Proteins in cancer multidrug resistance

COMMENTARY ON THE LAW

Proteins in cancer multidrug resistance

Marta Popęda 1 , Elżbieta Płuciennik 2 , Andrzej K. Bednarek 2

1. Wydział Nauk Biomedycznych i Kształcenia Podyplomowego, Uniwersytet Medyczny w Łodzi
2. Zakład Kancerogenezy Molekularnej, Uniwersytet Medyczny w Łodzi

Published: 2014-05-20
DOI: 10.5604/17322693.1103268
GICID: 01.3001.0003.1237
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 616-632

 

Abstract

Multidrug Resistance (MDR) is defined as insensitivity to administered medicines that are structurally unrelated and have different molecular targets. Cancers possess numerous mechanisms of drug resistance, involving various aspects of cell biology. A pivotal role in this phenomenon is played by proteins – enzymatic or structural parts of the cell.Membrane transporters, including the main members of ABC protein family – P-gp, MRP1 and BCRP, as well as LRP, which builds structure of vaults, determine the multidrug-resistant phenotype by decreasing drug concentration within the cell or modifying its distribution to intracellular compartments. The π isoform of protein enzyme – glutathione S-transferase (GSTP-1), is responsible for excessive intensity of detoxification of cytostatics. A common example of altered drug target site that does not respond to chemotherapy is topoisomerase II α (TopoIIa). Alterations of programmed cell death result from expression of metallothionein (MT) – inhibitor of the process, and cytokeratin 18 (CK18), which, if in high concentration, also prevents apoptosis of cells.Several methods of decreasing activity of these proteins have been developed, aiming to overcome MDR in cancer cells. However, for a variety of reasons, their clinical suitability is still very low, leading to continuous increase in death rate among patients. This paper presents current state of knowledge on the most important examples of proteins responsible for MDR of cancer cells and molecular mechanisms of their action.

References

  • 1. Aller S.G., Yu J., Ward A., Weng Y., Chittaboina S., Zhuo R., HarrellP.M., Trinh Y.T., Zhang Q., Urbatsch I.L.,Chang G.: Structure of P-glycoproteinreveals a molecular basis for poly-specific drug binding. Science,2009; 323: 1718-1722
    Google Scholar
  • 2. Anderson J.M., Heindl L.M., Bauman P.A., Ludi C.W., DaltonW.S.,Cress A.E.: Cytokeratin expression results in a drug-resistantphenotype to six different chemotherapeutic agents. Clin. CancerRes., 1996; 2: 97-105
    Google Scholar
  • 3. Asano T., Nakamura K., Fujii H., Horichi N., Ohmori T., Hasegawa K.,Isoe T., Adachi M., Otake N.,Fukunaga Y.: Altered expression of topoisomeraseIIα contributes to cross-resistant to etoposide K562/MX2 cellline by aberrant methylation. Br. J. Cancer, 2005; 92: 1486-1492
    Google Scholar
  • 4. Ban N., Takahashi Y., Takayama T., Kura T., Katahira T., Sakamaki S.,Niitsu Y.: Transfection of glutathione S-transferase (GST)-pi antisensecomplementary DNA increases the sensitivity of a colon cancer cellline to adriamycin, cisplatin, melphalan, and etoposide. Cancer Res.,1996; 56: 3577-3582
    Google Scholar
  • 5. Bauman P.A., Dalton W.S., Anderson J.M.,Cress A.E.: Expression ofcytokeratin confers multiple drug resistance. Proc. Natl. Acad. Sci. USA,1994; 91: 5311-5314
    Google Scholar
  • 6. Beck W.T., Morgan S.E., Mo Y.Y., Bhat U.G.: Tumor cell resistanceto DNA topoisomerase II inhibitors: new developments. Drug Resist.Updat., 1999; 2: 382-389
    Google Scholar
  • 7. Bhargavi R., Vishwakarma S., Murty U.S.: Modeling analysis of GST(glutathione-S-transferases) from Wuchereria bancrofti and Brugiamalayi. Bioinformation, 2005; 1: 25-27
    Google Scholar
  • 8. Borowski E., Bontemps-Gracz M.M., Piwkowska A.: Strategies forovercoming ABC-transporters-mediated multidrug resistance (MDR)of tumor cells. Acta Biochim. Pol., 2005; 52: 609-627
    Google Scholar
  • 9. Borst P., Evers R., Kool M., Wijnholds J.: A family of drug transporters:the multidrug resistance-associated proteins. J. Natl. Cancer Inst.,2000; 92: 1295-1302
    Google Scholar
  • 10. Bouhamyia L., Chantot-Bastaraud S., Zaidi S., Roynard P., Prengel C.,Bernaudin J.F., Fleury-Feith J.: Immunolocalization and cell expressionof lung resistance-related protein (LRP) in normal and tumoral humanrespiratory cells. J. Histochem. Cytochem., 2007; 55: 773-782
    Google Scholar
  • 11. Bredel M.: Anticancer drug resistance in primary human brain tumors.Brain Res. Brain Res. Rev., 2001; 35: 161-204
    Google Scholar
  • 12. Caulin C., Salvesen G.S.,Oshima R.G.: Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cellapoptosis. J. Cell Biol., 1997; 138: 1379-1394
    Google Scholar
  • 13. Chen Z.S., Tiwari A.K.: Multidrug resistance proteins (MRPs/ABCCs)in cancer chemotherapy and genetic diseases. FEBS J., 2011; 278: 3226-3245
    Google Scholar
  • 14. Chun J.H., Kim H.K., Kim E., Kim I.H., Kim J.H., Chang H.J., ChoiI.J., Lim H.S., Kim I.J., Kang H.C., Park J.H., Bae J.M., Park J.G.: Increasedexpression of metallothionein is associated with irinotecan resistancein gastric cancer. Cancer Res., 2004; 64: 4703-4706
    Google Scholar
  • 15. Clifford S.C., Neal D.E.,Lunec J.: Alterations in expression of the multidrugresistance-associated protein (MRP) gene in high-grade transitionalcell carcinoma of the bladder. Br. J. Cancer, 1996; 73: 659-666
    Google Scholar
  • 16. Cress A.E., Dalton W.S.: Multiple drug resistance and intermediatefilaments. Cancer Metastasis Rev., 1996; 15: 499-506
    Google Scholar
  • 17. Dai C.L., Tiwari A.K., Wu C.P., Su X.D., Wang S.R., Liu D.G., AshbyC.R.Jr., Huang Y., Robey R.W., Liang Y.J., Chen L.M., Shi C.J., AmbudkarS.V., Chen Z.S., Fu L.W.: Lapatinib (Tykerb, GW572016) reverses multidrugresistance in cancer cells by inhibiting the activity of ATP-bindingcassette subfamily B member 1 and G member 2. Cancer Res.,2008; 68: 7905-7914 18 Dalton W.S., Scheper R.J.: Lung resistance-related protein: determiningits role in multidrug resistance. J. Natl. Cancer Inst., 1999; 91:1604-1605
    Google Scholar
  • 18. in cisplatin-sensitive and – resistant human ovarian adenocarcinomacells and its association with drug sensitivity. Cancer Res.,1995; 55: 5203-5206
    Google Scholar
  • 19. Davis S.R., Cousins R.J.: Metallothionein expression in animals:a physiological perspective on function. J. Nutr., 2000; 130: 1085-1088
    Google Scholar
  • 20. Demant E.J., Sehested M., Jensen P.B.: A model for computer simulationof P-glycoprotein and transmembrane delta pH-mediatedanthracycline transport in multidrug-resistant tumor cells. Biochim.Biophys. Acta, 1990; 1055: 117-125
    Google Scholar
  • 21. Depeille P., Cuq P., Mary S., Passagne I., Evrard A., Cupissol D.,VianL.: Glutathione S-transferase M1 and multidrug resistance protein 1act in synergy to protect melanoma cells from vincristine effects. Mol.Pharmacol., 2004; 65: 897-905
    Google Scholar
  • 22. Depeille P., Cuq P., Passagne I., Evrard A.,Vian L.: Combined effectsof GSTP1 and MRP1 in melanoma drug resistance. Br. J. Cancer, 2005;93: 216-223
    Google Scholar
  • 23. Dusinska M., Staruchova M., Horska A., Smolkova B., Collins A., BonassiS.,Volkovova K.: Are glutathione S transferases involved in DNAdamage signalling? Interactions with DNA damage and repair revealedfrom molecular epidemiology studies. Mutat. Res., 2012; 736: 130-137
    Google Scholar
  • 24. Eilers M., Roy U., Mondal D.: MRP (ABCC) transporters-mediatedefflux of anti-HIV drugs, saquinavir and zidovudine, from human endothelialcells. Exp. Biol. Med., 2008; 233: 1149-1160
    Google Scholar
  • 25. Ferte J.: Analysis of the tangled relationships between P-glycoprotein-mediatedmultidrug resistance and the lipid phase of the cellmembrane. Eur. J. Biochem., 2000; 267: 277-294
    Google Scholar
  • 26. Filipits M., Drach J., Pohl G., Schuster J., Stranzl T., Ackermann J.,Konigsberg R., Kaufmann H., Gisslinger H., Huber H., Ludwig H., PirkerR.: Expression of the lung resistance protein predicts poor outcome inpatients with multiple myeloma. Clin. Cancer Res., 1999; 5: 2426-2430
    Google Scholar
  • 27. Ford J. M., Hait W.N.: Pharmacology of drugs that alter multidrugresistance in cancer. Pharmacol. Rev., 1990; 42: 155-199
    Google Scholar
  • 28. Fortune J.M.,Osheroff N.: Topoisomerase II as a target for anticancerdrugs: when enzymes stop being nice. Prog. Nucleic Acid Res. Mol.Biol., 2000; 64: 221-253
    Google Scholar
  • 29. Goldstein L.J., Galski H., Fojo A., Willingham M., Lai S.L., Gazdar A.,Pirker R., Green A., Crist W., Brodeur G.M.: Expression of a multidrugresistance gene in human cancers. J. Natl. Cancer Inst., 1989; 81: 116-124
    Google Scholar
  • 30. Hall M.D., Handley M.D., Gottesman M.M.: Is resistance useless?Multidrug resistance and collateral sensitivity. Trends Pharmacol. Sci.,2009; 30: 546-556
    Google Scholar
  • 31. Hasegawa S., Abe T., Naito S., Kotoh S., Kumazawa J., Hipfner D.R.,Deeley R.G., Cole S.P., Kuwano M.: Expression of multidrug resistance-associated protein (MRP), MDR1 and DNA topoisomerase II in human multidrug-resistantbladder cancer cell lines. Br. J. Cancer, 1995; 71: 907-913
    Google Scholar
  • 32. Hayes J.D., Flanagan J.U., Jowsey I.R.: Glutathione transferases.Annu. Rev. Pharmacol. Toxicol., 2005; 45: 51-88
    Google Scholar
  • 33. Hochhauser D., Kotecha M., O’Hare C., Morris P.J., Hartley J.M., TaherbhaiZ., Harris D., Forni C., Mantovani R., Lee M., Hartley J.A.: Modulationof topoisomerase IIα expression by a DNA sequence-specificpolyamide. Mol. Cancer Ther., 2007; 6: 346-354
    Google Scholar
  • 34. Hoffmann U., Kroemer H.K.: The ABC transporters MDR1 and MRP2:multiple functions in disposition of xenobiotics and drug resistance.Drug Metab. Rev., 2004; 36: 669-701
    Google Scholar
  • 35. Hollt V., Kouba M., Dietel M., Vogt G.:Stereoisomers of calcium antagonistswhich differ markedly in their potencies as calcium blockersare equally effective in modulating drug transport by P-glycoprotein.Biochem. Pharmacol., 1992; 43: 2601-2608
    Google Scholar
  • 36. Islam T., Berhane K., McConnell R., Gauderman W.J., Avol E., PetersJ.M., Gilliland F.D.: Glutathione-S-transferase (GST) P1, GSTM1, exercise,ozone and asthma incidence in school children. Thorax, 2009; 64: 197-202
    Google Scholar
  • 37. Jedlitschky G., Keppler D.: Transport of leukotriene C4 and structurallyrelated conjugates. Vitam. Horm., 2002; 64: 153-184
    Google Scholar
  • 38. Jones P.M., George A.M.: Mechanism of ABC transporters: a moleculardynamics simulation of a well characterized nucleotide-bindingsubunit. Proc. Natl. Acad. Sci. USA, 2002; 99: 12639-12644
    Google Scholar
  • 39. Juliano R.L., Ling V.: A surface glycoprotein modulating drug permeabilityin Chinese hamster ovary cell mutants. Biochim. Biophys.Acta, 1976; 455: 152-162
    Google Scholar
  • 40. Kanaji N., Bandoh S., Fujita J., Ishii T., Ishida T.,Kubo A.: Compensationof type I and type II cytokeratin pools in lung cancer. Lung Cancer,2007; 55: 295-302
    Google Scholar
  • 41. Kellen J.A.: The reversal of multidrug resistance: an update. J. Exp.Ther. Oncol., 2003; 3: 5-13
    Google Scholar
  • 42. Kizek R., Adam V., Hrabeta J., Eckschlager T., Smutny S., Burda J.V.,Frei E., Stiborova M.: Anthracyclines and ellipticines as DNA-damaginganticancer drugs: recent advances. Pharmacol. Ther., 2012; 133: 26-39
    Google Scholar
  • 43. Krishnakumar S., Mallikarjuna K., Desai N., Muthialu A., VenkatesanN., Sundaram A., Khetan V., Shanmugam M.P.: Multidrug resistantproteins: P-glycoprotein and lung resistance protein expression in retinoblastoma.Br. J. Ophthalmol., 2004; 88: 1521-1526
    Google Scholar
  • 44. Ku N.O., Omary M.B.: Effect of mutation and phosphorylation oftype I keratins on their caspase-mediated degradation. J. Biol. Chem.,2001; 276: 26792-26798
    Google Scholar
  • 45. Kuo M.T.: Redox regulation of multidrug resistance in cancer chemotherapy:molecular mechanisms and therapeutic opportunities.Antioxid. Redox. Signal., 2009; 11: 99-133
    Google Scholar
  • 46. Lampidis T.J., Krishan A., Planas L., Tapiero H.: Reversal of intrinsicresistance to adriamycin in normal cells by verapamil. Cancer DrugDeliv., 1986; 3: 251-259
    Google Scholar
  • 47. Lau A.T.,Chiu J.F.: The possible role of cytokeratin 8 in cadmium-inducedadaptation and carcinogenesis. Cancer Res., 2007; 67: 2107-2113
    Google Scholar
  • 48. Lehne G.: P-glycoprotein as a drug target in the treatment of multidrugresistant cancer. Curr. Drug Targets, 2000; 1:85-99
    Google Scholar
  • 49. Leonard G.D., Fojo T., Bates S.E.: The role of ABC transporters inclinical practice. Oncologist, 2003; 8: 411-424
    Google Scholar
  • 50. Leslie E.M., Deeley R.G., Cole S.P.: Multidrug resistance proteins: roleof P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense.Toxicol. Appl. Pharmacol., 2005; 204: 216-237
    Google Scholar
  • 51. Ling V.: Multidrug resistance: molecular mechanisms and clinicalrelevance. Cancer Chemother. Pharmacol., 1997; 40, Suppl: S3-S8
    Google Scholar
  • 52. Liscovitch M., Lavie Y.: Cancer multidrug resistance: a review ofrecent drug discovery research. Drugs, 2002; 5: 349-355
    Google Scholar
  • 53. Litman T., Druley T.E., Stein W.D., Bates S.E.: From MDR to MXR:new understanding of multidrug resistance systems, their propertiesand clinical significance. Cell. Mol. Life Sci., 2001; 58: 931-959
    Google Scholar
  • 54. Liu F., Chen Z., Wang J., Shao X., Cui Z., Yang C., Zhu Z., XiongD.: Overexpression of cell surface cytokeratin 8 in multidrug-resistantMCF-7/MX cells enhances cell adhesion to the extracellular matrix.Neoplasia, 2008; 10: 1275-1284
    Google Scholar
  • 55. Locher K.P.: Review. Structure and mechanism of ATP-bindingcassette transporters. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009; 364:239-245
    Google Scholar
  • 56. Luqmani Y.A.: Mechanisms of drug resistance in cancer chemotherapy.Med. Princ. Pract., 2005; 14, Suppl. 1: 35-48
    Google Scholar
  • 57. Meyer K.N., Kjeldsen E., Straub T., Knudsen B.R., Hickson I.D., KikuchiA., Kreipe H., Boege F.: Cell cycle-coupled relocation of types I andII topoisomerases and modulation of catalytic enzyme activities. J. CellBiol., 1997; 136: 775-788
    Google Scholar
  • 58. Mitra P., Audus K.L.: MRP isoforms and BCRP mediate sulfate conjugateefflux out of BeWo cells. Int. J. Pharm., 2010; 384: 15-23
    Google Scholar
  • 59. Mitropoulos D., Kyroudi-Voulgari A., Theocharis S., Serafetinides E.,Moraitis E., Zervas A., Kittas C.: Prognostic significance of metallothioneinexpression in renal cell carcinoma. World J. Surg. Oncol., 2005; 3: 5
    Google Scholar
  • 60. Monge M., Vilaseca M., Soto-Cerrato V., Montaner B., Giralt E.,Perez-Tomas R.: Proteomic analysis of prodigiosin-induced apoptosisin a breast cancer mitoxantrone-resistant (MCF-7 MR) cell line. InvestNew Drugs., 2007; 25: 21-29
    Google Scholar
  • 61. Morrow C.S., Smitherman P.K., Diah S.K., Schneider E., TownsendA.J.: Coordinated action of glutathione S-transferases (GSTs) and multidrugresistance protein 1 (MRP1) in antineoplastic drug detoxification.Mechanism of GST A1-1 – and MRP1-associated resistance tochlorambucil in MCF7 breast carcinoma cells. J. Biol. Chem., 1998; 273:20114-20120
    Google Scholar
  • 62. Mossink M.H., van Zon A., Scheper R.J., Sonneveld P., Wiemer E.A.:Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene,2003; 22: 7458-7467
    Google Scholar
  • 63. Ni Z., Bikadi Z., Rosenberg M.F., Mao Q.: Structure and function ofthe human breast cancer resistance protein (BCRP/ABCG2). Curr. DrugMetab., 2010; 11: 603-617
    Google Scholar
  • 64. Nitiss J.L.: Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer, 2009; 9: 338-350
    Google Scholar
  • 65. Omary M.B., Ku N.O., Strnad P., Hanada S.: Toward unraveling thecomplexity of simple epithelial keratins in human disease. J. Clin. Invest.,2009; 119: 1794-1805
    Google Scholar
  • 66. Oshima R.G.: Apoptosis and keratin intermediate filaments. CellDeath Differ., 2002; 9: 486-492
    Google Scholar
  • 67. Pajeva I.K., Wiese M.: Structure-activity relationships of tariquidaranalogs as multidrug resistance modulators. AAPS J., 2009; 11: 435-444
    Google Scholar
  • 68. Parekh H.K., Simpkins H.: The differential expression of cytokeratin
    Google Scholar
  • 69. Pasello M., Michelacci F., Scionti I., Hattinger C.M., Zuntini M.,Caccuri A.M., Scotlandi K., Picci P., Serra M.: Overcoming glutathioneS-transferase P1-related cisplatin resistance in osteosarcoma. CancerRes., 2008; 68: 6661-6668
    Google Scholar
  • 70. Paumi C.M., Chuk M., Snider J., Stagljar I., Michaelis S.: ABC transportersin Saccharomyces cerevisiae and their interactors: new technologyadvances the biology of the ABCC (MRP) subfamily. Microbiol.Mol. Biol. Rev., 2009; 73: 577-593
    Google Scholar
  • 71. Peaston A.E., Gardaneh M., Franco A.V., Hocker J.E., Murphy K.M.,Farnsworth M.L., Catchpoole D.R., Haber M., Norris M.D., Lock R.B., MarshallG.M.: MRP1 gene expression level regulates the death and differentiationresponse of neuroblastoma cells. Br. J. Cancer, 2001; 85: 1564-1571
    Google Scholar
  • 72. Perez-Tomas R.: Multidrug resistance: retrospect and prospectsin anti-cancer drug treatment. Curr. Med. Chem., 2006; 13: 1859-1876
    Google Scholar
  • 73. Podolski-Renic A., Jadranin M., Stankovic T., Bankovic J., StojkovicS., Chiourea M., Aljancic I., Vajs V., Tesevic V., Ruzdijic S., Gagos S., TanicN., Pesic M.: Molecular and cytogenetic changes in multi-drug resistantcancer cells and their influence on new compounds testing. CancerChemother. Pharmacol., 2013; 72: 683-697
    Google Scholar
  • 74. Raguz S., Yague E.: Resistance to chemotherapy: new treatmentsand novel insights into an old problem. Br. J. Cancer, 2008; 99: 387-391
    Google Scholar
  • 75. Raidl M., Berger W., Schulte-Hermann R., Kandioler-EckersbergerD., Kappel S., Wrba F., Micksche M., Grasl-Kraupp B.: Expression of thelung resistance-related protein in human and rat hepatocarcinogenesis.Am. J. Physiol Gastrointest. Liver Physiol., 2002; 283: G1117-G1124
    Google Scholar
  • 76. Robey R.W., Massey P.R., Amiri-Kordestani L., Bates S.E.: ABC transporters:unvalidated therapeutic targets in cancer and the CNS. AnticancerAgents Med. Chem., 2010; 10: 625-633
    Google Scholar
  • 77. Ross D.D.: Modulation of drug resistance transporters as a strategyfor treating myelodysplastic syndrome. Best Pract. Res. Clin. Haematol.,2004; 17: 641-651
    Google Scholar
  • 78. Ruwali M., Singh M., Pant M.C., Parmar D.: Polymorphism in glutathioneS-transferases: susceptibility and treatment outcome for headand neck cancer. Xenobiotica, 2011; 41: 1122-1130
    Google Scholar
  • 79. Sakoda L.C., Blackston C.R., Xue K., Doherty J.A., Ray R.M., Lin M.G.,Stalsberg H., Gao D.L., Feng Z., Thomas D.B., Chen C.: Glutathione S–transferase M1 and P1 polymorphisms and risk of breast cancer andfibrocystic breast conditions in Chinese women. Breast Cancer Res.Treat., 2008; 109: 143-155
    Google Scholar
  • 80. Sankatsing S.U., Beijnen J.H., Schinkel A.H., Lange J.M., Prins J.M.:P glycoprotein in human immunodeficiency virus type 1 infection andtherapy. Antimicrob. Agents Chemother., 2004; 48: 1073-1081
    Google Scholar
  • 81. Satoh M., Cherian M.G., Imura N., Shimizu H.: Modulation of resistanceto anticancer drugs by inhibition of metallothionein synthesis.Cancer Res., 1994; 54: 5255-5257
    Google Scholar
  • 82. Scheffer G.L., Wijngaard P.L., Flens M.J., Izquierdo M.A., Slovak M.L.,Pinedo H.M., Meijer C.J., Clevers H.C., Scheper R.J.: The drug resistance-relatedprotein LRP is the human major vault protein. Nat. Med.,1995; 1: 578-582
    Google Scholar
  • 83. Schneider E., Horton J.K., Yang C.H., Nakagawa M., Cowan K.H.: Multidrugresistance-associated protein gene overexpression and reduceddrug sensitivity of topoisomerase II in a human breast carcinoma MCF7cell line selected for etoposide resistance. Cancer Res., 1994; 54: 152-158
    Google Scholar
  • 84. Schoeffler A.J., Berger J.M.: Recent advances in understanding structure-functionrelationships in the type II topoisomerase mechanism.Biochem. Soc. Trans., 2005; 33: 1465-1470
    Google Scholar
  • 85. Shen F., Chu S., Bence A.K., Bailey B., Xue X., Erickson P.A., MontroseM.H., Beck W.T., Erickson L.C.: Quantitation of doxorubicin uptake,efflux, and modulation of multidrug resistance (MDR) in MDR humancancer cells. J. Pharmacol. Exp. Ther., 2008; 324: 95-102
    Google Scholar
  • 86. Simon S.M., Schindler M.: Cell biological mechanisms of multidrugresistance in tumors. Proc. Natl. Acad. Sci. USA, 1994; 91: 3497-3504
    Google Scholar
  • 87. Singh A., Wu H., Zhang P., Happel C., Ma J.,Biswal S.: Expressionof ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers sidepopulation and chemoresistance phenotype. Mol. Cancer Ther., 2010;9: 2365-2376
    Google Scholar
  • 88. Skarda J., Hajduch M., Kolek V.: Drug resistance in lung cancer.Cancer Ther., 2008; 6: 377-388
    Google Scholar
  • 89. Stavrovskaya A.A.: Cellular mechanisms of multidrug resistance oftumor cells. Biochemistry (Mosc.), 2000; 65: 95-106
    Google Scholar
  • 90. Stavrovskaya A.A., Stromskaya T.P.: Transport proteins of the ABCfamily and multidrug resistance of tumor cells. Biochemistry (Mosc.),2008; 73: 592-604
    Google Scholar
  • 91. Stefkova J., Poledne R., Hubacek J.A.: ATP-binding cassette (ABC)transporters in human metabolism and diseases. Physiol Res., 2004;53: 235-243
    Google Scholar
  • 92. Takahashi K., Shibata T., Oba T., Ishikawa T., Yoshikawa M., TatsunamiR., Takahashi K., Tampo Y.: Multidrug-resistance-associated proteinplays a protective role in menadione-induced oxidative stress inendothelial cells. Life Sci., 2009; 84: 211-217
    Google Scholar
  • 93. Tew K.D.: Glutathione-associated enzymes in anticancer drug resistance.Cancer Res., 1994; 54: 4313-4320
    Google Scholar
  • 94. Thirumoorthy N., Shyam S.A., Manisenthil K.K., Senthil K.M., GaneshG., Chatterjee M.: A review of metallothionein isoforms and theirrole in pathophysiology. World J. Surg. Oncol., 2011; 20; 9:54
    Google Scholar
  • 95. Turner J.G., Gump J.L., Zhang C., Cook J.M., Marchion D., HazlehurstL., Munster P., Schell M.J., Dalton W.S., Sullivan D.M.: ABCG2 expression,function, and promoter methylation in human multiple myeloma. Blood,2006; 108: 3881-3889
    Google Scholar
  • 96. Ullah M.F.: Cancer multidrug resistance (MDR): a major impedimentto effective chemotherapy. Asian Pac. J. Cancer Prev., 2008; 9: 1-6
    Google Scholar
  • 97. Vasak M.: Advances in metallothionein structure and functions. J.Trace Elem. Med. Biol., 2005; 19: 13-17
    Google Scholar
  • 98. Vasiliou V., Vasiliou K., Nebert D.W.: Human ATP-binding cassette(ABC) transporter family. Hum. Genomics, 2009; 3: 281-290
    Google Scholar
  • 99. Vilaboa N.E., Galan A., Troyano A., de Blas E., Aller P.: Regulationof multidrug resistance 1 (MDR1)/P-glycoprotein gene expression andactivity by heat-shock transcription factor 1 (HSF1). J. Biol. Chem., 2000;275: 24970-24976
    Google Scholar
  • 100. Volm M., Kastel M., Mattern J., Efferth T.: Expression of resistancefactors (P-glycoprotein, glutathione S-transferase-pi, and topoisomeraseII) and their interrelationship to proto-oncogene products in renalcell carcinomas. Cancer, 1993; 71: 3981-3987
    Google Scholar
  • 101. Weinlich G., Eisendle K., Hassler E., Baltaci M., Fritsch P.O., ZelgerB.: Metallothionein – overexpression as a highly significant prognosticfactor in melanoma: a prospective study on 1270 patients. Br. J. Cancer,2006; 94: 835-841
    Google Scholar
  • 102. Weng Y.R., Cui Y., Fang J.Y.: Biological functions of cytokeratin 18in cancer. Mol. Cancer Res., 2012; 10: 485-493
    Google Scholar
  • 103. Wilstermann A.M., Osheroff N.: Base excision repair intermediatesas topoisomerase II poisons. J. Biol. Chem., 2001; 276: 46290-46296
    Google Scholar
  • 104. Wyler B., Shao Y., Schneider E., Cianfriglia M., Scheper R.J., FreyB.M., Gieseler F., Schmid L., Twentyman P.R., Lehnert M.: Intermittentexposure to doxorubicin in vitro selects for multifactorial non-P-glycoprotein-associatedmultidrug resistance in RPMI 8226 human myelomacells. Br. J. Haematol., 1997; 97: 65-75
    Google Scholar
  • 105. Yan S., Shun-Chang J., Li C., Jie L., Ya-Li L., Ling-Xiong W.: TopoisomeraseII alpha expression and the benefit of adjuvant chemotherapyfor postoperative patients with non-small cell lung cancer. BMCCancer, 2010; 10: 621
    Google Scholar
  • 106. Yang K., Wu J., Li X.: Recent advances in the research of P-glycoproteininhibitors. Biosci. Trends, 2008; 2: 137-146
    Google Scholar
  • 107. Zhan M., Yu D., Liu J., Glazer R.I., Hannay J., Pollock R.E.: Transcriptionalrepression of protein kinase Cα via Sp1 by wild type p53 isinvolved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation.J. Biol. Chem., 2005; 280: 4825-4833
    Google Scholar

Full text

Skip to content