Programmed cell death – strategy for maintenance cellular organisms homeostasis

COMMENTARY ON THE LAW

Programmed cell death – strategy for maintenance cellular organisms homeostasis

Mirosław Godlewski 1 , Agnieszka Kobylińska 2

1. Katedra Cytologii i Cytochemii Roślin, Uniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska
2. Katedra Ekofizjologii i Rozwoju Roślin, Uniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska

Published: 2016-12-20
DOI: 10.5604/17322693.1226661
GICID: 01.3001.0009.6901
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1229-1244

 

Abstract

Programmed cell death (PCD) is a cellular suicide process, commonly found in organisms, that is important for elimination unnecessary and damaged cells during development and adaptation to abiotic and biotic environmental stresses. PCD is a complex and precise, genetically controlled cellular process, in opposite to non-programmed death, necrosis, in which cells are “killed” by strong abiotic factors. This article shows: the occurrence of PCD during animals and plants ontogenesis, classification of cell death types in these organisms with description of autophagy, apoptosis and necrotic cell death and with discussion on plant cell death by apoptosis. The role of Bcl-2 protein and other proteins involved in the regulation of apoptosis induction and detection in the plant’s (whose genomes do not encode these proteins) proteins of analogous function is also discussed. The paper also presents the effects of the expression of animals pro- and anti-apoptotic genes transformed into yeast and plants, and the use of transformed yeast as model to identify in cDNA libraries animal and plant genes involved in regulation of the induction and course of the PCD.

References

  • 1. Abu-Hamad S., Arbel N., Calo D., Arzoine L., Israelson A., KeinanN., Ben-Romano R., Friedman O., Shoshan-Barmatz V.: TheVDAC1 N-terminus is essential both for apoptosis and the protectiveeffect of anti-apoptotic proteins. J. Cell Sci., 2009; 122:1906–1916.
    Google Scholar
  • 2. Arabidopsis Genome Initiative: Analysis of the genome sequenceof the flowering plant Arabidopsis thaliana. Nature, 2000; 408:796–815.
    Google Scholar
  • 3. Aravind L., Dixit V.A., Koonin E.V.: Apoptotic molecular machinery:vastly increased complexity in vertebrates revealed by genomecomparisons. Science, 2001; 291: 1279–1284.
    Google Scholar
  • 4. Arzoine L., Zilberberg N., Ben-Romano R., Shoshan-Barmatz V.:Voltage-dependent anion channel 1-based peptides interact withhexokinase to prevent its anti-apoptotic activity. J. Biol. Chem.,2009; 284: 3946–3955.
    Google Scholar
  • 5. Baek D., Jin Y., Jeong J.H., Lee H.-J., Moon H., Lee J., Shin D., KangC.H., Kim D.H., Nam J., Lee S.Y., Yun D.-J.: Suppression of reactiveoxygen species by glyceraldehyde-3-phosphate dehydrogenase.Phytochemistry, 2008; 69: 333–338.
    Google Scholar
  • 6. Baek D., Nam J., Koo Y.D., Kim D.H., Lee J., Jeong J.C., Kwak S.S.,Chung W.S., Lim C.O., Bahk J.D., Hong J.C., Lee S.Y., Kawai-YamadaM., Uchimiya H., Yun D.J.: Bax-induced cell death of Arabidopsis ismeditated through reactive oxygen-dependent and -independentprocesses. Plant Molec. Biol. 2004; 56: 15–27.
    Google Scholar
  • 7. Baines C.P., Kaiser R.A., Sheiko T., Craigen W.J., Molkentin J.D.:Voltage-dependent anion channels are dispensable for mitochondrial-dependentcell death. Nat. Cell Biol., 2007; 9: 550–555.
    Google Scholar
  • 8. Balk J,, Chew S,K,, Leaver C,J,, McCabe P,F.: The intermembranespace of plant mitochondria contains a DNase activity that maybe involved in programmed cell death. Plant J., 2003; 34: 573–583.
    Google Scholar
  • 9. Bassham D.C.: Plant autophagy-more than a starvation response.Curr. Opin. Plant Biol., 2007: 10: 587-593.
    Google Scholar
  • 10. Bolwell G.P., Wojtaszek P.: Mechanisms for the generation ofreactive oxygen species in plant defence—a broad perspective.Physiol. Molec. Plant Pathol., 1997; 51: 347–366.
    Google Scholar
  • 11. Bratton S.B., MacFarlane M., Cain K., Cohen G.M.: Protein complexacivated disting caspase cascades in death receptor and stress–induced apoptosis. Exptl. Cell Res., 2000; 256: 27-33.
    Google Scholar
  • 12. Cacas J.L.: Devil inside: does plant programmed cell death involvethe endomembrane system? Plant, Cell and Environ., 2010;33: 1453–1473
    Google Scholar
  • 13. Cao Y., Klionsky D.J.: Physiological functions of Atg6/Beclin1: a unique autophagy-related protein. Cell Res. 2007; 17: 839–849.
    Google Scholar
  • 14. Castillo K., Rojas-Rivera D., Lisbona F., Caballero B., Nassif M.,Court F. A., Schuck S., Ibar C., Walter P., Sierralta J., Glavic A., HetzC.: BAX inhibitor-1 regulates autophagy by controlling the IRE1αbranch of the unfolded protein response. EMBO J., 2011; 30: 4465–4478.
    Google Scholar
  • 15. Castillo-Olamendi L., Bravo-Garcia A., Moran J., Rocha-Sosa M.,Porta H.: AtMCP1b, a chloroplast-localised metacaspase, is inducedin vascular tissue after wounding or pathogen infection. Funct.Plant Biol., 2007; 34: 1061-1071.
    Google Scholar
  • 16. Chen S., Dickman M.B.: Bcl-2 family members localize to tobaccochloroplasts and inhibit programmed cell death induced bychloroplast-targeted herbicides. J. Exp. Bot., 2004; 55: 2617–2623.
    Google Scholar
  • 17. Chen S., Vaghchhipawala Z., Li W., Asard H., Dickman M.B.: Tomatophospholipid hydroperoxide glutathione peroxidase inhibitscell death induced by Bax and oxidative stresses in yeast and plants.Plant Physiol., 2004; 135: 1630–1641.
    Google Scholar
  • 18. Chipuk J.E., Green D.R.: How do BCL-2 proteins induce mitochondrialouter membrane permeabilization? Trends Cell Biol.,2008; 18: 157–164.
    Google Scholar
  • 19. Christofferson D.E., Yuan J.: Necroptosis as an alternative formof programmed cell death. Curr. Opin. Cell Biol., 2010; 22: 263–268.
    Google Scholar
  • 20. Daniel P.T.: Dissecting the pathways to death. Leukemia, 2000;14: 2035-2044.
    Google Scholar
  • 21. De Pinto M.C., Locato V., De Gara L.: Redox regulation in plantprogrammed cell death. Plant, Cell and Environ., 2012; 35: 234-244.
    Google Scholar
  • 22. Della Mea M., Serafini-Fracassini D., Del Duca S.: Programmedcell death: similarities and differences in animals and plants. A flowerparadigm. Amino Acids, 2007; 33: 395–404.
    Google Scholar
  • 23. Delledonne M., Zeier J., Marocco A., Lamb C.: Signal interactionsbetween nitric oxide and reactive oxygen intermediates inthe plant hypersensitive disease resistance response. Proc. NatlAcad. Sci. USA, 2001; 98: 13454–13459.
    Google Scholar
  • 24. Deng M., Bian H., Xie Y., Kim Y., Wang W., Lin E., Zeng Z., GuoF., Pan J., Han N., Wang J., Qian Q., Zhu M.: Bcl-2 suppresses hydrogenperoxide-induced programmed cell death via OsVPE2 andOsVPE3, but not via OsVPE1 and OsVPE4, in rice. FEBS J., 2011;278: 4797–4810.
    Google Scholar
  • 25. Desagher S., Martinou J-C.: Mitochondria as the central controlpoint of apoptosis. Trends Cell Biol., 2000; 10: 369-377.
    Google Scholar
  • 26. Dickman M.B., Park Y.K., Oltersdorf T., Li W., Clemente T., FrenchR.: Abrogation of disease development in plants expressing animalantiapoptotic genes. Proc. Natl Acad. Sci. USA, 2001; 98: 6957–6962.
    Google Scholar
  • 27. Dimitrova I., Toby G.G., Tili E., Strich R., Kampranis S.C., MakrisA.M.: Expression of Bax in yeast affects not only the mitochondriabut also vacuolar integrity and intracellular protein traffic. FEBSLett., 2004; 566: 100–104
    Google Scholar
  • 28. Dion M., Chamberland H., St-Michel C., Plante M., Darveau A.,Lafontaine J.G., Brisson L.F.: Detection of a homologue of bcl-2 inplant cells. Biochem. Cell Biol., 1997 ; 75: 457–461.
    Google Scholar
  • 29. Dominguez F., Cejudo F.J.:Programmed cell death (PCD): an essentialprocess of cereal seed development and germination. Front.Plant Sci., 2014; 5: 366.
    Google Scholar
  • 30. Dremina E.S., Sharov V.S., Kumar K., Zaidi A., Michaelis E.K.,Schoneich C.: Anti-apoptotic protein Bcl-2 interacts with and destabilizesthe sarcoplasmic/ endoplasmic reticulum Ca2+-ATPase(SERCA). Biochem. J., 2004; 383: 361–370.
    Google Scholar
  • 31. Ellis H.M..Horvitz H.R.: Genetic control of programmed celldeath in the nematode C. elegans. Cell, 1986; 44: 817–829.
    Google Scholar
  • 32. Elmore S.: Apoptosis: a review of programmed cell death. Toxicol.Pathol., 2007; 35: 495–516.
    Google Scholar
  • 33. Eun S.Y., I.S. Woo I.S., H.S. Jang H.S., Jin H., Kim M.Y., Kim H.J.,Lee J.H., Chang K.C., Kim J.H., Seo H.G.: Identification of cytochromec oxidase subunit 6A1 as a suppressor of Bax-induced cell deathby yeast-based functional screening. Biochem. Biophys. Res.Commun., 2008; 373: 58–63.
    Google Scholar
  • 34. Fuchs Y., Steller H.: Programmed cell death in animal developmentand disease. Cell, 2011; 147; 742-758.
    Google Scholar
  • 35. Funderburk S.F., Wang Q.J., Yue Z.: The Beclin 1–VPS34 complex– at the crossroads of autophagy and beyond. Trends Cell Biol.,2010; 20: 355–362
    Google Scholar
  • 36. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H.,Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., FuldaS., Gottlieb E., Green D.R., Hengartner M.O., Kepp O., Knight R.A.,Kumar S., Lipton S.A., Lu X., Madeo F., Malorni F., Mehlen P., NuñezG., Peter M.E., Piacentini M., Rubinsztein D.C., Shi Y., Simon H.-U.,Vandenabeele P., White E., Yuan J., Zhivotovsky B., Melino G., KroemerG.: Molecular definitions of cell death subroutines: recommendationsof the Nomenclature Committee on Cell Death 2012.Cell Death Differ., 2012; 19: 107–120.
    Google Scholar
  • 37. Godbole A., Varghese J., Sarin A., Mathew M.K.: VDAC is conservedelement of death pathways in plant and animal systems.Biochim. Biophys. Acta, 2003; 1642: 87–96.
    Google Scholar
  • 38. Green D.R.: The end and after: How dying cells impact the livingorganism. Immunity, 2011; 35: 441-444.
    Google Scholar
  • 39. Greenhalf W., Stephan C., Chaudhuri B.: Role of mitochondriaand C-terminal membrane anchor of Bcl-2 in Bax induced growtharrest and mortality in Saccharomyces cerevisiae. FEBS Lett., 1996;380: 169–175.
    Google Scholar
  • 40. Greenwood M.T., Ludovico P.: Expressing and functional analysisof mammalian apoptotic regulators in yeast. Cell Death Differ.,2010; 17: 737–745.
    Google Scholar
  • 41. Gross A., Mcdonnell J.M., Korsmeyer S.J.: BCL-2 family membersand the mitochondria in apoptosis. Genes Dev., 1999; 13: 1899–1911.
    Google Scholar
  • 42. Hanada M., Aimé-Sempé C., Sato T., Reed, J.C.: Structure-functionanalysis of Bcl-2 protein: Identification of conserved domainsimportant for homodimerization with Bcl-2 and heterodimerizationwith Bax. J. Biol. Chem., 1995; 270: 11962–11968.
    Google Scholar
  • 43. Hansen G.: Evidence for Agrobacterium-iduced apoptosis in maizecells. Mol. Plant Microbe Interact., 2000; 13: 649–656.
    Google Scholar
  • 44. He C., Klionsky D.J.: Regulation mechanisms and signaling pathwaysof autophagy. Annu. Rev. Genet., 2009; 43: 67-93.
    Google Scholar
  • 45. Higaki T., Goh T., Hayashi T., Kutsuna N., Kadota Y., HasezawaS., Sano T., Kuchitsu K.: Elicitor-induced cytoskeletal rearrangementrelates to vacuolar dynamics and execution of cell death: In vivoimaging of hypersensitive cell death in tobacco BY-2 cells. PlantCell Physiol., 2007; 48: 1414–1425.
    Google Scholar
  • 46. Hoeberichts F.A., Woltering E.J.: Multiple mediators of plantprogrammed cell death: Interplay of conserved cell death mechanismsand plant-specific regulators. BioEssays, 2003; 25: 47-57.
    Google Scholar
  • 47. Hordyjewska A., Pasternak K.: Apoptotyczna śmierć komorki.Adv. Clin. Exp. Med. 2005; 14: 545.554.
    Google Scholar
  • 48. Huang W.P., Klionsky D.J.: Autophagy in yeast: a review of themolecular machinery. Cell Struct. Funct., 2002; 27: 409–420.
    Google Scholar
  • 49. Hückelhoven R., Dechert C., Kogel K.H.: Overexpression of barleyBax inhibitor 1 induces breakdown of mlo-mediated penetrationresistance to Blumeria graminis. Proc. Natl Acad. Sci. USA, 2003;100: 5555–5560
    Google Scholar
  • 50. Hückelhoven, R.: BAX Inhibitor-1, an ancient cell death suppressorin animals and plants with prokaryotic relatives. Apoptosis.2004; 9: 299–307.
    Google Scholar
  • 51. Jan, N., Mahboob-ul-Hussain, Andrabi, K.I.: Programmed celldeath or apoptosis: do animals and plants share anything in common.Biotechnol. Mol. Biol. Rev., 2008; 3: 111–126.
    Google Scholar
  • 52. Kampranis S.C., Damianova R., Atallah M., Toby G., Kondi G.,Tsichlis P.N., Makris A.M.: A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem., 2000;275: 29207–29216
    Google Scholar
  • 53. Kawai M., Pan L., Reed J.C., Uchimiya H.: Evolutionally conservedplant homologue of the Bax inhibitor-1 (BI-1) gene capableof suppressing Bax-induced cell death in yeast. FEBS Lett., 1999;464: 143-147.
    Google Scholar
  • 54. Kawai-Yamada M., Jin L., Yoshinaga K., Hirata A., Uchimiya H.:Mammalian Bax-induced plant cell death can be downregulated byoverexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc. NatlAcad. Sci. USA, 2001; 98: 12295-12300.
    Google Scholar
  • 55. Kawai-Yamada M., Saito Y., Jin L., Ogawa T., Kim K.M., Yu L.H.,Tone Y., Hirata A., Umeda M., Uchimiya H.: A novel Arabidopsis genecauses Bax-like lethality in Saccharomyces cerevisiae. J. Biol. Chem.,2005; 280: 39468–39473.
    Google Scholar
  • 56. Kerr J.F., Wyllie A.H., Currie A.R.: Apoptosis: a basic biologicalphenomenon with wide-ranging implications in tissue kinetics.Brit. J. Cancer, 1972; 26: 239-257.
    Google Scholar
  • 57. Kiliańska Z.M., Miśkiewicz A.: Kaspazy kręgowcow; ich rolaw przebiegu apoptozy. Post. Biol. Kom., 2003; 30: 129–152.
    Google Scholar
  • 58. Kim K.M., Jun D.Y., Kim S.K., Kim C.K., Kim B.O., Kim Y.H., ParkW., Sohn J.K., Hirata A., Kawai-Yamada M., Uchimiya H., Kim D.H.,Sul I.W.: Identification of novel mitochondrial membrane protein(Cdf 3) from Arabidopsis thaliana and its functional analysis ina yeast system. J. Microbiol. Biotechnol., 2007; 17: 891–896.
    Google Scholar
  • 59. Koizumi N., Martinez I.M., Kimata Y., Kohno K., Sano H., ChrispeelsM.J.: Molecular characterization of two Arabidopsis Ire1homologs, endoplasmic reticulum-located transmembrane proteinkinases. Plant Physiol., 2001; 127: 949–962.
    Google Scholar
  • 60. Kroemer G., Galluzzi L., Brenner C.: Mitochondrial membranepermeabilization in cell death. Physiol. Rev., 2007; 87: 99–163.
    Google Scholar
  • 61. Kroemer G., Levine B.: Autophagic cell death: the story of a misnomer.Nat. Rev. Mol. Cell Biol., 2008; 9: 1004–1010.
    Google Scholar
  • 62. Kunikowska A., Byczkowska A., Doniak M., Kaźmierczak A.: Cytokininsrésumé: their signaling and role in programmed cell deathin plants. Plant Cell Rep., 2013; 32: 771-780.
    Google Scholar
  • 63. Kunz J.B., Schwarz H., Mayer A.: Determination of four sequentialstages during microautophagy in vitro. J. Biol. Chem.,2004; 279: 9987–96.
    Google Scholar
  • 64. Kusano T., Tateda C., Berberich T., Takahashi Y.: Voltage-dependentanion channels: their roles in plant defense and cell death.Plant Cell Rep., 2009; 28: 1301–1308.
    Google Scholar
  • 65. Kuwana T., Newmeyer D.D.: Bcl-2-family proteins and the roleof mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003; 15: 1–9.
    Google Scholar
  • 66. Kwon S.I., Cho H.J., Jung J.H., Yoshimoto K., Park O.K.: TheRabGTPase RabG3b functions in autophagy and contributes totracheary element differentiation in Arabidopsis. Plant J., 2010;64: 151–164.
    Google Scholar
  • 67. Lacomme C., Santa Cruz S.: Bax-induced cell death in tobaccois similar to the hypersensitive response. Proc. Natl Acad. Sci. USA,1999; 96: 7956–7961.
    Google Scholar
  • 68. Lam E.: Controlled cell death, plant survival and development.Nat. Rev. Mol. Cell Biol. 2004; 5: 305–315.
    Google Scholar
  • 69. Lam E, Kato N, Lawton M.: Programmed cell death, mitochondriaand the plant hypersensitive response. Nature, 2001; 411:848.853.
    Google Scholar
  • 70. Lenz H.D., Haller E., Melzer E., Kober K., Wurster K., Stahl M.,Bassham D.C., Vierstra R.D., Parker J.E., Bautor J., Molina A., EscuderoV., Shindo T., van der Hoorn R.A.L., Gust A.A., NürnbergerT.: Autophagy differentially controls plant basal immunity to biotrophicand necrotrophic pathogens. Plant. J., 2011; 66: 818–830.
    Google Scholar
  • 71. Levine A., Belenghi B., Damari-Weisler H., Granot G.: Vesicleassociatedmembrane protein of Arabidopsis suppresses Bax-inducedapoptosis in yeast downstream of oxidative burst. J. Biol. Chem.,2001; 276: 46284-46289.
    Google Scholar
  • 72. Levine B., Kroemer G.: Autophagy in the pathogenesis of disease.Cell, 2008; 132: 27–42.
    Google Scholar
  • 73. Li F., Vierstra R.D.: Autophagy: a multifaceted intracellularsystem for bulk and selective recycling. Trends Plant Sci., 2012;17: 526-537.
    Google Scholar
  • 74. Li L.Y., Luo X., Wang X.: Endonuclease G is an apoptotic DNasewhen released from the mitochondria. Nature, 2001; 412: 95–99.
    Google Scholar
  • 75. Li W., Dickman M.B.: Abiotic stress induces apoptotic-like featuresin tobacco that is inhibited by expression of human Bcl-2.Biotechnol. Lett., 2004; 26: 87–95.
    Google Scholar
  • 76. Li W.M., Yang Q.A., Mao Z.X.: Chaperone-mediated autophagy:machinery, regulation and biological consequences. Cell Mol. LifeSci., 2011; 68: 749-763
    Google Scholar
  • 77. Lincoln J.E., Richael C., Overduin B., Smith K., Bostock R., GilchristD.G.: Expression of the antiapoptotic baculovirus p35 genein tomato blocks programmed cell death and provides broadspectrumresistance to disease. Proc. Natl Acad. Sci. USA, 2002; 99:15217–15221.
    Google Scholar
  • 78. Liu Y., Schiff M., Czymmek K., Tallóczy Z., Levine B., DineshKumarS.P.: Autophage regulates programmed cell death during theplant innate immune response. Cell, 2005; 121: 567–577.
    Google Scholar
  • 79. Lord C.E.N., Gunawardena A.H.L.A.N.: Programmed cell death inC. elegans, mammals and plants. Eur. J. Cell Biol., 2012; 91: 603– 613.
    Google Scholar
  • 80. Maruniewicz M., Wojtaszek P.: Pochodzenie i ewolucja śmiercikomórki. Post. Biol. Kom., 2007; 34: 651-667.
    Google Scholar
  • 81. Meijer W.H., van der Klei I.J.,Veenhuis M., Kiel J.A.: ATG genesinvolved in non-selective autophagy are conserved from yeast toman, but the selective Cvt and pexophagy pathways also requireorganism-specific genes. Autophagy, 2007; 3: 106–116.
    Google Scholar
  • 82. Mitsuhara I., Malik K.A., Miura M., Ohashi Y.: Animal cell-deathsuppressors Bcl-xl and Ced-9 inhibit cell death in tobacco plants.Curr. Biol., 1999; 9: 775–778.
    Google Scholar
  • 83. Mühlenbock P., Szechynska-Hebda M., Plaszczyca M., BaudoM., Mateo A., Mullineaux P.M., Parker J.E., Karpinska B., KarpinskiS.: Chloroplast signaling and lesion simulating disease1 regulatecrosstalk between light acclimation and immunity in Arabidopsis.Plant Cell, 2008; 20: 2339–2356.
    Google Scholar
  • 84. Mukhopadhyay S., Panda P.K., Sinha N., Das D.N., Bhutia S.K.:Autophagy and apoptosis: where do they meet? Apoptosis, 2014;555-566.
    Google Scholar
  • 85. Nedelcu A. M.: Comparative genomics of phylogenetically diverseunicellular eukaryotes provide new insights into the geneticbasis for the evolution of the programmed cell death machinery. J.Mol. Evol., 2009; 68: 256–268.
    Google Scholar
  • 86. Obara K., Kuriyama H., Fukuda H.: Direct evidence of activeand rapid nuclear degradation triggered by vacuole rupture duringprogrammed cell death in Zinnia. Plant Physiol., 2001; 125:615–626.
    Google Scholar
  • 87. Obara K., Sekito T., Ohsumi Y.: Assortment of phosphatidylinositol3-kinase complexes-Atg14p directs association of complex I tothe pre-autophagosomal structure in Saccharomyces cerevisiae. Mol.Biol. Cell, 2006; 17: 1527–1539.
    Google Scholar
  • 88. Oberstein A., Jeffrey P.D., Shi Y.: Crystal structure of the BclXL-Beclin 1 peptide complex: Beclin 1 is a novel BH3 only protein.J. Biol. Chem., 2007; 282: 13123–13132.
    Google Scholar
  • 89. Ogawa T., Pan L., Kawai-Yamada,M., Yu L.-H., Yamamura S.,Koyama T., Ohme-Takagi M., Sato F., Uchimiya H.: Functional analysisof Arabidopsis ethylene-responsive element binding proteinconferring resistance to Bax and abiotic stress-induced plant cellheath. Plant Physiol., 2005; 138: 1436–1445.
    Google Scholar
  • 90. Okushima Y., Koizumi N., Yamaguchi Y., Kimata Y., Kohno K.,Sano H.: Isolation and characterization of a putative transducer ofendoplasmic reticulum stress in Oryza sativa. Plant Cell Physiol.,2002; 43: 532–539.
    Google Scholar
  • 91. Palavan-Unsal N., Buyuktuncer E.-D., Tufekci M.A.: Programmedcell death in plants. J. Cell Mol. Biol., 2005; 4: 9-23.
    Google Scholar
  • 92. Pan L., Kawai M., Yu L.H., Kim K.M., Hirata A., Umeda M., UchimiyaH.: The Arabidopsis thaliana ethylene-responsive element bindingprotein (AtEBP) can function as a dominant suppressor of Baxinducedcell death of yeast. FEBS Lett., 2001; 508: 375–378.
    Google Scholar
  • 93. Patel S., Dinesh-Kumar S.: Arabidopsis ATG6 is required to limitthe pathogen-associated cell death response. Autophagy, 2008; 4:20–27.
    Google Scholar
  • 94. Pattingre S., Tassa A., Qu X., Garuti R., Liang X.H., MizushimaN., Packer M., Schneider M.D., Levine B.: Bcl-2 antiapoptotic proteinsinhibit Beclin 1-dependent autophagy, Cell, 2005; 122: 927–939.
    Google Scholar
  • 95. Paul J.-Y., Becker D. K., Dickman M. B., Harding R. M., KhannaH. K., Dale J. L.: Apoptosis-related genes confer resistance to Fusariumwilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol.J., 2011; 9: 1141–1148.
    Google Scholar
  • 96. Piszczek E., Gutman W.: Caspase-like proteases and their rolein programmed cell death in plants. Acta Physiol. Plant., 2007; 29:391-398.
    Google Scholar
  • 97. Portt L., Norman G., Clapp C., Greenwood M., Greenwood M. T.:Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta,2011; 1813: 238–259.
    Google Scholar
  • 98. Prochazkova D., Wilhelmova N.: Nitric oxide, reactive nitrogenspecies and associated enzymes during plant senescence. Nitric.Oxide. Biol. Chem., 2011; 24: 61-65.
    Google Scholar
  • 99. Qiao J., Mitsuhara I., Yazaki Y., Sakano K., Gotoh Y., Miura M.,Ohashi Y.: Enhanced resistance to salt, cold and wound stresses byoverproduction of animal cell death suppressors Bcl-xL and Ced- 9 in tobacco cells – their possible contribution through improvedfunction of organella. Plant Cell Physiol., 2002; 43: 992–1005.
    Google Scholar
  • 100. Qu X., Yu J., Bhagat G., Furuya N., Hibshoosh H., Troxel A.,Rosen J., Eskelinen E.L., Mizushima N., Ohsumi Y.,; Cattoretti G.,Levine B.: Promotion of tumorigenesis by heterozygous disruptionof the beclin 1 autophagy gene. J. Clin. Invest., 2003; 112: 1809–1820.
    Google Scholar
  • 101. Ring G., Khoury C.M., Solar A.J., Yang Z., Mandato C.A., GreenwoodM.T.: Transmembrane protein 85 from both human (TMEM85)and yeast (YGL231c) inhibit hydrogen peroxide mediated cell deathin yeast. FEBS Lett., 2008; 582: 2637–2642.
    Google Scholar
  • 102. Rojo E., Martin R., Carter C., Zouhar J., Pan S., Plotnikova J.,Jin H., Paneque M., Sa J., Baker B., Ausubel F.M., Raikhel N.V.: VPEgexhibits a caspase-like activity that contributes to defense againstpathogens. Curr. Biol., 2004; 14: 1897–1906.
    Google Scholar
  • 103. Rong Y.P., Aromolaran A.S., Bultynck G., Zhong F., Li X., McCollK., Matsuyama S., Herlitze S., Roderick H.L., Bootman M. D., MigneryG. A., Parys J.B., De Smedt H., Distelhorst C.W.: Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptoticcalcium signals. Mol. Cell, 2008; 31: 255–265.
    Google Scholar
  • 104. Rose T.L., Bonneau L., Der C., Marty-Mazars D., Marty F.: Starvation-inducedexpression of autophagy-related genes in Arabidopsis.Biol. Cell., 2006; 98: 53–67.
    Google Scholar
  • 105. Rudnicka K. W., Szczęsna E., Miszczyk E., Mikołajczyk-ChmielaM.: Apoptoza i autofagia – mechanizmy i metody detekcji. Post.Biol. Kom., 2011; 38: 247-265.
    Google Scholar
  • 106. Rupinder S.K., Gurpreet A.K., Manjeet S.: Cell suicide and caspases.Vascul. Pharmacol., 2007; 46: 383–393.
    Google Scholar
  • 107. Sato R., Hanada M., Bodrug S., Irie S., Iwama N., Boise L.H.,Thompson C.B., Golernis E., Fong L., Wang H.G., Reed J.C.: Interactionsamong members of the bcl-2 protein family analyzed witha yeast two-hybrid system. Proc. Natl Acad. Sci. USA, 1994; 91:9238–9242.
    Google Scholar
  • 108. Schweichel J.U., Merker H.J.: The morphology of various typesof cell death in prenatal tissues. Teratology, 1973; 7: 253–266.
    Google Scholar
  • 109. Scorrano L., Korsmeyer S.J.: Mechanism of cytochrome c releaseby proapoptotic BCL-2 family members. Biochem. Biophys.Res. Commun., 2003; 304: 437–444.
    Google Scholar
  • 110. Seay M., Patel S., Dinesh-Kumar S. P.: Autophagy and plantinnate immunity. Cell. Microbiol., 2006; 8: 899–906.
    Google Scholar
  • 111. Shemarova I.V.: Signaling mechanisms of apoptosis-like programmedcell death in unicellular eukaryotes. Comp. Biochem.Physiol. Pt. B, 2010; 155: 341-353.
    Google Scholar
  • 112. Shimizu S., Ide T., Yanagida T., Tsujimoto Y.: Electrophysiologicalstudy of a novel large pore formed by Bax and the voltagedependentanion channel that is permeable to cytochrome c. J. Biol.Chem., 2000; 275: 12321–12325.
    Google Scholar
  • 113. Shoshan-Barmatz V., Keinan N., Zaid H.: Uncovering the roleof VDAC in the regulation of cell life and death. J. Bioenerg. Biomembr.,2008; 40: 183–191.
    Google Scholar
  • 114. Smith C.C.T., Yellon D.M.: Necroptosis, necrostatins and tissueinjury. J. Cell. Mol. Med., 2011; 15: 1797-1806.
    Google Scholar
  • 115. Stępień A., Izdebska M., Grzanka A.: Rodzaje śmierci komórki.Post. Hig. Med. Dośw., 2007; 61: 420-428.
    Google Scholar
  • 116. Subramanian S., Steer C.J.: MicroRNAs as gatekeepers of apoptosis.J. Cell. Physiol., 2010; 223: 289–298.
    Google Scholar
  • 117. Suomeng D., Zhengguang Z., Xiaobo Z., Yuanchao W.: Mammalianpro-apoptotic bax gene enhances tobacco resistance topathogens. Plant Cell Rep., 2008; 27: 1559–1569.
    Google Scholar
  • 118. Suzuki K., Ohsumi Y.: Molecular machinery of autophagosomeformation in yeast, Saccharomyces cerevisiae. FEBS Lett., 2007;58: 2156–2161.
    Google Scholar
  • 119. Takahashi Y., Tateda C.: The functions of voltage-dependentanion channels in plants. Apoptosis, 2013; 18: 917–924.
    Google Scholar
  • 120. Tata J.R.: Requirement for RNA and protein synthesis for inducedregression of the tadpole tail in organ culture. Dev. Biol.,1966; 13: 77–94.
    Google Scholar
  • 121. Tateda C., Yamashita K., Takahashi F., Kusano T., Takahashi Y.:Plant voltage-dependent anion channels are involved in host defenseagainst Pseudomonas cichorii and in Bax-induced cell death.Plant Cell Rep., 2009; 28: 41–51.
    Google Scholar
  • 123. Tsujimoto Y., Shimizu S.: Role of the mitochondrial membranepermeability transition in cell death. Apoptosis, 2007; 12: 835–840.
    Google Scholar
  • 124. Ullman E., Fan Y., Stawowczyk M., Chen H., Yue Z., Zong W.:Autophagy promotes necrosis in apoptosis-deficient cells in responseto ER stress. Cell Death Differ., 2008; 15: 422–425.
    Google Scholar
  • 125. Vacca R.A.,Valenti D., Bobba A., de Pinto M.C., Merafina R.S.,De Gara L., Passarella S., Marra E.: Proteasome function is requiredfor activation of programmed cell death in heat shocked tobaccoBright-Yellow 2 cells. FEBS Lett., 2007; 581: 917–922.
    Google Scholar
  • 126. Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, MarraE.: Cytochrome c is released in a reactive oxygen species-dependentmanner and is degraded via caspase-like proteases in tobaccoBright-Yellow 2 cells en route to heat shock-induced cell death.Plant Physiol., 2006; 141: 208–219.
    Google Scholar
  • 127. Van Doorn W. G., Woltering E. J.: Many ways to exit? Cell deathcategories in plants. Trends Plant Sci., 2005; 10: 117–122.
    Google Scholar
  • 128. van Doorn W. G., Woltering E. J.: What about the role of autophagyin PCD? Trends Plant Sci., 2010; 15: 361–362.
    Google Scholar
  • 129. van Doorn W.G.: Classes of programmed cell death in plants,compared to those in animals. J. Exp. Bot., 2011; 62: 4749-4761.
    Google Scholar
  • 130. van Doorn W.G., Beers E.P., Dangl J.L., Franklin-Tong V.E.,Gallois P., Hara-Nishimura I., Jones A.M., Kawai-Yamada M., LamE., Mundy J., Mur L.A.J., Petersen M., Smertenko A., Taliansky M.,VanBreusegem F., Wolpert T., Woltering E., Zhivotovsky B., BozhkovP.V.: Morphological classification of plant cell deaths. Cell DeathDiffer., 2011; 18: 1241-1246.
    Google Scholar
  • 131. Vianello A., Zancani M., Peresson C., Petrussa E., Casolo V.,Krajňáková J., Patui S., Braidot E., Marci F.: Plant mitochondrialpathway leading to programmed cell death. Physiol. Plant., 2007.129: 242–252.
    Google Scholar
  • 132. Wang H., Li J., Bostock R.M., Gilchrist D.G.: Apoptosis: a functionalparadigm for programmed plant cell death induced by a hostselectivephytotoxin and invoked during development. Plant Cell,1996; 8: 375–391.
    Google Scholar
  • 133. Wang J., Bayles K.W.: Programmed cell death in plants: lessonsfrom bacteria? Trends Plant Sci., 2013; 18:, 133-139.
    Google Scholar
  • 134. Wang W., Pan J., Zheng K., Chen H., Shao H., Guo Y., Bian H.,Han N., Wang J., Muyuan Zhu M.: Ced-9 inhibits Al-induced programmedcell death and promotes Al tolerance in tobacco. Biochem.Biophys. Res. Commun., 2009; 383: 141–145
    Google Scholar
  • 135. Wang, C., Youle, R.J.: The role of mitochondria in apoptosis.Ann. Rev. Genet., 2009; 43: 95–118.
    Google Scholar
  • 136. Wierzchowiecka M., Samardakiewicz S., Woźny A.: Programowanaśmierć komórki roślinnej – Proces o „wielu twarzach”.Kosmos, 2008. 57: 43-52
    Google Scholar
  • 137. Wilkins K.A., Poulter N.S., Franklin-Tong V.E.: Taking one forthe team: self-recognition and cell suicide in pollen. J. Exp. Bot.,2014; 65 Special Issue:1331-1342.
    Google Scholar
  • 138. Williams B., Kabbage M., Britt R., Dickman M.B.: AtBAG7, anArabidopsis Bcl-2-associated athanogene, resides in the endoplasmicreticulum and is involved in the unfolded protein response. Proc.Natl Acad. Sci. USA, 2010; 107: 6088–6093.
    Google Scholar
  • 139. Wojciechowska M.: Symptomy programowanej śmierci komórekpodczas rozwoju roślin. Post. Biol. Kom., 2001; 28: 317–333.
    Google Scholar
  • 140. Xu M. J., Dong J. F.: Enhancing terpenoid indole alkaloid productionby inducible expression of mammalian Bax in Catharanthusroseus cells. Sci. China Ser. C-Life Sci., 2007 ; 50: 234-241.
    Google Scholar
  • 141. Xu P., Rogers S.J., Roossinck M.J.: Expression of antiapoptoticgenes bcl-xl and ced-9 in tomato enhances resistance to viral-inducednecrosis and abiotic stress. Proc. Natl Acad. Sci. USA, 2004;101: 15805–15810.
    Google Scholar
  • 142. Xu Q., Reed J.C.: Bax inhibitor-1, a mammalian apoptosis suppressoridentified by functional screening in yeast. Mol. Cell, 1998;1: 337–346.
    Google Scholar
  • 143. Yamada,T., Ichimura,K., Kanekatsu,M., van Doorn,W.G.: Homologsof genes associated with programmed cell death in animalcells are differentially expressed during senescence of Ipomoea nilpetals. Plant Cell Physiol., 2009; 50: 610-625.
    Google Scholar
  • 144. Yang H., Yang S., Li Y., Hua J.: The Arabidopsis BAP1 and BAP2genes are general inhibitors of programmed cell death. Plant Physiol.,2007; 145: 135–146.
    Google Scholar
  • 145. Yang Y.P., Liang Z.Q., Gu Z.L., Qin Z.H.: Molecular mechanismand regulation of autophagy. Acta Pharmacol. Sin., 2005; 26: 1421–34.
    Google Scholar
  • 146. Yang Z., Khoury C., Jean-Baptiste G., Greenwood M.T.: Identificationof mouse sphingomyelin synthase 1 as a suppressor ofBax-mediated cell death in yeast. FEMS Yeast Res., 2006; 6: 751–762.
    Google Scholar
  • 147. Yao N., Eisfelder B.J., Marvin J., Greenberg J.T.: The mitochondrion- an organelle commonly involved in programmed cell deathin Arabidopsis thaliana. Plant J., 2004; 40: 596-610.
    Google Scholar
  • 148. Yoshinaga K., Arimura S.-i., Hirata A., Niwa Y., Yun D.-J., TsutsumiN., Uchimiya H., Kawai-Yamada M.: Mammalian Bax initiatesplant cell death through organelle destruction. Plant Cell Rep.,2005; 24: 408-417.
    Google Scholar
  • 149. Yue Z,, Jin S,, Yang C,, Levine A,J,, Heintz N.: Beclin 1, an autophagygene essential for early embryonic development, is a haploinsufficienttumor suppressor. Proc. Natl Acad. Sci. USA, 2003;100: 15077–15082.
    Google Scholar
  • 150. Yun L. J., Chen W. L.: SA and ROS are involved in methyl salicylate-inducedprogrammed cell death in Arabidopsis thaliana. PlantCell Rep., 2011; 30: 1231-1239.
    Google Scholar
  • 151. Zhou F., YangY., Xing D.: Bcl-2 and Bcl-xL play important rolesin the crosstalk between autophagy and apoptosis. FEBS J., 2011;278: 403-413.
    Google Scholar

Full text

Skip to content