Regulation of cardiac metabolism and function by lipogenic factors

COMMENTARY ON THE LAW

Regulation of cardiac metabolism and function by lipogenic factors

Tomasz Bednarski 1 , Aleksandra Pyrkowska 2 , Agnieszka Opasińska 1 , Paweł Dobrzyń 1

1. Pracownia Molekularnej Biochemii Medycznej, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Warszawa
2. Pracownia Sygnałów Komórkowych i Zaburzeń Metabolicznych, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Warszawa

Published: 2016-06-23
DOI: 10.5604/17322693.1206541
GICID: 01.3001.0009.6844
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 644-653

 

Abstract

The heart has a limited capacity for lipogenesis and de novo lipid synthesis. However, expression of lipogenic genes in cardiomyocytes is unexpectedly high. Recent studies showed that lipogenic genes are important factors regulating cardiac metabolism and function. Long chain fatty acids are a major source of ATP required for proper heart function, and under aerobic conditions, the heart derives 60-90% of the energy necessary for contractile function from fatty acid oxidation. On the other hand, cardiac lipid over-accumulation (e.g. ceramides, diacylglycerols) leads to heart dysfunction. Downregulation of the lipogenic genes’ expression (e.g. sterol regulatory element binding protein 1, stearoyl-CoA desaturase, acetyl-CoA kwacarboxylase) decreased heart steatosis and cardiomyocyte apoptosis, improving systolic and diastolic function of the left ventricle. Lipogenic factors also regulate fatty acids and glucose utilization in the heart, underlining their important role in maintaining energetic homeostasis in pathological states. Fatty acid synthase, the enzyme catalyzing fatty acids de novo synthesis, affects cardiac calcium signaling through regulation of L-type calcium channel activity. Thus, a growing body of evidence suggests that the role of lipogenic genes in cardiomyocytes may be distinct from other tissues. Here, we review recent advances made in understanding the role of lipogenic genes in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathy.

References

  • 1. Aguer C., Mercier J., Man C.Y., Metz L., Bordenave S., Lambert K.,Jean E., Lantier L., Bounoua L., Brun J.F., Raynaud de Mauverger E.,Andreelli F., Foretz M., Kitzmann M.: Intramyocellular lipid accumulationis associated with permanent relocation ex vivo and in vitroof fatty acid translocase (FAT)/CD36 in obese patients. Diabetologia,2010; 53: 1151-1163
    Google Scholar
  • 2. Anderson S.M., Rudolph M.C., McManaman J.L., Neville M.C.: Keystages in mammary gland development. Secretory activation in themammary gland: it’s not just about milk protein synthesis! BreastCancer Res., 2007; 9: 204
    Google Scholar
  • 3. Angin Y., Steinbusch L.K., Simons P.J., Greulich S., Hoebers N.T.,Douma K., van Zandvoort M.A., Coumans W.A., Wijnen W., DiamantM., Ouwens D.M., Glatz J.F., Luiken J.J.: CD36 inhibition prevents lipidaccumulation and contractile dysfunction in rat cardiomyocytes.Biochem. J., 2012; 448: 43-53
    Google Scholar
  • 4. Bessi V.L., Labbé S.M., Huynh D.N., Ménard L., Jossart C., FebbraioM., Guérin B., Bentourkia M., Lecomte R., Carpentier A.C., Ong H.,Marleau S.: EP 80317, a selective CD36 ligand, shows cardioprotectiveeffects against post-ischemic myocardial damage in mice. Cardiovasc.Res., 2012; 96: 99-108
    Google Scholar
  • 5. Binas B., Danneberg H., McWhir J., Mullins L., Clark A.J.: Requirementfor the heart-type fatty acid binding protein in cardiac fattyacid utilization. FASEB J., 1999; 13: 805-812
    Google Scholar
  • 6. Carley A.N., Atkinson L.L., Bonen A., Harper M.E., Kunnathu S.,Lopaschuk G.D., Severson D.L.: Mechanisms responsible for enhancedfatty acid utilization by perfused hearts from type 2 diabetic db/dbmice. Arch. Physiol. Biochem., 2007; 113: 65-75
    Google Scholar
  • 7. Carobbio S., Hagen R.M., Lelliott C.J., Slawik M., Medina-Gomez G.,Tan C.Y., Sicard A., Atherton H.J., Barbarroja N., Bjursell M., BohloolyY.M., Virtue S., Tuthill A., Lefai E., Laville M. i wsp.: Adaptive changesof the Insig1/SREBP1/SCD1 set point help adipose tissue to cope withincreased storage demands of obesity. Diabetes, 2013; 62: 3697-3708
    Google Scholar
  • 8. Chaitman B.R., Pepine C.J., Parker J.O., Skopal J., Chumakova G.,Kuch J., Wang W., Skettino S.L., Wolff A.A.: Effects of ranolazine withatenolol, amlodipine, or diltiazem on exercise tolerance and anginafrequency in patients with severe chronic angina: a randomizedcontrolled trial. JAMA, 2004; 291: 309-316
    Google Scholar
  • 9. Chiu H.C., Kovacs A., Blanton R.M., Han X., Courtois M., WeinheimerC.J., Yamada K. A., Brunet S., Xu H., Nerbonne J.M., Welch M.J.,Fettig N.M., Sharp T.L., Sambandam N., Olson K.M. i wsp.: Transgenicexpression of fatty acid transport protein 1 in the heart causeslipotoxic cardiomyopathy. Circ. Res., 2005; 96: 225-233
    Google Scholar
  • 10. Choi C.S., Savage D.B., Abu-Elheiga L., Liu Z.X., Kim S., KulkarniA., Distefano A., Hwang Y.J., Reznick R.M., Codella R., Zhang D., ClineG.W., Wakil S.J., Shulman G.I.: Continuous fat oxidation in acetyl-CoAcarboxylase 2 knockout mice increases total energy expenditure,reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad.Sci. USA, 2007; 104: 16480-16485
    Google Scholar
  • 11. Chokshi A., Drosatos K., Cheema F.H., Ji R., Khawaja T., Yu S.,Kato T., Khan R., Takayama H., Knöll R., Milting H., Chung C. S., JordeU., Naka Y., Mancini D.M. i wsp.: Ventricular assist device implantationcorrects myocardial lipotoxicity, reverses insulin resistance,and normalizes cardiac metabolism in patients with advanced heartfailure. Circulation, 2012; 125: 2844-2853
    Google Scholar
  • 12. Choromańska B., Myśliwiec P., Dadan J., Hady H.R., ChabowskiA.: The clinical significance of fatty acid binding proteins. PostępyHig. Med. Dośw., 2011; 65: 759-763
    Google Scholar
  • 13. Coburn C.T., Knapp F.F., Febbraio M., Beets A.L., Silverstein R.L.,Abumrad N.A.: Defective uptake and utilization of long chain fattyacids in muscle and adipose tissues of CD36 knockout mice. J. Biol.Chem., 2000; 275: 32523-32529
    Google Scholar
  • 14. Coleman R.A., Lee D.P.: Enzymes of triacylglycerol synthesis andtheir regulation. Prog. Lipid Res., 2004; 43: 134-176
    Google Scholar
  • 15. Dobrzyn P., Bednarski T., Dobrzyn A.: Metabolic reprogrammingof the heart through stearoyl-CoA desaturase. Prog. Lipid Res.,2015; 57: 1-12
    Google Scholar
  • 16. Dobrzyn P., Dobrzyn A., Miyazaki M., Ntambi J.M.: Loss of stearoyl-CoAdesaturase 1 rescues cardiac function in obese leptin–deficient mice. J. Lipid Res., 2010; 51: 2202-2210
    Google Scholar
  • 17. Dobrzyn P., Jazurek M., Dobrzyn A.: Stearoyl-CoA desaturase andinsulin signaling – what is the molecular switch? Biochim. Biophys.Acta, 2010; 1797: 1189-1194
    Google Scholar
  • 18. Dobrzyn P., Pyrkowska A., Duda M.K., Bednarski T., MaczewskiM., Langfort J., Dobrzyn A.: Expression of lipogenic genes is upregulatedin the heart with exercise training-induced but not pressureoverload-induced left ventricular hypertrophy. Am. J. Physiol. Endocrinol.Metab., 2013; 304: E1348-E1358
    Google Scholar
  • 19. Dobrzyn P., Pyrkowska A., Jazurek M., Dobrzyn A.: Increasedavailability of endogenous and dietary oleic acid contributes to theupregulation of cardiac fatty acid oxidation. Mitochondrion, 2012;12: 132-137
    Google Scholar
  • 20. Dobrzyn P., Sampath H., Dobrzyn A., Miyazaki M., Ntambi J.M.:Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation andincreases glucose utilization in the heart. Am. J. Physiol. Endocrinol.Metab., 2008; 294: E357-E364
    Google Scholar
  • 21. Ericsson J., Jackson S.M., Kim J.B., Spiegelman B.M., EdwardsP.A.: Identification of glycerol-3-phosphate acyltransferase as anadipocyte determination and differentiation factor 1 – and sterolregulatory element-binding protein-responsive gene. J. Biol. Chem.,1997; 272: 7298-7305
    Google Scholar
  • 22. Essop M.F., Camp H.S., Choi C.S., Sharma S., Fryer R.M., ReinhartG.A., Guthrie P.H., Bentebibel A., Gu Z., Shulman G.I., Taegtmeyer H.,Wakil S.J., Abu-Elheiga L.: Reduced heart size and increased myocardialfuel substrate oxidation in ACC2 mutant mice. Am. J. Physiol.Heart Circ. Physiol., 2008; 295: H256-H265
    Google Scholar
  • 23. Finck B.N., Lehman J.J., Leone T.C., Welch M.J., Bennett M.J., KovacsA., Han X., Gross R.W., Kozak R., Lopaschuk G.D., Kelly D.P.: Thecardiac phenotype induced by PPARalpha overexpression mimicsthat caused by diabetes mellitus. J. Clin. Invest., 2002; 109: 121-130
    Google Scholar
  • 24. Gautam S., Pirabu L., Agrawal C.G., Banerjee M.: CD36 gene variantsand their association with type 2 diabetes in an Indian population.Diabetes Technol. Ther., 2013; 15: 680-687
    Google Scholar
  • 25. Glatz J.F., Angin Y., Steinbusch L.K., Schwenk R.W., Luiken J.J.:CD36 as a target to prevent cardiac lipotoxicity and insulin resistance.Prostaglandins Leukot. Essent. Fatty Acids, 2013; 88: 71-77
    Google Scholar
  • 26. Glatz J.F., Bonen A., Ouwens D.M., Luiken J.J.: Regulation of sarcolemmaltransport of substrates in the healthy and diseased heart.Cardiovasc. Drugs Ther., 2006; 20: 471-476
    Google Scholar
  • 27. Glenn D.J., Wang F., Nishimoto M., Cruz M.C., Uchida Y., HolleranW.M., Zhang Y., Yeghiazarians Y., Gardner D.G.: A murine model ofisolated cardiac steatosis leads to cardiomyopathy. Hypertension,2011; 57: 216-222
    Google Scholar
  • 28. Goldstein J.L., DeBose-Boyd R.A., Brown M.S.: Protein sensorsfor membrane sterols. Cell, 2006; 124: 35-46
    Google Scholar
  • 29. Habets D.D., Coumans W.A., Voshol P.J., den Boer M.A., FebbraioM., Bonen A., Glatz J.F., Luiken J.J.: AMPK-mediated increase in myocardiallong-chain fatty acid uptake critically depends on sarcolemmalCD36. Biochem. Biophys. Res. Commun., 2007; 355: 204–210
    Google Scholar
  • 30. Holloway G.P., Benton C.R., Mullen K.L., Yoshida Y., Snook L.A.,Han X.X., Glatz J.F., Luiken J.J., Lally J., Dyck D.J., Bonen A.: In obeserat muscle transport of palmitate is increased and is channeled totriacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Am. J. Physiol. Endocrinol. Metab., 2009; 296: E738-E747
    Google Scholar
  • 31. Horton J.D., Goldstein J.L., Brown M.S.: SREBPs: activators of thecomplete program of cholesterol and fatty acid synthesis in the liver.J. Clin. Invest., 2002; 109: 1125-1131
    Google Scholar
  • 32. Karsenty J., Landrier J.F., Rousseau-Ralliard D., Robbez-MassonV., Margotat A., Deprez P., Lechêne P., Grynberg A., Lairon D., PlanellsR., Gastaldi M.: Beneficial effects of omega-3 fatty acids on theconsequences of a fructose diet are not mediated by PPAR delta orPGC1 alpha. Eur. J. Nutr., 2013; 52: 1865-1874
    Google Scholar
  • 33. Kast H.R., Nguyen C.M., Anisfeld A.M., Ericsson J., Edwards P.A.:CTP:phosphocholine cytidylyltransferase, a new sterol- and SREBP–responsive gene. J. Lipid Res., 2001; 42: 1266-1272
    Google Scholar
  • 34. Kim T.S., Freake H.C.: High carbohydrate diet and starvation regulatelipogenic mRNA in rats in a tissue-specific manner. J. Nutr.,1996; 126: 611-617
    Google Scholar
  • 35. Kivelä R., Bry M., Robciuc M.R., Räsänen M., Taavitsainen M.,Silvola J.M., Saraste A., Hulmi J.J., Anisimov A., Mäyränpää M.I., LindemanJ.H., Eklund L., Hellberg S., Hlushchuk R., Zhuang Z.W. i wsp.:VEGF-B-induced vascular growth leads to metabolic reprogrammingand ischemia resistance in the heart. EMBO Mol. Med., 2014;6: 307-321
    Google Scholar
  • 36. Klevstig M., Manakov D., Kasparova D., Brabcova I., PapousekF., Zurmanova J., Zidek V., Silhavy J., Neckar J., Pravenec M., KolarF., Novakova O., Novotny J.: Transgenic rescue of defective Cd36enhances myocardial adenylyl cyclase signaling in spontaneouslyhypertensive rats. Pflugers Arch., 2013; 465: 1477-1486
    Google Scholar
  • 37. Kolwicz S.C.Jr., Olson D.P., Marney L.C., Garcia-Menendez L.,Synovec R.E., Tian R.: Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overloadhypertrophy. Circ. Res., 2012; 111: 728-738
    Google Scholar
  • 38. Kusaka Y., Tanaka T., Okamoto F., Terasaki F., Matsunaga Y., MiyazakiH., Kawamura K.: Effect of sulfo-N-succinimidylpalmitate onthe rat heart: myocardial long-chain fatty acid uptake and cardiachypertrophy. J. Mol. Cell. Cardiol., 1995; 27: 1605-1612
    Google Scholar
  • 39. Laux T., Schweizer M.: Dietary-induced pre-translational controlof rat fatty acid synthase. Biochem. J., 1990; 266: 793-797
    Google Scholar
  • 40. Lewin T.M., de Jong H., Schwerbrock N.J., Hammond L.E., WatkinsS.M., Combs T.P., Coleman R.A.: Mice deficient in mitochondrialglycerol-3-phosphate acyltransferase-1 have diminished myocardialtriacylglycerol accumulation during lipogenic diet and alteredphospholipid fatty acid composition. Biochim. Biophys. Acta, 2008;1781: 352-358
    Google Scholar
  • 41. Liu L., Shi X., Bharadwaj K.G., Ikeda S., Yamashita H., Yagyu H.,Schaffer J.E., Yu Y. H., Goldberg I.J.: DGAT1 expression increases hearttriglyceride content but ameliorates lipotoxicity. J. Biol. Chem.,2009; 284: 36312-36323
    Google Scholar
  • 42. Liu L., Trent C.M., Fang X., Son N.H., Jiang H., Blaner W.S., Hu Y.,Yin Y.X., Farese R.V. Jr, Homma S., Turnbull A.V., Eriksson J.W., HuS.L., Ginsberg H.N., Huang L.S., Goldberg I.J.: Cardiomyocyte-specificloss of diacylglycerol acyltransferase 1 (DGAT1) reproduces theabnormalities in lipids found in severe heart failure. J. Biol. Chem.,2014; 289: 29881-29891
    Google Scholar
  • 43. Liu L., Yu S., Khan R.S., Ables G.P., Bharadwaj K.G., Hu Y., HugginsL.A., Eriksson J.W., Buckett L.K., Turnbull A.V., Ginsberg H.N.,Blaner W.S., Huang L.S., Goldberg I.J.: DGAT1 deficiency decreasesPPAR expression and does not lead to lipotoxicity in cardiac andskeletal muscle. J. Lipid Res., 2011; 52: 732-744
    Google Scholar
  • 44. Liu X., Meng F., Yang P.: Association study of CD36 single nucleotidepolymorphisms with essential hypertension in the NortheasternHan Chinese. Gene, 2013; 527: 410-415
    Google Scholar
  • 45. Lopaschuk G.D., Ussher J.R., Folmes C.D., Jaswal J.S., StanleyW.C.: Myocardial fatty acid metabolism in health and disease. Physiol.Rev., 2010; 90: 207-258
    Google Scholar
  • 46. Luiken J.J., Arumugam Y., Dyck D.J., Bell R.C., Pelsers M.M., TurcotteL.P., Tandon N.N., Glatz J.F., Bonen A.: Increased rates of fattyacid uptake and plasmalemmal fatty acid transporters in obese Zuckerrats. J. Biol. Chem., 2001; 276: 40567-40573
    Google Scholar
  • 47. Marfella R., Di Filippo C., Portoghese M., Barbieri M., FerraraccioF., Siniscalchi M., Cacciapuoti F., Rossi F., D’Amico M., Paolisso G.:Myocardial lipid accumulation in patients with pressure-overloadedheart and metabolic syndrome. J. Lipid Res., 2009; 50: 2314-2323
    Google Scholar
  • 48. Mashek D.G, Coleman R.A.: Cellular fatty acid uptake: the contributionof metabolism. Curr. Opin. Lipidol., 2006; 17: 274-278
    Google Scholar
  • 49. Matsuzaka T., Shimano H., Yahagi N., Amemiya-Kudo M.,Yoshikawa T., Hasty A.H., Tamura Y., Osuga J., Okazaki H., Iizuka Y.,Takahashi A., Sone H., Gotoda T., Ishibashi S., Yamada N.: Dual regulationof mouse Δ5 and Δ6-desaturase gene expression by SREBP-1and PPARα. J. Lipid Res., 2002; 43: 107-114
    Google Scholar
  • 50. Matsuzaka T., Shimano H., Yahagi N., Yoshikawa T., Amemiya–Kudo M., Hasty A.H., Okazaki H., Tamura Y., Iizuka Y., Ohashi K., OsugaJ., Takahashi A., Yato S., Sone H., Ishibashi S., Yamada N.: Cloningand characterization of a mammalian fatty acyl-CoA elongase as a lipogenicenzyme regulated by SREBPs. J. Lipid Res., 2002; 43: 911-920
    Google Scholar
  • 51. Miyazaki M., Jacobson M.J., Man W.C., Cohen P., Asilmaz E., FriedmanJ.M., Ntambi J.M.: Identification and characterization of murineSCD4, a novel heart-specific stearoyl-CoA desaturase isoformregulated by leptin and dietary factors. J. Biol. Chem., 2003; 278:33904-33911
    Google Scholar
  • 52. Moon Y.A., Shah N.A., Mohapatra S., Warrington J.A., HortonJ.D.: Identification of a mammalian long chain fatty acyl elongaseregulated by sterol regulatory element-binding proteins. J. Biol.Chem., 2001; 276: 45358-45366
    Google Scholar
  • 53. Nagendran J., Pulinilkunnil T., Kienesberger P.C., Sung M.M.,Fung D., Febbraio M., Dyck J.R.: Cardiomyocyte-specific ablation ofCD36 improves post-ischemic functional recovery. J. Mol. Cell. Cardiol.,2013; 63: 180-188
    Google Scholar
  • 54. Nagle C.A., An J., Shiota M., Torres T.P., Cline G.W., Liu Z.X.,Wang S., Catlin R.L., Shulman G.I., Newgard C.B., Coleman R.A.: Hepaticoverexpression of glycerol-sn-3-phosphate acyltransferase 1 inrats causes insulin resistance. J. Biol. Chem., 2007; 282: 14807-14815
    Google Scholar
  • 55. Neckář J., Šilhavy J., Zídek V., Landa V., Mlejnek P., Šimáková M.,Seidman J.G., Seidman C., Kazdová L., Klevstig M., Novák F., VeckaM., Papoušek F., Houštěk J., Drahota Z. i wsp.: CD36 overexpressionpredisposes to arrhythmias but reduces infarct size in spontaneouslyhypertensive rats: gene expression profile analysis. Physiol. Genomics,2012; 44: 173-182
    Google Scholar
  • 56. Oh W., Abu-Elheiga L., Kordari P., Gu Z., Shaikenov T., ChiralaS.S., Wakil S.J.: Glucose and fat metabolism in adipose tissue ofacetyl-CoA carboxylase 2 knockout mice. Proc. Natl. Acad. Sci. USA,2005; 102: 1384-1389
    Google Scholar
  • 57. Ouwens D.M., Diamant M., Fodor M., Habets D.D., Pelsers M.M.,El Hasnaoui M., Dang Z.C., van den Brom C.E., Vlasblom R., RietdijkA., Boer C., Coort S.L., Glatz J.F., Luiken J.J.: Cardiac contractile dysfunctionin insulin-resistant rats fed a high-fat diet is associatedwith elevated CD36-mediated fatty acid uptake and esterification.Diabetologia, 2007; 50: 1938-1948
    Google Scholar
  • 58. Park H.J., Georgescu S.P., Du C., Madias C., Aronovitz M.J., WelzigC.M., Wang B., Begley U., Zhang Y., Blaustein R.O., Patten R.D., KarasR.H., Van Tol H.H., Osborne T.F., Shimano H. i wsp.: Parasympatheticresponse in chick myocytes and mouse heart is controlled by SREBP.J. Clin. Invest., 2008; 118: 259-271
    Google Scholar
  • 59. Pellon-Maison M., Montanaro M.A., Coleman R.A., Gonzalez-BaróM.R.: Mitochondrial glycerol-3-P acyltransferase 1 is most activein outer mitochondrial membrane but not in mitochondrial associatedvesicles (MAV). Biochim. Biophys. Acta, 2007; 1771: 830-838
    Google Scholar
  • 60. Poudyal H., Kumar S.A., Iyer A., Waanders J., Ward L.C., BrownL.: Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J. Nutr.Biochem., 2013; 24: 1381-1392
    Google Scholar
  • 61. Poudyal H., Panchal S.K., Ward L.C., Brown L.: Effects of ALA,EPA and DHA in high-carbohydrate, high-fat diet-induced metabolicsyndrome in rats. J. Nutr. Biochem., 2013; 24: 1041-1052
    Google Scholar
  • 62. Randle P.J., Garland P.B., Hales C.N., Newsholme E.A.: The glucosefatty-acid cycle. Its role in insulin sensitivity and the metabolicdisturbances of diabetes mellitus. Lancet, 1963; 1: 785-789
    Google Scholar
  • 63. Razani B., Zhang H., Schulze P.C., Schilling J.D., Verbsky J., LodhiI.J., Topkara V.K., Feng C., Coleman T., Kovacs A., Kelly D.P., SaffitzJ.E., Dorn G.W. 2nd, Nichols C.G., Semenkovich C.F.: Fatty acid synthasemodulates homeostatic responses to myocardial stress. J. Biol.Chem., 2011; 286: 30949-30961
    Google Scholar
  • 64. Ridgway N.D., Lagace T.A.: Regulation of the CDP-choline pathwayby sterol regulatory element binding proteins involves transcriptionaland post-transcriptional mechanisms. Biochem. J., 2003;372: 811-819
    Google Scholar
  • 65. Sambandam N., Lopaschuk G.D.: AMP-activated protein kinase(AMPK) control of fatty acid and glucose metabolism in the ischemicheart. Prog. Lipid Res., 2003; 42: 238-256
    Google Scholar
  • 66. Sampath H., Ntambi J.M.: Role of stearoyl-CoA desaturase-1 inskin integrity and whole body energy balance. J. Biol. Chem., 2014;289: 2482-2488
    Google Scholar
  • 67. Sayed-Ahmed M.M., Aldelemy M.L., Al-Shabanah O.A., HafezM.M., Al-Hosaini K.A., Al-Harbi N.O., Al-Sharary S.D., Al-Harbi M.M.:Inhibition of gene expression of carnitine palmitoyltransferase I andheart fatty acid binding protein in cyclophosphamide and ifosfamide-inducedacute cardiotoxic rat models. Cardiovasc. Toxicol.,2014; 14: 232-242
    Google Scholar
  • 68. Sayed-Ahmed M.M., Al-Shabanah O.A., Hafez M.M., Aleisa A.M.,Al-Rejaie S.S.: Inhibition of gene expression of heart fatty acid bindingprotein and organic cation/carnitine transporter in doxorubicincardiomyopathic rat model. Eur. J. Pharmacol., 2010; 640: 143-149
    Google Scholar
  • 69. Shao W., Espenshade P.J.: Expanding roles for SREBP in metabolism.Cell Metab., 2012; 16: 414-419
    Google Scholar
  • 70. Shimano H., Shimomura I., Hammer R.E., Herz J., Goldstein J.L.,Brown M.S., Horton J.D.: Elevated levels of SREBP-2 and cholesterolsynthesis in livers of mice homozygous for a targeted disruption ofthe SREBP-1 gene. J. Clin. Invest., 1997; 100: 2115-2124
    Google Scholar
  • 71. Shimomura I., Shimano H., Korn B.S., Bashmakov Y., HortonJ.D.: Nuclear sterol regulatory element-binding proteins activategenes responsible for the entire program of unsaturated fatty acidbiosynthesis in transgenic mouse liver. J. Biol. Chem., 1998; 273:35299-35306
    Google Scholar
  • 72. Smith S.: The animal fatty acid synthase: one gene, one polypeptide,seven enzymes. FASEB J., 1994; 8: 1248-1259
    Google Scholar
  • 73. Smith S.J., Cases S., Jensen D.R., Chen H.C., Sande E., Tow B., SananD.A., Raber J., Eckel R.H., Farese R.V. Jr.: Obesity resistance andmultiple mechanisms of triglyceride synthesis in mice lacking Dgat.Nat. Genet., 2000; 25: 87-90
    Google Scholar
  • 74. Soncini M., Yet S.F., Moon Y., Chun J.Y., Sul H.S.: Hormonal andnutritional control of the fatty acid synthase promoter in transgenicmice. J. Biol. Chem., 1995; 270: 30339-30343
    Google Scholar
  • 75. Stamatikos A.: Acyl-CoA:diacylglycerol acyltransferase: a keyplayer in the regulation of fatty acid and glucose metabolism inmammalian systems. Ann. Res. Rev. Biol., 2014; 4: 1726-1738
    Google Scholar
  • 76. Stanley W.C., Recchia F.A., Lopaschuk G.D.: Myocardial substratemetabolism in the normal and failing heart. Physiol. Rev., 2005;85: 1093-1129
    Google Scholar
  • 77. Storch J., Thumser A.E.: Tissue-specific functions in the fattyacid-binding protein family. J. Biol. Chem., 2010; 285: 32679-32683
    Google Scholar
  • 78. Tong L.: Acetyl-coenzyme A carboxylase: crucial metabolic enzymeand attractive target for drug discovery. Cell Mol. Life Sci.,2005; 62: 1784-1803
    Google Scholar
  • 79. Wakil S.J., Abu-Elheiga L.A.: Fatty acid metabolism: target formetabolic syndrome. J. Lipid Res. 2009; 50: S138-S143
    Google Scholar
  • 80. Wendel A.A., Lewin T.M., Coleman R.A.: Glycerol-3-phosphateacyltransferases: rate limiting enzymes of triacylglycerol biosynthesis.Biochim. Biophys. Acta, 2009; 1791: 501-506
    Google Scholar
  • 81. Yamashita A., Hayashi Y., Matsumoto N., Nemoto-Sasaki Y., OkaS., Tanikawa T., Sugiura T.: Glycerophosphate/acylglycerophosphateacyltransferases. Biology, 2014; 3: 801-830
    Google Scholar
  • 82. Zhang W., Chakravarty B., Zheng F., Gu Z., Wu H., Mao J., WakilS.J., Quiocho F.A.: Crystal structure of FAS thioesterase domainwith polyunsaturated fatty acyl adduct and inhibition by dihomo–g-linolenic acid. Proc. Natl. Acad. Sci. USA, 2011; 108: 15757-15762
    Google Scholar
  • 83. Zhang Y., Ling Z.Y., Deng S.B., Du H.A., Yin Y.H., Yuan J., She Q.,Chen Y.Q.: Associations between CD36 gene polymorphisms andsusceptibility to coronary artery heart disease. Braz. J. Med. Biol.Res., 2014; 47: 895-903
    Google Scholar
  • 84. Zhou Y.T., Grayburn P., Karim A., Shimabukuro M., Higa M., BaetensD., Orci L., Unger R.H.: Lipotoxic heart disease in obese rats:implications for human obesity. Proc. Natl. Acad. Sci. USA, 2000;97: 1784-1789
    Google Scholar

Full text

Skip to content