Retinol-binding protein 4 (RBP4) as the causative factor and marker of vascular injury related to insulin resistance

COMMENTARY ON THE LAW

Retinol-binding protein 4 (RBP4) as the causative factor and marker of vascular injury related to insulin resistance

Marcin Majerczyk 1 , Magdalena Olszanecka-Glinianowicz 2 , Monika Puzianowska-Kuźnicka 3 , Jerzy Chudek 1

1. Zakład Patofizjologii Katedry Patofizjologii Wydziału Lekarskiego w Katowicach Śląskiego Uniwersytetu Medycznego w Katowicach
2. Zakład Promocji Zdrowia i Leczenia Otyłości Katedry Patofizjologii Wydziału Lekarskiego w Katowicach Śląskiego Uniwersytetu Medycznego w Katowicach
3. Instytut Medycyny Doświadczalnej i Klinicznej im. Mirosława Mossakowskiego PAN w Warszawie

Published: 2016-12-21
DOI: 10.5604/17322693.1226695
GICID: 01.3001.0009.6904
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1267-1275

 

Abstract

One of adipokines involved in the development of insulin resistance is retinol-binding protein 4(RBP4). The physiological role of RBP4 is transport of retinol from the liver to peripheral tissues. One of the first events related to the excessive visceral fat accumulation is the development of inflammation followed by hormonal adipose tissue dysfunction, including excessive RBP4 production. Reduced density of the membrane-type glucose transporter 4 (GLUT4) is considered as a direct cause for the stimulation of RBP4 release to the circulation by adipocytes. Circulating RBP4 inhibits the signal pathways stimulated by insulin in skeletal muscle cells, resulting in the development of insulin resistance. Drugs stimulating receptor peroxisome proliferator-activated gamma (PPARγ) – thiazolidinediones – inhibit the production of RBP4 by adipose tissue and increase the insulin sensitivity of the tissues. Increased secretion of RBP4 stimulates the expression of adhesion molecules in the endothelial cells, promoting development of atherosclerosis and arterial hypertension. Population studies demonstrated an association between serum RBP4 in the circulation, and the severity of atherosclerosis and risk of the cardiovascular events and type 2 diabetes. It also appears that the rbp4 gene functional polymorphisms may influence the risk of metabolic complications of obesity, including vascular injury. Therefore, the concentration of RBP4 in the circulation may be considered both as the causative factor and marker of chronic vascular injury. This article summarizes the current state of knowledge on the potential role of RBP4 in the pathogenesis of cardiovascular diseases, particularly related to insulin resistance.

References

  • 1. Aust G., Uptaite-Patapoviene M., Scholz M., Richter O., Rohm S.,Blüher M.: Circulating Nampt and RBP4 levels in patients with carotidstenosis undergoing carotid endarterectomy (CEA). Clin. Chim.Acta, 2011; 412: 1195-1200
    Google Scholar
  • 2. Bobbert T., Raila J., Schwarz F., Mai K., Henze A., Pfeiffer A.F.,Schweigert F.J., Spranger J.: Relation between retinol, retinol-bindingprotein 4, transthyretin and carotid intima media thickness.Atherosclerosis, 2010; 213: 549-551
    Google Scholar
  • 3. Brandauer J., Landers-Ramos R.Q., Jenkins N.T., SpangenburgE.E.,Hagberg J.M., Prior S.J.: Effects of prior acute exercise on circulatingcytokine concentration responses to a high-fat meal. Physiol.Rep., 2013; 1: e00040 4 Calò L.A., Maiolino G., Pagnin E., Vertolli U., Davis P.A.: IncreasedRBP4 in a human model of activated anti-atherosclerotic and antiremodellingdefences. Eur. J. Clin. Invest., 2014; 44: 567-572
    Google Scholar
  • 4. expression in humans: relationship to insulin resistance, inflammation,and response to pioglitazone. J. Clin. Endocrinol. Metab.,2007; 92: 2590-2597
    Google Scholar
  • 5. Chiba M., Saitoh S., Ohnishi H., Akasaka H., Mitsumata K., FurukawaT., Shimamoto K.: Associations of metabolic factors, especiallyserum retinol-binding protein 4 (RBP4), with blood pressure inJapanese-the Tanno and Sobetsu study. Endocr. J., 2010; 57: 811-817
    Google Scholar
  • 6. Christensen E.I., Moskaug J.O., Vorum H., Jacobsen C., GundersenT.E., Nykjaer A., Blomhoff R., Willnow T.E., Moestrup S.K.: Evidencefor an essential role of megalin in transepithelial transport of retinol.J. Am. Soc. Nephrol., 1999; 10: 685-695
    Google Scholar
  • 7. Craig R.L., Chu W.S., Elbein S.C.: Retinol binding protein 4 asa candidate gene for type 2 diabetes and prediabetic intermediatetraits. Mol. Genet. Metab., 2007; 90: 338-344
    Google Scholar
  • 8. Cubedo J., Padró T., Cinca J., Mata P., Alonso R., Badimon L.: Retinol-bindingprotein 4 levels and susceptibility to ischaemic eventsin men. Eur. J. Clin. Invest., 2014; 44: 266-275
    Google Scholar
  • 9. Dessein P.H., Tsang L., Norton G.R., Woodiwiss A.J., Solomon A.:Retinol binding protein 4 concentrations relate to enhanced atherosclerosisin obese patients with rheumatoid arthritis. PLoS One,2014; 9: e92739
    Google Scholar
  • 10. Farjo K.M., Farjo R.A., Halsey S., Moiseyev G., Ma J.X.: Retinol–binding protein 4 induces inflammation in human endothelial cellsby an NADPH oxidase – and nuclear factor kappa B-dependent andretinol-independent mechanism. Mol. Cell. Biol. 2012; 32: 5103-5115
    Google Scholar
  • 11. Gerdes S., Osadtschy S., Rostami-Yazdi M., Buhles N., WeichenthalM., Mrowietz U.: Leptin, adiponectin, visfatin and retinol-bindingprotein-4 – mediators of comorbidities in patients with psoriasis?Exp. Dermatol., 2012; 21: 43-47
    Google Scholar
  • 12. Graham T.E., Yang Q., Blüher M., Hammarstedt A., Ciaraldi T.P.,Henry R.R., Wason C.J., Oberbach A., Jansson P.A., Smith U., Kahn B.B.:Retinol-binding protein 4 and insulin resistance in lean, obese, anddiabetic subjects. N. Engl. J. Med., 2006; 354: 2552-2563
    Google Scholar
  • 13. Hu C., Jia W., Zhang R., Wang C., Lu J., Wu H., Fang Q., Ma X.,Xiang K.: Effect of RBP4 gene variants on circulating RBP4 concentrationand type 2 diabetes in a Chinese population. Diabet. Med.,2008; 25: 11-18
    Google Scholar
  • 14. Hutchison S.K., Harrison C., Stepto N., Meyer C., Teede H.J.: Retinol-bindingprotein 4 and insulin resistance in polycystic ovarysyndrome. Diabetes Care, 2008; 31: 1427-1432
    Google Scholar
  • 15. Ingelsson E., Lind L.: Circulating retinol-binding protein 4 andsubclinical cardiovascular disease in the elderly. Diabetes Care, 2009;32: 733-735
    Google Scholar
  • 16. Kadoglou N.P., Lambadiari V., Gastounioti A., Gkekas C., GiannakopoulosT.G., Koulia K., Maratou E., Alepaki M., Kakisis J., KarakitsosP., Nikita K.S., Dimitriadis G., Liapis C.D.: The relationship of noveladipokines, RBP4 and omentin-1, with carotid atherosclerosis severityand vulnerability. Atherosclerosis, 2014; 235: 606-612
    Google Scholar
  • 17. Karakas S.E., Banaszewska B., Spaczynski R.Z., Pawelczyk L.,Duleba A.: Free fatty acid binding protein-4 and retinol bindingprotein-4 in polycystic ovary syndrome: response to simvastatinand metformin therapies. Gynecol. Endocrinol., 2013; 29: 483-487
    Google Scholar
  • 18. Kos K., Wong S., Tan B.K., Kerrigan D., Randeva H.S., PinkneyJ.H., Wilding J.P.: Human RBP4 adipose tissue expression is genderspecific and influenced by leptin. Clin. Endocrinol., 2011; 74: 197-205
    Google Scholar
  • 19. Kotnik P., Fischer-Posovszky P., Wabitsch M.: RBP4: a controversialadipokine. Eur. J. Endocrinol., 2011; 165: 703-711
    Google Scholar
  • 20. Kovacs P., Geyer M., Berndt J., Klöting N., Graham T.E., BöttcherY., Enigk B., Tönjes A., Schleinitz D., Schön M.R., Kahn B.B., BlüherM., Stumvoll M.: Effects of genetic variation in the human retinolbinding protein-4 gene (RBP4) on insulin resistance and fat depot–specific mRNA expression. Diabetes, 2007; 56: 3095-3100
    Google Scholar
  • 21. Kowalska I., Straczkowski M., Adamska A., Nikolajuk A., Karczewska-KupczewskaM., Otziomek E., Górska M.: Serum retinol bindingprotein 4 is related to insulin resistance and nonoxidative glucosemetabolism in lean and obese women with normal glucose tolerance.J. Clin. Endocrinol. Metab., 2008; 93: 2786-2789
    Google Scholar
  • 22. Kukla M., Berdowska A., Stygar D., Gabriel A., Mazur W., ŁogiewaBazgerB., Sobala-Szczygieł B., Bułdak R.J., Rokitka M., Zajęcki W.,Kępa L., Sawczyn T., Zwirska-Korczala K.: Serum FGF21 and RBP4levels in patients with chronic hepatitis C. Scand. J. Gastroenterol.,2012; 47: 1037-1047
    Google Scholar
  • 23. Lambadiari V., Kadoglou N.P., Stasinos V., Maratou E., AntoniadisA., Kolokathis F., Parissis J., Hatziagelaki E., Iliodromitis E.K., DimitriadisG.: Serum levels of retinol-binding protein-4 are associatedwith the presence and severity of coronary artery disease. Cardiovasc.Diabetol., 2014;13:121
    Google Scholar
  • 24. Lewandowski K.C., Stojanovic N., Bienkiewicz M., Tan B.K., PrelevicG.M., Press M., Tuck S., O›Hare P.J., Randeva H.S.: Elevated concentrationsof retinol-binding protein-4 (RBP-4) in gestational diabetesmellitus: Negative correlation with soluble vascular cell adhesionmolecule-1 (sVCAM-1). Gynecol. Endocrinol., 2008; 24: 300-305
    Google Scholar
  • 25. Li F., Xia K., Li C., Yang T.: Retinol-binding protein 4 as a novelrisk factor for cardiovascular disease in patients with coronary arterydisease and hyperinsulinemia. Am. J. Med. Sci., 2014; 348: 474-479
    Google Scholar
  • 26. Li F., Xia K., Sheikh M.S., Cheng J., Li C., Yang T.: Involvement of RBP4 in hyperinsulinism-induced vascular smooth muscle cellproliferation. Endocrine, 2015; 48: 472-482
    Google Scholar
  • 27. Li F., Xia K., Sheikh M.S., Cheng J., Li C., Yang T.: Retinol bindingprotein 4 promotes hyperinsulinism-induced proliferation ofrat aortic smooth muscle cells. Mol. Med. Rep., 2014; 9: 1634-1640
    Google Scholar
  • 28. Lin K.D., Chang Y.H., Wang C.L., Yang Y.H., Hsiao P.J., Li T.H., ShinS.J.: Thiazolidinedione addition reduces the serum retinol-bindingprotein 4 in type 2 diabetic patients treated with metformin andsulfonylurea. Transl. Res., 2008; 151: 309-314
    Google Scholar
  • 29. Makimura H., Wei J., Dolan-Looby S.E., Ricchiuti V., Grinspoon S.:Retinol-binding protein levels are increased in association with gonadotropinlevels in healthy women. Metabolism, 2009; 58: 479-487
    Google Scholar
  • 30. Mallat Z., Simon T., Benessiano J., Clément K., Taleb S., WarehamN.J., Luben R., Khaw K.T., Tedgui A., Boekholdt S.M.: Retinol-bindingprotein 4 and prediction of incident coronary events in healthy menand women. J. Clin. Endocrinol. Metab., 2009; 94: 255-260
    Google Scholar
  • 31. Mohapatra J., Sharma M., Acharya A., Pandya G., Chatterjee A.,Balaraman R., Jain M.R.: Retinol-binding protein 4: a possible role incardiovascular complications. Br. J. Pharmacol., 2011; 164: 1939-1948
    Google Scholar
  • 32. Muenzner M., Tuvia N., Deutschmann C., Witte N., Tolkachov A.,Valai A., Henze A., Sander L.E., Raila J., Schupp M.: Retinol-bindingprotein 4 and its membrane receptor STRA6 control adipogenesis byregulating cellular retinoid homeostasis and retinoic acid receptorα activity. Mol. Cell. Biol., 2013; 33: 4068-4082
    Google Scholar
  • 33. Munkhtulga L., Nagashima S., Nakayama K., Utsumi N., YanagisawaY., Gotoh T., Omi T., Kumada M., Zolzaya K., Lkhagvasuren T.,Kagawa Y., Fujiwara H., Hosoya Y., Hyodo M., Horie H. i wsp.: RegulatorySNP in the RBP4 gene modified the expression in adipocytesand associated with BMI. Obesity, 2010; 18: 1006-1014
    Google Scholar
  • 34. Munkhtulga L., Nakayama K., Utsumi N., Yanagisawa Y., GotohT., Omi T., Kumada M., Erdenebulgan B., Zolzaya K., Lkhagvasuren T.,Iwamoto S.: Identification of a regulatory SNP in the retinol bindingprotein 4 gene associated with type 2 diabetes in Mongolia. Hum.Genet., 2007; 120: 879-888
    Google Scholar
  • 35. Norseen J., Hosooka T., Hammarstedt A., Yore M.M., Kant S.,Aryal P., Kiernan U.A., Phillips D.A., Maruyama H., Kraus B.J., UshevaA., Davis R.J., Smith U., Kahn B.B.: Retinol-binding protein 4 inhibitsinsulin signaling in adipocytes by inducing proinflammatorycytokines in macrophages through a c-Jun N-terminal kinase – andtoll-like receptor 4-dependent and retinol-independent mechanism.Mol. Cell. Biol., 2012; 32: 2010-2019
    Google Scholar
  • 36. Obońska K., Grąbczewska Z., Fisz J.: Ocena czynności śródbłonkanaczyniowego – gdzie jesteśmy, dokąd zmierzamy? Folia Cardiol.Excerpta, 2010; 5: 292-297
    Google Scholar
  • 37. Ong K.L., Rye K.A., O’Connell R., Jenkins A.J., Brown C., Xu A.,Sullivan D.R., Barter P.J., Keech A.C.: Long-term fenofibrate therapyincreases fibroblast growth factor 21 and retinol-binding protein 4in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab., 2012;97: 4701-4708
    Google Scholar
  • 38. Park S.E., Kim D.H., Lee J.H., Park J.S., Kang E.S., Ahn C.W., LeeH.C., Cha B.S.: Retinol-binding protein-4 is associated with endothelialdysfunction in adults with newly diagnosed type 2 diabetesmellitus. Atherosclerosis, 2009; 204: 23-25
    Google Scholar
  • 39. Pfützner A., Schöndorf T., Hanefeld M., Lübben G., Kann P.H.,Karagiannis E., Wilhelm B., Forst T.: Changes in insulin resistanceand cardiovascular risk induced by PPAR gamma activation haveno impact on RBP4 plasma concentrations in nondiabetic patients.Horm. Metab. Res., 2009; 41: 202-206
    Google Scholar
  • 40. Sasaki M., Otani T., Kawakami M., Ishikawa S.E.: Elevation of plasmaretinol-binding protein 4 and reduction of plasma adiponectinin subjects with cerebral infarction. Metabolism, 2010; 59: 527-532
    Google Scholar
  • 41. Shea J.L., Loredo-Osti J.C., Sun G.: Association of RBP4 gene variantsand serum HDL cholesterol levels in the Newfoundland population.Obesity, 2010; 18: 1393-1397
    Google Scholar
  • 42. Solini A., Santini E., Madec S., Rossi C., Muscelli E.: Retinol bindingprotein4 in women with untreated essential hypertension. Am.J. Hypertens., 2009; 22: 1001-1006
    Google Scholar
  • 43. Solini A., Stea F., Santini E., Bruno R.M., Duranti E., Taddei S.,Ghiadoni L.: Adipocytokine levels mark endothelial function in normotensiveindividuals. Cardiovasc. Diabetol., 2012; 11: 103
    Google Scholar
  • 44. Steiner C.A., Janez A., Jensterle M., Reisinger K., Forst T., PfütznerA.: Impact of treatment with rosiglitazone or metformin on biomarkersfor insulin resistance and metabolic syndrome in patients withpolycystic ovary syndrome. J. Diabetes. Sci. Technol., 2007; 1: 211-217
    Google Scholar
  • 45. Sun Q., Kiernan U.A., Shi L., Phillips D.A., Kahn B.B., Hu F.B., MansonJ.E., Albert C.M., Rexrode K.M.: Plasma retinol-binding protein 4 (RBP4)levels and risk of coronary heart disease: a prospective analysis amongwomen in the nurses’ health study. Circulation, 2013; 127: 1938-1947
    Google Scholar
  • 46. Takebayashi K., Sohma R., Aso Y., Inukai T.: Effects of retinolbinding protein-4 on vascular endothelial cells. Biochem. Biophys.Res. Commun., 2011; 408: 58-64
    Google Scholar
  • 47. Takebayashi K., Suetsugu M., Matsumoto S., Aso Y., Inukai T.:Effects of rosuvastatin and colestimide on metabolic parametersand urinary monocyte chemoattractant protein-1 in type 2 diabeticpatients with hyperlipidemia. South. Med. J., 2009; 102: 361-368
    Google Scholar
  • 48. Tan B.K., Chen J., Lehnert H., Kennedy R., Randeva H.S.: Raisedserum, adipocyte, and adipose tissue retinol-binding protein 4 in overweightwomen with polycystic ovary syndrome: effects of gonadaland adrenal steroids. J. Clin. Endocrinol. Metab., 2007; 92: 2764-2772
    Google Scholar
  • 49. Teranishi T., Ohara T., Maeda K., Zenibayashi M., Kouyama K.,Hirota Y., Kawamitsu H., Fujii M., Sugimura K., Kasuga M.: Effects ofpioglitazone and metformin on intracellular lipid content in liverand skeletal muscle of individuals with type 2 diabetes mellitus.Metabolism, 2007; 56: 1418-1424
    Google Scholar
  • 50. Toyama T., Asano Y., Takahashi T., Aozasa N., Akamata K., NodaS., Taniguchi T., Ichimura Y., Sumida H., Tamaki Z., Masui Y., Tada Y.,Sugaya M., Sato S., Kadono T.: Clinical significance of serum retinolbinding protein-4 levels in patients with systemic sclerosis. J. Eur.Acad. Dermatol. Venereol., 2013; 27: 337-344
    Google Scholar
  • 51. van Hoek M., Dehghan A., Zillikens M.C., Hofman A., WittemanJ.C., Sijbrands E.J.: An RBP4 promoter polymorphism increases riskof type 2 diabetes. Diabetologia, 2008; 51: 1423-1428
    Google Scholar
  • 52. Wu H., Wei L., Bao Y., Lu J., Huang P., Liu Y., Jia W., Xiang K.: Fenofibratereduces serum retinol-binding protein-4 by suppressingits expression in adipose tissue. Am. J. Physiol. Endocrinol. Metab.,2009; 296: E628-E634
    Google Scholar
  • 53. Xiao Y., Xu A., Hui X., Zhou P., Li X., Zhong H., Tang W., HuangG., Zhou Z.: Circulating lipocalin-2 and retinol-binding protein 4are associated with intima-media thickness and subclinical atherosclerosisin patients with type 2 diabetes. PLoS One, 2013; 8: e66607
    Google Scholar
  • 54. Yang Q., Eskurza I., Kiernan U.A., Phillips D.A., Blüher M., GrahamT.E., Kahn B.B.: Quantitative measurement of full-length andC-terminal proteolyzed RBP4 in serum of normal and insulin-resistanthumans using a novel mass spectrometry immunoassay. Endocrinology.,2012; 153: 1519-1527
    Google Scholar
  • 55. Yang Q., Graham T.E., Mody N., Preitner F., Peroni O.D., ZabolotnyJ.M., Kotani K., Quadro L., Kahn B.B.: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.Nature., 2005; 436: 356-362
    Google Scholar
  • 56. Yao-Borengasser A., Varma V., Bodles A.M., Rasouli N., PhanavanhB., Lee M.J., Starks T., Kern L.M., Spencer H.J.3rd, RashidiA.A., McGehee R.E. Jr., Fried S.K., Kern P.A.: Retinol binding protein
    Google Scholar

References

  • 1. Abbasi B.H., Tian C.L., Murch S.J., Saxena P.K., Liu C.Z.: Light-enhancedcaffeic acid derivatives biosynthesis in hairy root culturesof Echinacea purpurea. Plant Cell Rep., 2007; 26: 1367-1372
    Google Scholar
  • 2. Azhakanandam K., Mccabe M.S., Power J.B., Lowe K.C., CockingE.C., Davey M.R.: T-DNA transfer, integration, expression and inheritancein rice: effects of plant genotype and Agrobacterium super–virulence. J. Plant Physiol., 2000; 157: 429-439
    Google Scholar
  • 3. Banerjee S., Singh S., Ur Rahman L.: Biotransformation studiesusing hairy root cultures – a review. Biotechnol. Adv., 2012; 30: 461-468
    Google Scholar
  • 4. Bensaddek L., Villarreal M.L., Fliniaux M.A.: Induction and growthof hairy roots for the production of medicinal compounds. Electron.J. Integr. Biosci., 2008; 3: 2-9
    Google Scholar
  • 5. Budzianowski J.: Nowa rola tytoniu – produkcja biofarmaceutyków.Przegl. Lek., 2009; 66: 894-897
    Google Scholar
  • 6. Budzianowski J.: Tytoń – producent rekombinowanych interleukin.Przegl. Lek., 2012; 69: 1060-1062
    Google Scholar
  • 7. Budzianowski J.: Tytoń – producent rekombinowanych przeciwciałmonoklonalnych. Przegl. Lek., 2011; 68: 981-986
    Google Scholar
  • 8. Chandra S., Chandra R.: Engineering secondary metabolite productionin hairy roots. Phytochem. Rev., 2011; 10: 371-395
    Google Scholar
  • 9. Condori J., Sivakumar G., Hubstenberger J., Dolan M.C., SobolevV.S., Medina-Bolivar F.: Induced biosynthesis of resveratrol and theprenylated stilbenoids arachidin-1 and arachidin-3 in hairy root culturesof peanut: effects of culture medium and growth stage. PlantPhysiol. Biochem., 2010; 48: 310-318
    Google Scholar
  • 10. Gangopadhyay M., Dewanjee S., Bhattacharya S.: Enhancedplumbagin production in elicited Plumbago indica hairy root cultures.J. Biosci. Bioeng., 2011; 111: 706-710
    Google Scholar
  • 11. Gaume A., Komarnytsky S., Borisjuk N., Raskin I.: Rhizosecretionof recombinant proteins from plant hairy roots. Plant Cell Rep.,2003; 21: 1188-1193
    Google Scholar
  • 12. Georgiev M.I., Agostini E., Ludwig-Müller J., Xu J.: Geneticallytransformed roots: from plant disease to biotechnological resource.Trends Biotechnol., 2012; 30: 528-537
    Google Scholar
  • 13. Gils M., Kandzia R., Marillonnet S., Klimyuk V., Gleba Y.: High–yield production of authentic human growth hormone using a plantvirus-based expression system. Plant Biotechnol. J., 2005; 3: 613-620
    Google Scholar
  • 14. Goel M.K., Mehrotra S., Kukreja A.K.: Elicitor-induced cellularand molecular events are responsible for productivity enhancementin hairy root cultures: an insight study. Appl. Biochem. Biotechnol.,2011; 165: 1342-1355
    Google Scholar
  • 15. Gołąb J., Jakóbisiak M., Zagożdżon R., Obłąkowski P.: Cytokiny.W: Immunologia, red.: M. Jakóbisiak, J. Gołąb, W. Lasek, PWN, Warszawa,2004, 198-224
    Google Scholar
  • 16. González-Navajas J.M., Lee J., David M., Raz E.: Immunomodulatoryfunctions of type I interferons. Nat. Rev. Immunol., 2012;12: 125-135
    Google Scholar
  • 17. Góra-Sochacka A., Redkiewicz P., Napiórkowska B., Sirko A.: Wykorzystaniesystemów roślinnych do produkcji rekombinowanychcytokin. Postępy Biochem., 2009; 55: 85-94
    Google Scholar
  • 18. Haggman H.M., Aronen T.S.: Agrobacterium rhizogenes for rootingrecalcitrant woody plants. W: Molecular biology of woody plants.t.2, red.: S.M. Jain, S.C. Minocha. Springer Netherlands 2000, 47-78
    Google Scholar
  • 19. Häkkinen S.T., Raven N., Henquet M., Laukkanen M.L., AnderleiT., Pitkänen J.P., Twyman R.M., Bosch D., Oksman-Caldentey K.M.,Schillberg S., Ritala A.: Molecular farming in tobacco hairy rootsby triggering the secretion of a pharmaceutical antibody. Biotechnol.Bioeng., 2014; 111: 336-346
    Google Scholar
  • 20. Han C., Gong Z., Hao L., Yang J., Hu J., Dong B., Fan T., Tang W.,Teng G.: Mechanism of monoclonal antibody-coupled Staphylococcussuperantigen-A induced apoptosis in human bladder cancercells. Cell Biochem. Biophys., 2011; 61: 679-684
    Google Scholar
  • 21. Hasanloo T., Rahnama H., Sepehrifar R., Shams M.R.: The influenceof yeast extract on the production of flavonolignans in hairyroot cultures of Silybum marianum L. Gaertn. 4th Kuala Lumpur InternationalConference on Biomedical Engineering. red.: N.A. Osman,F. Ibrahim, W.A. Abas, H.S. Rahman, H.N. Ting. Springer Berlin Heidelberg,Kuala Lumpur, Malaysia 2008, 358-361
    Google Scholar
  • 22. Hasanloo T., Sepehrifar R., Rahnama H., Shams M.R.: Evaluationof the yeast-extract signaling pathway leading to silymarinbiosynthesis in milk thistle hairy root culture. World J. Microbiol.Biotechnol., 2009; 25: 1901-1909
    Google Scholar
  • 23. Hiatt A., Cafferkey R., Bowdish K.: Production of antibodies intransgenic plants. Nature, 1989; 342: 76-78
    Google Scholar
  • 24. Hooykaas P.J.: Transformation mediated by Agrobacteriumtumefaciens. W: Advances in fungal biotechnology for industry,agriculture, and medicine, red.: J.S. Tkacz, L. Lange. Springer US2004, 41-65
    Google Scholar
  • 25. Huang B., Lin H., Yan C., Qiu H., Qiu L., Yu R.: Optimal inductiveand cultural conditions of Polygonum multiflorum transgenichairy roots mediated with Agrobacterium rhizogenes R1601 and ananalysis of their anthraquinone constituents. Pharmacogn. Mag.,2014; 10: 77-82
    Google Scholar
  • 26. Kai G., Yang S., Zhang Y., Luo X., Fu X., Zhang A., Xiao J.: Effectsof different elicitors on yield of tropane alkaloids in hairy roots ofAnisodus acutangulus. Mol. Biol. Rep., 2012; 39: 1721-1729
    Google Scholar
  • 27. Kang S., Ajjappala H., Seo H.H., Sim J.S., Yoon S.H., Koo B.S., KimY.H., Lee S., Hahn B.S.: Expression of the human tissue-plasminogenactivator in hairy roots of oriental melon (Cucumis melo). Plant Mol.Biol. Report., 2011; 29: 919-926
    Google Scholar
  • 28. Kaplan H.S., Olsson L.: Human-human hybridoma monoclonalantibodies in diagnosis and treatment of neoplastic disease. Biochem.Biol. Markers Neoplast. Transform., 1983; 57: 57-66
    Google Scholar
  • 29. Khojasteh A., Mirjalili M.H., Hidalgo D., Corchete P., Palazon J.:New trends in biotechnological production of rosmarinic acid. Biotechnol.Lett., 2014; 36: 2393-2406
    Google Scholar
  • 30. Kim J.A., Kim Y.S., Choi Y.E.: Triterpenoid production and phenotypicchanges in hairy roots of Codonopsis lanceolata and the plantsregenerated from them. Plant Biotechnol. Rep., 2011; 5: 255-263
    Google Scholar
  • 31. Kim O.T., Bang K.H., Shin Y.S., Lee M.J., Jung S.J., Hyun D.Y., KimY.C., Seong N.S., Cha S.W., Hwang B.: Enhanced production of asiaticosidefrom hairy root cultures of Centella asiatica (L.) Urban elicitedby methyl jasmonate. Plant Cell Rep., 2007; 26: 1941-1949
    Google Scholar
  • 32. Ko S., Liu J.R., Yamakawa T., Matsumoto Y.: Expression of theprotective antigen (SpaA) in transgenic hairy roots of tobacco. PlantMol. Biol. Report, 2006; 24: 251
    Google Scholar
  • 33. Kochan E., Wasiela M., Sienkiewicz M.: The production of ginsenosidesin hairy root cultures of American ginseng, Panax quinquefoliumL. and their antimicrobial activity. In Vitro Cell. Dev. Biol.Plant, 2013; 49: 24-29
    Google Scholar
  • 34. Kuzovkina I.N., Schneider B.: Genetically transformed root cultures- generation, properties and application in plant sciences. W:Progress in Botany, t. 67, red.: K. Esser, U. Luttge, W. Beyschlag, J.Murata. Springer Berlin Heidelberg 2006, 275-314
    Google Scholar
  • 35. Lewko W.M., Oldham R.K.: Cytokines. W: Principles of CancerBiotherapy, red.: R.K. Oldham, R.O. Dillman. Springer Netherlands2009, 155-276
    Google Scholar
  • 36. Liu C., Towler M.J., Medrano G., Cramer C.L., Weathers P.J.: Productionof mouse interleukin-12 is greater in tobacco hairy rootsgrown in a mist reactor than in an airlift reactor. Biotechnol. Bioeng.,2009; 102: 1074-1086
    Google Scholar
  • 37. Luchakivskaya Y.S., Olevinskaya Z.M., Kishchenko E.M., SpivakN.Y., Kuchuk N. V.: Obtaining of hairy-root, callus and suspenisoncell cultures of carrot (Daucus carota L.) able to accumulate humaninterferon alpha-2b. Cytol. Genet., 2012; 46: 15-20
    Google Scholar
  • 38. Łucka M., Kowalczyk T., Szemraj J., Sakowicz T.: Rośliny jakoalternatywne źródło białek terapeutycznych. Postępy Hig. Med.Dośw., 2015; 69: 362-373
    Google Scholar
  • 39. Martin K.P., Sabovljevic A., Madassery J.: High-frequency transgenicplant regeneration and plumbagin production through methyljasmonate elicitation from hairy roots of Plumbago indica L. J. CropSci. Biotechnol., 2011; 14: 205-212
    Google Scholar
  • 40. Matvieieva N.A., Kudryavets Y.I., Likhova A.A., Shakhovskij A.M.,Bezdenezhnykh N.A., Kvasko E.Y.: Antiviral activity of extracts oftransgenic chicory and lettuce plants with the human interferonα2b gene. Cytol. Genet., 2012; 46: 285-290
    Google Scholar
  • 41. Ming Q., Su C., Zheng C., Jia M., Zhang Q., Zhang H., RahmanK., Han T., Qin L.: Elicitors from the endophytic fungus Trichodermaatroviride promote Salvia miltiorrhiza hairy root growth and tanshinonebiosynthesis. J. Exp. Bot., 2013; 64: 5687-5694
    Google Scholar
  • 42. Oda K., Matsuda H., Murakami T., Katayama S., Ohgitani T., YoshikawaM.: Adjuvant and haemolytic activities of 47 saponins derivedfrom medicinal and food plants. Biol. Chem., 2000; 381: 67-74
    Google Scholar
  • 43. Ono N.N., Tian L.: The multiplicity of hairy root cultures: prolificpossibilities., Plant Sci., 2011; 180: 439-446
    Google Scholar
  • 44. Otten L., Burr T., Szegedi E.: Agrobacterium: a disease causingbacterium. W: Agrobacterium: from biology to biotechnology, red.:T. Tzfira, V. Citovsky, Springer New York 2008, 1-46
    Google Scholar
  • 45. Pandey R., Krishnasamy V., Kumaravadivel N., Rajamani K.:Establishment of hairy root culture and production of secondarymetabolites in coleus (Coleus forskohlii). J. Med. Plants Res., 2014;8: 58-62
    Google Scholar
  • 46. Papatheodoridis G., Buti M., Cornberg M., Janssen H., Mutimer D.,Pol S., Raimondo G.: EASL clinical practice guidelines: managementof chronic hepatitis B virus infection, J. Hepatol., 2012; 57: 167-185
    Google Scholar
  • 47. Pistelli L., Giovannini A., Ruffoni B., Bertoli A., Pistelli L.: Hairyroot cultures for secondary metabolites production. Adv. Exp. Med.Biol., 2010; 698: 167-184
    Google Scholar
  • 48. Pitta-Alvarez S.I., Spollansky T.C., Giulietti A.M.: The influenceof different biotic and abiotic elicitors on the production and profileof tropane alkaloids in hairy root cultures of Brugmansia candida.Enzyme Microb. Technol., 2000; 26: 252-258
    Google Scholar
  • 49. Powroźnik B., Kubowicz P., Pękala E.: Monoclonal antibodies intargeted therapy. Postępy Hig. Med. Dośw., 2012; 66: 663-673
    Google Scholar
  • 50. Rahnama H., Razi Z., Dadgar M.N., Hasanloo T.: Enhanced productionof flavonolignans in hairy root cultures of Silybum marianumby over-expression of chalcone synthase gene. J. Plant Biochem. Biotechnol.,2013; 22: 138-143
    Google Scholar
  • 51. Rao A.V., Sung M.K.: Saponins as anticancerogens. J. Nutr., 1995; 125 (Suppl.): 717S-724S
    Google Scholar
  • 52. Redkiewicz P, Więsyk A, Góra-Sochacka A, Sirko A.: Transgenictobacco plants as production platform for biologically active humaninterleukin 2 and its fusion with proteinase inhibitors. PlantBiotechnol. J., 2012; 10: 806-814
    Google Scholar
  • 53. Ritala A., Dong L., Imseng N., Seppänen-Laakso T., Vasilev N., vander Krol S., Rischer H., Maaheimo H., Virkki A., Brändli J., SchillbergS., Eibl R., Bouwmeester H., Oksman-Caldentey K.M.: Evaluation oftobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots forthe production of geraniol, the first committed step in terpenoidindole alkaloid pathway. J. Biotechnol., 2014; 176: 20-28
    Google Scholar
  • 54. Roig Celma C., Palazon J., Cusido R.M., Pinol M.T., Keil M.: Decreasedscopolamine yield in field-grown Duboisia plants regeneratedfrom hairy roots. Planta Med., 2001; 67: 249-253
    Google Scholar
  • 55. Rukavtsova E.B., Abramikhina T.V., Shulga N.Y., Bykov V.A., Bur’yanovY.I.: Tissue specific expression of hepatitis B virus surfaceantigen in transgenic plant cells and tissue culture. Russ. J. PlantPhysiol., 2007; 54: 770-775
    Google Scholar
  • 56. Ryad A., Lakhdar K., Majda K.S., Samia A., Mark A., Corinne A.D.,Eric G.: Optimization of the culture medium composition to improvethe production of hyoscyamine in elicited Datura stramonium L.hairy roots using the Response Surface Methodology (RSM). Int. J.Mol. Sci., 2010; 11: 4726-4740
    Google Scholar
  • 57. Saleem T.S., Chetty C.M., Ramkanth S., Alagusundaram M., GnanaprakashK., Rajan V.S., Angalaparameswari S.: Solanum nigrum Linn.- a review. Pharmacogn. Rev., 2009; 3: 342-345
    Google Scholar
  • 58. Schwab M.: Encyclopedia of Cancer. Springer-Verlag Berlin Heidelberg,2009
    Google Scholar
  • 59. Schwab M.: Encyclopedia of Cancer. Springer-Verlag Berlin Heidelberg,2012
    Google Scholar
  • 60. Sharp J.M., Doran P.M.: Effect of bacitracin on growth and monoclonalantibody production by tobacco hairy roots and cell suspensions.Biotechnol. Bioprocess Eng., 1999; 4: 253-258
    Google Scholar
  • 61. Sharp J.M., Doran P.M.: Strategies for enhancing monoclonalantibody accumulation in plant cell and organ cultures. Biotechnol.Prog., 2001; 17: 979-992
    Google Scholar
  • 62. Skarjinskaia M., Karl J., Araujo A., Ruby K., Rabindran S., StreatfieldS.J., Yusibov V.: Production of recombinant proteins in clonalroot cultures using episomal expression vectors. Biotechnol. Bioeng.,2008; 100: 814-819
    Google Scholar
  • 63. Solleti S.K., Bakshi S., Sahoo L.: Additional virulence genes inconjunction with efficient selection scheme, and compatible cultureregime enhance recovery of stable transgenic plants in cowpea viaAgrobacterium tumefaciens-mediated transformation. J. Biotechnol.,2008; 135: 97-104
    Google Scholar
  • 64. Srivastava S., Srivastava A.K.: Hairy root culture for mass-productionof high-value secondary metabolites. Crit. Rev. Biotechnol.,2007; 27: 29-43
    Google Scholar
  • 65. Strumberg D., Schultheis B., Scheulen M.E., Hilger R.A., KraussJ., Marschner N., Lordick F., Bach F., Reuter D., Edler L., Mross K.:Phase II study of nimotuzumab, a humanized monoclonal anti-epidermalgrowth factor receptor (EGFR) antibody, in patients with locallyadvanced or metastatic pancreatic cancer. Invest. New Drugs,2012; 30: 1138-1143
    Google Scholar
  • 66. Subroto M.A., Tampubolon E., Simanjuntak P.: Changes in solasodineaccumulation in regenerated plants of Solanum nigrum transformedwith Agrobacterium rhizogenes 15834. Biotechnology, 2007;6: 328-333
    Google Scholar
  • 67. Sudha C.G., Sherina T.V., Anu Anand V.P., Reji J.V., Padmesh P.,Soniya E.V.: Agrobacterium rhizogenes mediated transformation ofthe medicinal plant Decalepis arayalpathra and production of 2-hydroxy-4-methoxy benzaldehyde. Plant Cell Tissue Organ Cult., 2013;112: 217-226
    Google Scholar
  • 68. Sun J., Xiao J., Wang X., Yuan X., Zhao B.: Improved cardenolideproduction in Calotropis gigantea hairy roots using mechanical woundingand elicitation. Biotechnol. Lett., 2012; 34: 563-569
    Google Scholar
  • 69. Sunil Kumar G.B., Ganapathi T.R., Srinivas L., Revathi C.J., BapatV.A.: Expression of hepatitis B surface antigen in potato hairy roots.Plant Sci., 2006; 170: 918-925
    Google Scholar
  • 70. Sykłowska-Baranek K., Pietrosiuk A., Gawron A., Kawiak A., ŁojkowskaE., Jeziorek M., Chinou I.: Enhanced production of antitumournaphthoquinones in transgenic hairy root lines of Lithospermumcanescens. Plant Cell Tissue Organ Cult., 2012; 108: 213-219
    Google Scholar
  • 71. Torkamani M.R., Jafari M., Abbaspour N., Heidary R., Safaie N.:Enhanced production of valerenic acid in hairy root culture of Valerianaofficinalis by elicitation, Open Life Sci., 2014; 9: 853-863
    Google Scholar
  • 72. Tremblay R., Wang D., Jevnikar A.M., Ma S.: Tobacco, a highlyefficient green bioreactor for production of therapeutic proteins.Biotechnol. Adv., 2010; 28: 214-221
    Google Scholar
  • 74. Wang C.T., Liu H., Gao X.S., Zhang H.X.: Overexpression of G10Hand ORCA3 in the hairy roots of Catharanthus roseus improves catharanthineproduction. Plant Cell Rep., 2010; 29: 887-894
    Google Scholar
  • 75. Wang D.J., Brandsma M., Yin Z., Wang A., Jevnikar A.M., Ma S.:A novel platform for biologically active recombinant human interleukin- 13 production. Plant Biotechnol. J., 2008; 6: 504-515
    Google Scholar
  • 76. Wang J.W., Zheng L.P., Zhang B., Zou T.: Stimulation of artemisininsynthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl. Microbiol. Biotechnol.,2009; 85: 285-292
    Google Scholar
  • 77. Wasilewska A., Królicka A.: Otrzymywanie i charakterystykakultur korzeni włośnikowatych. Biotechnologia, 2005; 4: 173-188
    Google Scholar
  • 78. Wilczańska-Barska A., Królicka A., Głód D., Majdan M., KawiakA., Krauze-Baranowska M.: Enhanced accumulation of secondarymetabolites in hairy root cultures of Scutellaria lateriflora followingelicitation. Biotechnol. Lett., 2012; 34: 1757-1763
    Google Scholar
  • 79. Wirz H., Sauer-Budge A.F., Briggs J., Sharpe A., Shu S., Sharon A.:Automated production of plant-based vaccines and pharmaceuticals.J. Lab. Autom., 2012; 17: 449-457
    Google Scholar
  • 80. Wongsamuth R., Doran P.M.: Production of monoclonal antibodiesby tobacco hairy roots. Biotechnol. Bioeng., 1997; 54: 401-415
    Google Scholar
  • 81. Woods R.R., Geyer B.C., Mor T.S.: Hairy-root organ cultures forthe production of human acetylcholinesterase. BMC Biotechnol.,2008; 8: 95
    Google Scholar
  • 82. Xu J., Dolan M.C., Medrano G., Cramer C.L., Weathers P.J.: Greenfactory: plants as bioproduction platforms for recombinant proteins.Biotechnol. Adv., 2012; 30: 1171-1184
    Google Scholar
  • 83. Ya-ut P., Chareonsap P., Sukrong S.: Micropropagation and hairyroot culture of Ophiorrhiza alata Craib for camptothecin production.Biotechnol. Lett., 2011; 33: 2519-2526
    Google Scholar
  • 84. Zhai D.D., Zhong J.J.: Simultaneous analysis of three bioactivecompounds in Artemisia annua hairy root cultures by reversed-phasehigh-performance liquid chromatography-diode array detector.Phytochem. Anal., 2010; 21: 524-530
    Google Scholar
  • 85. Zhang H.C., Liu J.M., Lu H.Y., Gao S.L.: Enhanced flavonoid productionin hairy root cultures of Glycyrrhiza uralensis Fisch by combiningthe over-expression of chalcone isomerase gene with the elicitationtreatment. Plant Cell Rep., 2009; 28: 1205-1213
    Google Scholar
  • 86. Zhou M.L., Zhu X.M., Shao J.R., Wu Y.M., Tang Y.X.: Transcriptionalresponse of the catharanthine biosynthesis pathway to methyljasmonate/nitric oxide elicitation in Catharanthus roseus hairy rootculture. Appl. Microbiol. Biotechnol., 2010; 88: 737-750
    Google Scholar
  • 87. Ziemienowicz A.: Agrobacterium-mediated plant transformation:factors, applications and recent advances. Biocatal. Agric. Biotechnol.,2014; 3: 95-102
    Google Scholar

Full text

Skip to content