha subunits.Eur. J. Pharmacol., 1991; 207: 361-364
    Google Scholar
  • 42. Lesch K.P., Aulakh C.S., Wolozin B.L., Murphy D.L.: Serotonin (5-HT) receptor, 5-HT transporter and G protein-effector expression:implications for depression. Pharmacol. Toxicol., 1992; 71 (Suppl.s1): 49-60
    Google Scholar
  • 43. Lesch K.P., Manji H.K.: Signal-transducing G proteins and antidepressantdrugs: evidence for modulation of α subunit gene expressionin rat brain. Biol. Psychiatry, 1992; 32: 549-579
    Google Scholar
  • 44. Li H., Prince D.A.: Synaptic activity in chronically injured, epileptogenicsensory-motor neocortex. J. Neurophysiol., 2002; 88: 2-12
    Google Scholar
  • 45. López-Rodríguez M.L., Benhamú B., Morcillo M.J., Porras E., LavanderaJ.L., Pardo L.: Serotonin 5-HT7 receptor antagonists. Curr.Med. Chem. Cent. Nerv. Syst. Agents, 2004; 4: 203-214
    Google Scholar
  • 46. Lovenberg T.W., Baron B.M., de Lecea L., Miller J.D., Prosser R.A.,Rea M.A., Foye P.E., Racke M., Slone A.L., Siegel B.W., Danielson P.E.,Sutcliffe J.G., Erlander M.G.: A novel adenylyl cyclase-activating serotoninreceptor (5-HT7) implicated in the regulation of mammaliancircadian rhythms. Neuron, 1993; 11: 449-458
    Google Scholar
  • 47. Mackowiak M., O’Neill M.J., Hicks C.A., Bleakman D., SkolnickP.: An AMPA receptor potentiator modulates hippocampal expressionof BDNF: an in vivo study. Neuropharmacology, 2002; 43: 1-10
    Google Scholar
  • 48. MacQueen G.M., Campbell S., McEwen B.S., Macdonald K., AmanoS., Joffe R.T., Nahmias C., Young L.T.: Course of illness, hippocampalfunction, and hippocampal volume in major depression. Proc. Natl.Acad. Sci. USA, 2003; 100: 1387-1392
    Google Scholar
  • 49. Manji H.K., Drevets W.C., Charney D.S.: The cellular neurobiologyof depression. Nat. Med., 2001; 7: 541-547
    Google Scholar
  • 50. McEwen B.S., Magarinos A.M.: Stress effects on morphology andfunction of the hippocampus. Ann. N.Y. Acad. Sci., 1997; 821: 271-284
    Google Scholar
  • 51. McEwen B.S., Sapolsky R.M.: Stress and cognitive function. Curr.Opin. Neurobiol., 1995; 5: 205-216
    Google Scholar
  • 52. McGowan S., Eastwood S.L., Mead A., Burnet P.W., Smith C., FlaniganT.P., Harrison P.J.: Hippocampal and cortical G protein (Gsa,Goa and Gi2a) mRNA expression after electroconvulsive shock orlithium carbonate treatment. Eur. J. Pharmacol., 1996; 306: 249-255
    Google Scholar
  • 53. Monti J.M., Jantos H.: Effects of the 5-HT(7) receptor antagonistSB-269970 microinjected into the dorsal raphe nucleus on REM sleepin the rat. Behav. Brain Res., 2006; 167: 245-250
    Google Scholar
  • 54. Monti J.M., Leopoldo M., Jantos H.: The serotonin 5-HT7 receptoragonist LP-44 microinjected into the dorsal raphe nucleus suppressesREM sleep in the rat. Behav. Brain Res., 2008; 191: 184-189
    Google Scholar
  • 55. Murray F., Smith D.W., Hutson P.H.: Chronic low dose corticosteroneexposure decreased hippocampal cell proliferation, volumeand induced anxiety and depression like behaviours in mice. Eur. J.Pharmacol., 2008; 583: 115-127
    Google Scholar
  • 56. Nestler E.J., Hyman S.E., Animal models of neuropsychiatricdisorders. Nat. Neurosci., 2010; 13: 1161-1169
    Google Scholar
  • 57. Nikiforuk A., Kos T., Fijał K., Hołuj M., Rafa D., Popik P.: Effectsof the selective 5-HT7 receptor antagonist SB-269970 and amisulprideon ketamine-induced schizophrenia-like deficits in rats. PLoSOne, 2013; 8: e66695
    Google Scholar
  • 58. Nikiforuk A., Popik P.: Amisulpride promotes cognitive flexibilityin rats: the role of 5-HT7 receptors. Behav. Brain Res., 2013;248: 136-140
    Google Scholar
  • 59. Nowak G., Li Y., Paul I.A.: Adaptation of cortical but not hippocampalNMDA receptors after chronic citalopram treatment. Eur. J.Pharmacol., 1996; 295: 75-85
    Google Scholar
  • 60. Nowak G., Trullas R., Layer R.T., Skolnick P., Paul I.A.: Adaptivechanges in the N-methyl-D-aspartate receptor complex after chronictreatment with imipramine and 1-aminocyclopropanecarboxylicacid. J. Pharmacol. Exp. Ther., 1993; 265: 1380-1386
    Google Scholar
  • 61. Okuhara D.Y., Beck S.G., Muma N.A.: Corticosterone alters Gprotein α-subunit levels in the rat hippocampus. Brain Res., 1997;745: 144-151
    Google Scholar
  • 62. Palucha A., Pilc A.: The involvement of glutamate in the pathophysiologyof depression. Drug News Perspect., 2005; 18: 262-268
    Google Scholar
  • 63. Parker K.J., Schatzberg A.F., Lyons D.M.: Neuroendocrine aspectsof hypercortisolism in major depression. Horm. Behav., 2003;43: 60-66
    Google Scholar
  • 64. Paul I.A., Skolnick P.: Glutamate and depression: clinical andpreclinical studies. Ann. N.Y. Acad. Sci., 2003; 1003: 250-272
    Google Scholar
  • 65. Pehrson A.L., Sanchez C.: Serotonergic modulation of glutamateneurotransmission as a strategy for treating depression and cognitivedysfunction. CNS Spectr., 2014; 19: 121-133
    Google Scholar
  • 66. Petrie R.X., Reid I.C., Stewart C.A.: The N-methyl-D-aspartatereceptor, synaptic plasticity and depressive disorder. Pharmacol.Ther., 2000; 87: 11-25
    Google Scholar
  • 67. Raone A., Cassanelli A., Scheggi S., Rauggi R., Danielli B., De MontisM.G.: Hypothalamus-pituitary-adrenal modifications consequentto chronic stress exposure in an experimental model of depressionin rats. Neuroscience, 2007; 146: 1734-1742
    Google Scholar
  • 68. Ren W., Palazzo E., Maione S., Neugebauer V.: Differential effectsof mGluR7 and mGluR8 activation on pain-related synaptic activityin the amygdala. Neuropharmacology, 2011; 61: 1334-1344
    Google Scholar
  • 69. Roberts C., Allen L., Langmead C.J., Hagan J.J., Middlemiss D.N.,Price G.W.: The effect of SB-269970, a 5-HT7 receptor antagonist,on 5-HT release from serotonergic terminals and cell bodies. Br. J.Pharmacol., 2001; 132: 1574-1580
    Google Scholar
  • 70. Roberts C., Thomas D.R., Bate S.T., Kew J.N.: GABAergic modulationof 5-HT7 receptor-mediated effects on 5-HT efflux in the guinea-pigdorsal raphe nucleus. Neuropharmacology, 2004; 46: 935-941
    Google Scholar
  • 71. Sheline Y.I., Wang P.W., Gado M.H., Csernansky J.G., VannierM.W.: Hippocampal atrophy in recurrent major depression. Proc.Natl. Acad. Sci. USA, 1996; 93: 3908-3913
    Google Scholar
  • 72. Skolnick P.: Antidepressants for the new millennium. Eur. J.Pharmacol., 1999; 375: 31-40
    Google Scholar
  • 73. Sprouse J., Reynolds L., Li X., Braselton J., Schmidt A.: 8-OH–DPAT as a 5-HT7 agonist: phase shifts of the circadian biologicalclock through increases in cAMP production. Neuropharmacology,2004; 46: 52-62
    Google Scholar
  • 74. Spyrka J., Danielewicz J., Hess G.: Brief neck restraint stress enhanceslong-term potentiation and suppresses long-term depressionin the dentate gyrus of the mouse. Brain Res. Bull., 2011; 85: 363-367
    Google Scholar
  • 75. Stahl S.M.: Mechanism of action of serotonin selective reuptakeinhibitors. Serotonin receptors and pathways mediate therapeuticeffects and side effects. J. Affect. Disord., 1998; 51: 215-235
    Google Scholar
  • 76. Sterner E.Y., Kalynchuk L.E.: Behavioral and neurobiologicalconsequences of prolonged glucocorticoid exposure in rats: relevanceto depression. Prog. Neuropsychopharmacol. Biol. Psychiatry,2010; 34: 777-790
    Google Scholar
  • 77. Surget A., Saxe M., Leman S., Ibarguen-Vargas Y., Chalon S.,Griebel G., Hen R., Belzung C.: Drug-dependent requirement of hippocampalneurogenesis in a model of depression and of antidepressantreversal. Biol. Psychiatry, 2008; 64: 293-301
    Google Scholar
  • 78. Theunissen E.L., Street D., Højer A.M., Vermeeren A., van OersA., Ramaekers J.G.: A randomized trial on the acute and steady-stateeffects of a new antidepressant, vortioxetine (Lu AA21004), on actualdriving and cognition. Clin. Pharmacol. Ther., 2013; 93: 493-501
    Google Scholar
  • 79. Thomas D.R., Hagan J.J.: 5-HT7 receptors. Curr. Drug TargetsCNS Neurol. Disord., 2004; 3: 81-90
    Google Scholar
  • 80. Thomas D.R., Melotto S., Massagrande M., Gribble A.D., JeffreyP., Stevens A.J., Deeks N.J., Eddershaw P.J., Fenwick S.H., Riley G.,Stean T., Scott C.M., Hill M.J., Middlemiss D.N., Hagan J.J., Price G.W.,Forbes I.T.: SB-656104-A, a novel selective 5-HT7 receptor antagonist,modulates REM sleep in rats. Br. J. Pharmacol., 2003; 139: 705-714
    Google Scholar
  • 81. Tokarski K., Bobula B., Kusek M., Hess G.: The 5-HT7 receptorantagonist SB 269970 counteracts restraint stress-induced attenuationof long-term potentiation in rat frontal cortex. J. Physiol. Pharmacol.,2011; 62: 663-667
    Google Scholar
  • 82. Tokarski K., Kusek M., Hess G.: 5-HT7 receptors modulate GABAergictransmission in rat hippocampal CA1 area. J. Physiol. Pharmacol.,2011; 62: 535-540
    Google Scholar
  • 83. Tokarski K., Kusek M., Hess G.: Repeated blockade of 5-HT7 receptorsdepresses glutamatergic transmission in the rat frontal cortex.J. Physiol. Pharmacol., 2012; 63: 173-177
    Google Scholar
  • 84. Tokarski K., Pitra P., Duszynska B., Hess G.: Imipramine counteractscorticosterone-induced alterations in the effects of the activationof 5-HT7 receptors in rat hippocampus. J. Physiol. Pharmacol.,2009; 60: 83-88
    Google Scholar
  • 85. Tokarski K., Zahorodna A., Bobula B., Grzegorzewska M., PitraP., Hess G.: Repeated administration of citalopram and imipraminealters the responsiveness of rat hippocampal circuitry to the activationof 5-HT7 receptors. Eur. J. Pharmacol., 2005; 524: 60-66
    Google Scholar
  • 86. Tokarski K., Zahorodna A., Bobula B., Hess G.: 5-HT7 receptorsincrease the excitability of rat hippocampal CA1 pyramidal neurons.Brain Res., 2003; 993: 230-234
    Google Scholar
  • 87. Tokarski K., Zelek-Molik A., Duszyńska B., Satała G., Bobula B.,Kusek M., Chmielarz P., Nalepa I., Hess G.: Acute and repeated treatmentwith the 5-HT7 receptor antagonist SB 269970 induces functionaldesensitization of 5-HT7 receptors in rat hippocampus. Pharmacol.Rep., 2012; 64: 256-265
    Google Scholar
  • 88. Trullas R., Skolnick P.: Functional antagonists at the NMDA receptorcomplex exhibit antidepressant actions. Eur. J. Pharmacol.,1990; 185: 1-10
    Google Scholar
  • 89. Vasefi M.S., Yang K., Li J., Kruk J.S., Heikkila J.J., Jackson M.F.,Macdonald J.F., Beazely M.A.: Acute 5-HT7 receptor activation increasesNMDA-evoked currents and differentially alters NMDA receptorsubunit phosphorylation and trafficking in hippocampalneurons. Mol. Brain, 2013; 6: 24
    Google Scholar
  • 90. Waters P., McCormick C.M.: Caveats of chronic exogenous corticosteronetreatments in adolescent rats and effects on anxiety-likeand depressive behavior and hypothalamic-pituitary-adrenal (HPA)axis function. Biol. Mood Anxiety Disord., 2011; 1: 4
    Google Scholar
  • 91. Wesołowska A., Kowalska M.: Influence of serotonin 5-HT7 receptorblockade on the behavioral and neurochemical effects ofimipramine in rats. Pharmacol. Rep., 2008; 60: 464-474
    Google Scholar
  • 92. Wesołowska A., Tatarczyńska E., Nikiforuk A., Chojnacka-WójcikE.: Enhancement of the anti-immobility action of antidepressantsby a selective 5-HT7 receptor antagonist in the forced swimmingtest in mice. Eur. J. Pharmacol., 2007; 555: 43-47
    Google Scholar
  • 93. Westrich L., Sprouse J., Sánchez C.: The effects of combiningserotonin reuptake inhibition and 5-HT7 receptor blockade on circadianrhythm regulation in rodents. Physiol. Behav., 2013; 110-111: 42-50
    Google Scholar
  • 94. Woolley D.W., Shaw E.: A biochemical and pharmacological suggestionabout certain mental disorders. Proc. Natl. Acad. Sci. USA,1954; 40: 228-231
    Google Scholar
  • 95. Wrona D., Jurkowski M.K., Bobek-Billewicz B., ĆwiklińskaJurkowskaM.: Sleep neurotransmitters and neuromodulators. Sen,2005; 5: 56-64
    Google Scholar
  • 96. Yau J.L., Noble J., Seckl J.R.: Acute restraint stress increases 5-HT7receptor mRNA expression in the rat hippocampus. Neurosci. Lett.,2001; 309: 141-144
    Google Scholar
  • 97. Yildiz-Yesiloglu A., Ankerst D.P.: Neurochemical alterations ofthe brain in bipolar disorder and their implications for pathophysiology:a systematic review of the in vivo proton magnetic resonancespectroscopy findings. Prog. Neuropsychopharmacol. Biol. Psychiatry,2006; 30: 969-995
    Google Scholar
  • 98. Ying S.W., Rusak B.: 5-HT7 receptors mediate serotonergic effectson light-sensitive suprachiasmatic nucleus neurons. Brain Res.,1997; 755: 246-254
    Google Scholar
  • 99. Yu G.D., Liu Y.L., Jiang X.H., Guo S.Y., Zhang H.Q., Yin Q.Z.,Hisamitsu T.: The inhibitory effect of serotonin on the spontaneousdischarge of suprachiasmatic neurons in hypothalamic sliceis mediated by 5-HT7 receptor. Brain Res. Bull., 2001; 54: 395-398
    Google Scholar
  • 100. Yu J.Z., Dave R.H., Allen J.A., Sarma T., Rasenick M.M.: CytosolicGαs acts as an intracellular messenger to increase microtubuledynamics and promote neurite outgrowth. J. Biol. Chem., 2009; 284:10462-10472
    Google Scholar
  • 101. Yuen E.Y., Liu W., Karatsoreos I.N., Ren Y., Feng J., McEwenB.S., Yan Z.: Mechanisms for acute stress-induced enhancement ofglutamatergic transmission and working memory. Mol. Psychiatry,2011; 16: 156-170
    Google Scholar
  • 102. Zhao Y., Ma R., Shen J., Su H., Xing D., Du L.: A mouse modelof depression induced by repeated corticosterone injections. Eur. J.Pharmacol., 2008; 581: 113-120
    Google Scholar

Full text

Skip to content