Role of endocannabinoid 2-arachidonoylglycerol in the physiology and pathophysiology of the cardiovascular system

COMMENTARY ON THE LAW

Role of endocannabinoid 2-arachidonoylglycerol in the physiology and pathophysiology of the cardiovascular system

Piotr Karabowicz 1 , Emilia Grzęda 1 , Marta Baranowska-Kuczko 1 , Barbara Malinowska 1

1. Zakład Fizjologii i Patofizjologii Doświadczalnej Uniwersytetu Medycznego w Białymstoku

Published: 2014-06-12
DOI: 10.5604/17322693.1108875
GICID: 01.3001.0003.1255
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 814-827

 

Abstract

Cannabinoids, the active ingredients of Cannabis sativa var. indica, have been used by humans as recreational and therapeutic agents for thousands of years. This group of substances also includes synthetic ligands and, synthesized in the body of humans and animals, endocannabinoids. The best known compound classified as an endogenous cannabinoid is anandamide. However, recent studies show that another compound of this group, 2-arachidonoylglycerol (2-AG), also performs many important functions in the organism. 2-Arachidonoylglycerol plays an important role in the regulation of the circulatory system via direct and/or indirect, through their metabolites, effects on blood vessels and/or heart. Accumulating evidence reveals that 2-AG is involved in the pathogenesis of various shocks and atherosclerosis. Thus, it may be a novel attractive therapeutic target. However, because of rapid metabolism and opposite effects dependent on the experimental model, the function of 2-AG still remains to be established.

References

  • 1. Annuzzi G., Piscitelli F., Di Marino L., Patti L., Giacco R., CostabileG., Bozzetto L., Riccardi G., Verde R., Petrosino S., Rivellese A.A., DiMarzo V.: Differential alterations of the concentrations of endocannabinoidsand related lipids in the subcutaneous adipose tissue ofobese diabetic patients. Lipids Health Dis., 2010; 9: 43
    Google Scholar
  • 2. Awumey E.M., Hill S.K., Diz D.I., Bukoski R.D.: Cytochrome P-450metabolites of 2-arachidonoylglycerol play a role in Ca2+-inducedrelaxation of rat mesenteric arteries. Am. J. Physiol. Heart Circ.Physiol., 2008; 294: H2363-H2370
    Google Scholar
  • 3. Baldassarri S., Bertoni A., Bagarotti A., Sarasso C., Zanfa M., CataniM.V., Avigliano L., Maccarrone M., Torti M., Sinigaglia F.: The endocannabinoid2-arachidonoylglycerol activates human platelets throughnon-CB1/CB2 receptors. J. Thromb. Haemost., 2008; 6: 1772-1779
    Google Scholar
  • 4. Balvers M.G., Verhoeckx K.C., Witkamp R.F.: Development andvalidation of a quantitative method for the determination of 12endocannabinoids and related compounds in human plasma usingliquid chromatography-tandem mass spectrometry. J. Chromatogr.B Analyt. Technol. Biomed. Life Sci., 2009; 877: 1583-1590
    Google Scholar
  • 5. Bátkai S., Mukhopadhyay P., Harvey-White J., Kechrid R., PacherP., Kunos G.: Endocannabinoids acting at CB1 receptors mediate thecardiac contractile dysfunction in vivo in cirrhotic rats. Am. J. Physiol.Heart Circ. Physiol., 2007; 293: H1689-H1695
    Google Scholar
  • 6. Bátkai S., Pacher P., Osei-Hyiaman D., Radaeva S., Liu J., Harvey–White J., Offertáler L., Mackie K., Rudd M.A., Bukoski R.D., KunosG.: Endocannabinoids acting at cannabinoid-1 receptors regulatecardiovascular function in hypertension. Circulation, 2004; 110:1996-2002
    Google Scholar
  • 7. Ben-Shabat S., Fride E., Sheskin T., Tamiri T., Rhee M.H., Vogel Z.,Bisogno T., De Petrocellis L., Di Marzo V., Mechoulam R.: An entourageeffect: inactive endogenous fatty acid glycerol esters enhance2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol.,1998; 353: 23-31
    Google Scholar
  • 8. Blankman J.L., Cravatt B.F.: Chemical probes of endocannabinoidmetabolism. Pharmacol. Rev., 2013; 65: 849-871
    Google Scholar
  • 9. Bonz A., Laser M., Küllmer S., Kniesch S., Babin-Ebell J., Popp V.,Ertl G., Wagner J.A.: Cannabinoids acting on CB1 receptors decreasecontractile performance in human atrial muscle. J. Cardiovasc.Pharmacol., 2003; 41: 657-664
    Google Scholar
  • 10. Castillo P.E., Younts T.J., Chávez A.E., Hashimotodani Y.: Endocannabinoidsignaling and synaptic function. Neuron, 2012 76: 70-81
    Google Scholar
  • 11. Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A.,Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R.:Isolation and structure of a brain constituent that binds to the cannabinoidreceptor. Science, 1992; 258: 1946-1949
    Google Scholar
  • 12. Di Marzo V.: Endocannabinoid signaling in the brain: biosyntheticmechanisms in the limelight. Nat. Neurosci., 2011; 14: 9-15
    Google Scholar
  • 13. Di Marzo V.: Endocannabinoids: synthesis and degradation. Rev.Physiol. Biochem. Pharmacol., 2006; 160: 1-24
    Google Scholar
  • 14. Di Marzo V., Côté M., Matias I., Lemieux I., Arsenault B.J., CartierA., Piscitelli F., Petrosino S., Alméras N., Després J.P.: Changes inplasma endocannabinoid levels in viscerally obese men followinga 1 year lifestyle modification programme and waist circumferencereduction: associations with changes in metabolic risk factors.Diabetologia, 2009; 52: 213-217
    Google Scholar
  • 15. Di Marzo V., De Petrocellis L.: Why do cannabinoid receptorshave more than one endogenous ligand? Philos. Trans. R. Soc. Lond.B. Biol. Sci., 2012; 367: 3216-3228
    Google Scholar
  • 16. Di Marzo V., Petrosino S.: Endocannabinoids and the regulationof their levels in health and disease. Curr. Opin. Lipidol., 2007;18: 129-140
    Google Scholar
  • 17. Di Marzo V., Verrijken A., Hakkarainen A., Petrosino S., MertensI., N. Lundbom F. Piscitelli J. Westerbacka, Soro-Paavonen A., MatiasI., Van Gaal L., Taskinen M.R.: Role of insulin as a negative regulatorof plasma endocanna-binoid levels in obese and nonobese subjects,Eur. J. Endocrinol., 2009; 161: 715-722
    Google Scholar
  • 18. Duncan M., Millns P., Smart D., Wright J.E., Kendall D.A., RalevicV.: Noladin ether, a putative endocannabinoid, attenuates sensoryneurotransmission in the rat isolated mesenteric arterial bedvia a non-CB1/CB2 Gi/o linked receptor. Br. J. Pharmacol., 2004; 142:509-518
    Google Scholar
  • 19. Engeli S., Bohnke J., Feldpausch M., Gorzelniak K., Janke J., BatkaiS., Pacher P., Harvey-White J., Luft F.C., Sharma A.M., Jordan J.:Activation of the peripheral endocannabinoid system in humanobesity. Diabetes, 2005; 54: 2838-2843
    Google Scholar
  • 20. Gauthier K.M., Baewer D.V., Hittner S., Hillard C.J., NithipatikomK., Reddy D.S., Falck J.R., Campbell W.B.: Endothelium-derived2-arachidonylglycerol: an intermediate in vasodilatory eicosanoidrelease in bovine coronary arteries. Am. J. Physiol. Heart Circ. Physiol.,2005; 288: H1344-H1351
    Google Scholar
  • 21. Giuffrida A., Piomelli D.: Isotope dilution GC/MS determinationof anandamide and other fatty acylethanolamides in rat blood plasma.FEBS Lett., 1998; 422: 373-376
    Google Scholar
  • 22. Giuffrida A., Rodriguez de Fonseca F., Piomelli D.: Quantificationof bioactive acylethanolamides in rat plasma by electrospray massspectrometry. Anal. Biochem., 2000; 280: 87-93
    Google Scholar
  • 23. Glaser S.T., Kaczocha M.: Cyclooxygenase-2 mediates anandamidemetabolism in the mouse brain. J. Pharmacol. Exp. Ther., 2010;335: 380-388
    Google Scholar
  • 24. Gonthier M.P., Hoareau L., Festy F., Matias I., Valenti M., BèsHoutmannS., Rouch C., Robert-Da Silva C., Chesne S., Lefebvre d’HellencourtC., Césari M., Di Marzo V., Roche R.: Identification of endocannabinoidsand related compounds in human fat cells. Obesity,2007; 15: 837-845
    Google Scholar
  • 25. Gyombolai P., Pap D., Turu G., Catt K.J., Bagdy G., Hunyady L.:Regulation of endocannabinoid release by G proteins: a paracrinemechanism of G protein-coupled receptor action. Mol. Cell. Endocrinol.,2012; 353: 29-36
    Google Scholar
  • 26. Hillard C.J., Ho W.S., Thompson J., Gauthier K.M., WheelockC.E., Huang H., Hammock B.D.: Inhibition of 2-arachidonoylglycerolcatabolism modulates vasoconstriction of rat middle cerebralartery by the thromboxane mimetic, U-46619. Br. J. Pharmacol.,2007; 152: 691-698
    Google Scholar
  • 27. Ho W.S., Randall M.D.: Endothelium-dependent metabolismby endocannabinoid hydrolases and cyclooxygenases limits vasorelaxationto anandamide and 2-arachidonoylglycerol. Br. J. Pharmacol.,2007; 150: 641-651
    Google Scholar
  • 28. Howlett A.C., Barth F., Bonner T.I., Cabral G., Casellas P., DevaneW.A., Felder C.C., Herkenham M., Mackie K., Martin B.R., MechoulamR., Pertwee R.G.: International Union of Pharmacology. XXVII. Classificationof cannabinoid receptors. Pharmacol. Rev., 2002; 54: 161-202
    Google Scholar
  • 29. Hoyer F.F., Steinmetz M., Zimmer S., Becker A., Lütjohann D.,Buchalla R., Zimmer A., Nickenig G.: Atheroprotection via cannabinoidreceptor-2 is mediated by circulating and vascular cells in vivo.J. Mol. Cell. Cardiol., 2011; 51: 1007-1014
    Google Scholar
  • 30. Járai Z., Wagner J.A., Goparaju S.K., Wang L., Razdan R.K., SugiuraT., Zimmer A.M., Bonner T.I., Zimmer A., Kunos G.: Cardiovasculareffects of 2-arachidonoyl glycerol in anesthetized mice. Hypertension,2000; 35: 679-684
    Google Scholar
  • 31. Jiang L.S., Pu J., Han Z.H., Hu L.H., He B.: Role of activated endocannabinoidsystem in regulation of cellular cholesterol metabolismin macrophages. Cardiovasc. Res., 2009; 81: 805-813
    Google Scholar
  • 32. Kagota S., Yamaguchi Y., Nakamura K., Sugiura T., Waku K., KunitomoM.: 2-Arachidonoylglycerol, a candidate of endothelium-derivedhyperpolarizing factor. Eur. J. Pharmacol., 2001; 415: 233-238
    Google Scholar
  • 33. Kase Y., Obata T., Okamoto Y., Iwai K., Saito K., Yokoyama K., TakinamiM., Tanifuji Y.: Removal of 2-arachidonylglycerol by directhemoperfusion therapy with polymyxin B immobilized fibers benefitspatients with septic shock. Ther. Apher. Dial., 2008; 12: 374-380
    Google Scholar
  • 34. Keown O.P., Winterburn T.J., Wainwright C.L., Macrury S.M.,Neilson I., Barrett F., Leslie S.J., Megson I.L.: 2-arachidonyl glycerolactivates platelets via conversion to arachidonic acid and notby direct activation of cannabinoid receptors. Br. J. Clin. Pharmacol.,2010; 70: 180-188
    Google Scholar
  • 35. Kingsley P.J., Marnett L.J.: Analysis of endocannabinoids by Ag+ coordinationtandem mass spectrometry. Anal. Biochem., 2003; 314: 8-15
    Google Scholar
  • 36. Koga D., Santa T., Fukushima T., Homma H., Imai K.: Liquidchromatographic-atmospheric pressure chemical ionization massspectrometric determination of anandamide and its analogs in ratbrain and peripheral tissues. J. Chromatogr. B. Biomed. Sci. Appl.,1997; 690: 7-13
    Google Scholar
  • 37. Kondo S., Kondo H., Nakane S., Kodaka T., Tokumura A., WakuK., Sugiura T.: 2-Arachidonoylglycerol, an endogenous cannabinoidreceptor agonist: identification as one of the major species of monoacylglycerolsin various rat tissues, and evidence for its generationthrough Ca2+-dependent and -independent mechanisms. FEBSLett., 1998; 429: 152-156
    Google Scholar
  • 38. Kurihara J., Nishigaki M., Suzuki S., Okubo Y., Takata Y., NakaneS., Sugiura T., Waku K., Kato H.: 2-Arachidonoylglycerol and anandamideoppositely modulate norepinephrine release from the rat heartsympathetic nerves. Jpn. J. Pharmacol., 2001; 87: 93-96
    Google Scholar
  • 39. Kwolek G., Zakrzeska A., Kozłowska H., Malinowska B.: Influenceof anandamide, the endogenous agonist of cannabinoid receptors onthe circulatory system. Postępy Hig. Med. Dośw., 2005; 59: 208-218
    Google Scholar
  • 40. Lake K.D., Compton D.R., Varga K., Martin B.R., Kunos G.: Cannabinoid-inducedhypotension and bradycardia in rats mediatedby CB1-like cannabinoid receptors. J. Pharmacol. Exp. Ther., 1997;281: 1030-1037
    Google Scholar
  • 41. Lépicier P., Bouchard J.F., Lagneux C., Lamontagne D.: Endocannabinoidsprotect the rat isolated heart against ischaemia. Br. J.Pharmacol., 2003; 139: 805-815
    Google Scholar
  • 42. Liao Y., Bin J., Asakura M., Xuan W., Chen B., Huang Q., Xu D., LedentC., Takashima S., Kitakaze M.: Deficiency of type 1 cannabinoidreceptors worsens acute heart failure induced by pressure overloadin mice. Eur. Heart. J., 2012; 33: 3124-3133
    Google Scholar
  • 43. Liu J., Batkai S., Pacher P., Harvey-White J., Wagner J.A., CravattB.F., Gao B., Kunos G.: Lipopolysaccharide induces anandamide synthesisin macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-κB independently of platelet-activating factor. J. Biol. Chem.,2003; 278: 45034-45039
    Google Scholar
  • 44. Maccarrone M., Rossi S., Bari M., De Chiara V., Fezza F., MusellaA., Gasperi V., Prosperetti C., Bernardi G., Finazzi-Agrò A., CravattB.F., Centonze D.: Anandamide inhibits metabolism and physiologicalactions of 2-arachidonoylglycerol in the striatum. Nat. Neurosci.,2008; 11: 152-159
    Google Scholar
  • 45. Maeda N., Osanai T., Kushibiki M., Fujiwara T., Tamura Y., OowadaS., Higuma T., Sasaki S., Yokoyama J., Yoshimachi F., MatsunagaT., Hanada H., Okumura K.: Increased serum anandamide level atruptured plaque site in patients with acute myocardial infarction.Fundam. Clin. Pharmacol., 2009; 23: 351-357
    Google Scholar
  • 46. Malinowska B., Baranowska-Kuczko M., Schlicker E.: Triphasicblood pressure responses to cannabinoids: do we understand themechanism? Br. J. Pharmacol., 2012; 165: 2073-2088
    Google Scholar
  • 47. Malinowska B., Kwolek G., Gothert M.: Anandamide and methanandamideinduce both vanilloid VR1- and cannabinoid CB1 receptor–mediated changes in heart rate and blood pressure in anaesthetizedrats. Naunyn Schmiedebergs Arch. Pharmacol., 2001; 364: 562-569
    Google Scholar
  • 48. Malinowska B., Lupinski S., Godlewski G., Baranowska U., SchlickerE.: Role of endocannabinoids in cardiovascular shock. J. Physiol.Pharmacol., 2008; 59, Suppl. 8: 91-107
    Google Scholar
  • 49. Malinowska B., Zakrzeska A., Kurz C.M., Göthert M., Kwolek G.,Wielgat P., Braszko J.J., Schlicker E.: Involvement of central b2-adrenergic,NMDA and thromboxane A2 receptors in the pressor effectof anandamide in rats. Naunyn Schmiedebergs Arch. Pharmacol.,2010; 381: 349-360
    Google Scholar
  • 50. Matsuda K., Mikami Y., Takeda K., Fukuyama S., Egawa S., SunamuraM., Maruyama I., Matsuno S.: The cannabinoid 1 receptorantagonist, AM251, prolongs the survival of rats with severe acutepancreatitis. Tohoku J. Exp. Med., 2005; 207: 99-107
    Google Scholar
  • 51. Matsuda L.A., Lolait S.J., Brownstein M.J., Young A.C., BonnerT.I.: Structure of a cannabinoid receptor and functional expressionof the cloned cDNA. Nature, 1990; 346: 561-564
    Google Scholar
  • 52. McAllister S.D., Glass M.: CB1 and CB2 receptor-mediated signalling:a focus on endocannabinoids. Prostaglandins Leukot. Essent.Fatty Acids, 2002; 66: 161-171
    Google Scholar
  • 53. Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., KaminskiN.E., Schatz A.R., Gopher A., Almog S., Martin B.R., Compton D.R.,Pertwee R.G., Griffin G., Bayewitch M., Barg J., Vogel Z.: Identificationof an endogenous 2-monoglyceride, present in canine gut, thatbinds to cannabinoid receptors. Biochem. Pharmacol., 1995; 50: 83-90
    Google Scholar
  • 54. Mechoulam R., Fride E., Ben-Shabat S., Meiri U., Horowitz M.G.:Carbachol, an acetylcholine receptor agonist, enhances productionin rat aorta of 2-arachidonoyl glycerol, a hypotensive endocannabinoid.Eur. J. Pharmacol., 1998; 362: R1-R3
    Google Scholar
  • 55. Miller L.K., Devi L.A.: The highs and lows of cannabinoid receptorexpression in disease: mechanisms and their therapeutic implications.Pharmacol. Rev., 2011; 63: 461-470
    Google Scholar
  • 56. Mimura T., Oka S., Koshimoto H., Ueda Y., Watanabe Y., SugiuraT.: Involvement of the endogenous cannabinoid 2 ligand 2-arachidonylglicerol in allergic inflamation. Int. Arch. Allergy. Immunol.,2012; 159: 149-156
    Google Scholar
  • 57. Molderings G.J., Likungu J., Göthert M.: Presynaptic cannabinoidand imidazoline receptors in the human heart and their potentialrelationship. Naunyn Schmiedebergs Arch. Pharmacol., 1999;360: 157-164
    Google Scholar
  • 58. Montecucco F., Di Marzo V.: At the heart of the matter: the endocannabinoidsystem in cardiovascular function and dysfunction.Trends Pharmacol. Sci., 2012; 33: 331-340
    Google Scholar
  • 59. Montecucco F., Matias I., Lenglet S., Petrosino S., Burger F., PelliG., Braunersreuther V., Mach F., Steffens S., Di Marzo V.: Regulationand possible role of endocannabinoids and related mediators inhypercholesterolemic mice with atherosclerosis. Atherosclerosis,2009; 205: 433-441
    Google Scholar
  • 60. Mukhopadhyay P., Bátkai S., Rajesh M., Czifra N., Harvey-WhiteJ., Haskó G., Zsengeller Z., Gerard N.P., Liaudet L., Kunos G., PacherP.: Pharmacological inhibition of CB1 cannabinoid receptor protectsagainst doxorubicin-induced cardiotoxicity. J. Am. Coll. Cardiol.,2007; 50: 528-536
    Google Scholar
  • 61. Munro S., Thomas K.L., Abu-Shaar M.: Molecular characterizationof a peripheral receptor for cannabinoids. Nature, 1993; 365:61-65
    Google Scholar
  • 62. Murataeva N., Straiker A., Mackie K.: Parsing the players: 2‐arachidonoylglycerol synthesis and degradation in the CNS. Br. J.Pharmacol., 2014; 171: 1379-1391
    Google Scholar
  • 63. Nomura D.K., Morrison B.E., Blankman J.L., Long J.Z., Kinsey S.G.,Marcondes M.C., Ward A.M., Hahn Y.K., Lichtman A.H., Conti B., CravattB.F.: Endocannabinoid hydrolysis generates brain prostaglandinsthat promote neuroinflammation. Science, 2011; 334: 809-813
    Google Scholar
  • 64. Obata T., Sakurai Y., Kase Y., Tanifuji Y., Horiguchi T.: Simultaneousdetermination of endocannabinoids (arachidonylethanolamideand 2-arachidonylglycerol) and isoprostane (8-epiprostaglandin F2α)by gas chromatography-mass spectrometry-selected ion monitoringfor medical samples. J. Chromatogr. B. Analyt. Technol. Biomed. LifeSci., 2003; 792: 131-140
    Google Scholar
  • 65. Pacher P., Bátkai S., Kunos G.: The endocannabinoid system asan emerging target of pharmacotherapy. Pharmacol. Rev., 2006;58: 389-462
    Google Scholar
  • 66. Pacher P, Kunos G. The endocannabinoid system as an emergingtarget of pharmacotherapy. FEBS J., 2013; 280: 1918-1943
    Google Scholar
  • 67. Pacher P., Mukhopadhyay P., Mohanraj R., Godlewski G., BátkaiS., Kunos G.: Modulation of the endocannabinoid system in cardiovasculardisease: therapeutic potential and limitations. Hypertension,2008; 52: 601-607
    Google Scholar
  • 68. Pagotto U., Marsicano G., Fezza F., Theodoropoulou M., GrüblerY., Stalla J., Arzberger T., Milone A., Losa M., Di Marzo V., Lutz B.,Stalla G.K.: Normal human pituitary gland and pituitary adenomasexpress cannabinoid receptor type 1 and synthesize endogenouscannabinoids: first evidence for a direct role of cannabinoids onhormone modulation at the human pituitary level. J. Clin. Endocrinol.Metab., 2001; 86: 2687-2696
    Google Scholar
  • 69. Pertwee R.G.: The pharmacology of cannabinoid receptors andtheir ligands: an overview. Int. J. Obes., 2006; 30: S13-S18
    Google Scholar
  • 70. Pertwee R.G., Howlett A.C., Abood M.E., Alexander S.P., Di MarzoV., Elphick M.R., Greasley P.J., Hansen H.S., Kunos G., Mackie K.,Mechoulam R., Ross R.A.: International Union of Basic and ClinicalPharmacology. LXXIX. Cannabinoid receptors and their ligands:beyond CB1 and CB2. Pharmacol. Rev., 2010; 62: 588-631
    Google Scholar
  • 71. Petersen G., Moesgaard B., Schmid P.C., Schmid H.H., BroholmH., Kosteljanetz M., Hansen H.S.: Endocannabinoid metabolism inhuman glioblastomas and meningiomas compared to human non–tumour brain tissue. J. Neurochem., 2005; 93: 299-309
    Google Scholar
  • 72. Quercioli A., Pataky Z., Vincenti G., Makoundou V., Di Marzo V.,Montecucco F., Carballo S., Thomas A., Staub C., Steffens S., SeimbilleY., Golay A., Ratib O., Harsch E., Mach F., Schindler T.H.: Elevatedendocannabinoid plasma levels are associated with coronarycirculatory dysfunction in obesity. Eur. Heart. J., 2011; 32: 1369-1378
    Google Scholar
  • 73. Rademacher D.J., Patel S., Ho W.S., Savoie A.M., Rusch N.J., GauthierK.M., Hillard C.J.: U-46619 but not serotonin increases endocannabinoidcontent in middle cerebral artery: evidence for functionalrelevance. Am. J. Physiol. Heart. Circ. Physiol., 2005; 288: H2694-H2701
    Google Scholar
  • 74. Rajesh M., Mukhopadhyay P., Bátkai S., Haskó G., Liaudet L., HuffmanJ.W., Csiszar A., Ungvari Z., Mackie K., Chatterjee S., Pacher P.:CB2-receptor stimulation attenuates TNF-α-induced human endothelialcell activation, transendothelial migration of monocytes, andmonocyte-endothelial adhesion. Am. J. Physiol. Heart. Circ. Physiol.,2007; 293: H2210-H2218
    Google Scholar
  • 75. Rajesh M., Mukhopadhyay P., Haskó G., Huffman J.W., MackieK., Pacher P.: CB2 cannabinoid receptor agonists attenuate TNF-α-induced human vascular smooth muscle cell proliferation and migration.Br. J. Pharmacol., 2008; 153: 347-357
    Google Scholar
  • 76. Rudź R., Baranowska U., Malinowska B.: Function of cannabinoidsin heart failure. Postępy Hig. Med. Dośw., 2008; 62: 174-184
    Google Scholar
  • 77. Rudź R., Schlicker E., Baranowska U., Marciniak J., Karabowicz P.,Malinowska B.: Acute myocardial infarction inhibits the neurogenictachycardic and vasopressor response in rats via presynaptic cannabinoidtype 1 receptor. J. Pharmacol. Exp. Ther., 2012; 343: 198-205
    Google Scholar
  • 78. Russo E.B.: History of cannabis and its preparation in saga, science,and sobriquet. Chem. Biodivers., 2007; 4: 1614-1648
    Google Scholar
  • 79. Schlicker E., Kathmann M.: Modulation of transmitter releasevia presynaptic cannabinoid receptors. Trends Pharmacol. Sci.,2001; 22: 565-572
    Google Scholar
  • 80. Shiga N., Nemoto K., Shimada Y., Nakanowatari Y., Ninomiya N.,Yamamoto Y.: Elimination of 2-arachidonoylglycerol action by directhemoperfusion through immobilized polymyxin B fibers: anexperimental study in conscious guinea pigs. Ther. Apher. Dial.,2006; 10: 504-509
    Google Scholar
  • 81. Shimizu T., Tanaka K., Nakamura K., Taniuchi K., Yokotani K.:Brain phospholipase C, diacylglycerol lipase and monoacylglycerollipase are involved in (±)-epibatidine-induced activation of centraladrenomedullary outflow in rats. Eur. J. Pharmacol., 2012; 691: 93-102
    Google Scholar
  • 82. Shimizu T., Tanaka K., Yokotani K.: Stimulatory and inhibitoryroles of brain 2-arachidonoylglycerol in bombesin-induced centralactivation of adrenomedullary outflow in rats. J. Pharmacol. Sci.,2013; 121: 157-171
    Google Scholar
  • 83. Stanke-Labesque F., Mallaret M., Lefebvre B., Hardy G., CaronF., Bessard G.: 2-Arachidonoyl glycerol induces contraction of isolatedrat aorta: role of cyclooxygenase-derived products. Cardiovasc.Res., 2004; 63: 155-160
    Google Scholar
  • 84. Stanley C.P., O›Sullivan S.E.: Cyclooxygenase metabolism mediatesvasorelaxation to 2-arachidonoylglycerol (2-AG) in humanmesenteric arteries. Pharmacol. Res., 2014; 81C: 74-82
    Google Scholar
  • 85. Stefano G.B., Bilfinger T.V., Rialas C.M., Deutsch D.G.: 2-arachidonyl-glycerolstimulates nitric oxide release from human immuneand vascular tissues and invertebrate immunocytes by cannabinoidreceptor 1. Pharmacol. Res., 2000; 42: 317-322
    Google Scholar
  • 86. Su J.Y., Vo A.C.: 2-Arachidonylglyceryl ether and abnormal cannabidiol-inducedvascular smooth muscle relaxation in rabbit pulmonaryarteries via receptor-pertussis toxin sensitive G proteins–ERK1/2 signaling. Eur. J. Pharmacol., 2007; 559: 189-195
    Google Scholar
  • 87. Sugamura K., Sugiyama S., Nozaki T., Matsuzawa Y., Izumiya Y.,Miyata K., Nakayama M., Kaikita K., Obata T., Takeya M., Ogawa H.:Activated endocannabinoid system in coronary artery disease andantiinflammatory effects of cannabinoid 1 receptor blockade onmacrophages. Circulation, 2009; 119: 28-36
    Google Scholar
  • 88. Sugiura T., Kishimoto S., Oka S., Gokoh M.: Biochemistry, pharmacologyand physiology of 2-arachidonoylglycerol, an endogenouscannabinoid receptor ligand. Prog. Lipid. Res., 2006; 45: 405-446
    Google Scholar
  • 89. Sugiura T., Kobayashi Y., Oka S., Waku K.: Biosynthesis and degradationof anandamide and 2-arachidonoylglycerol and their possiblephysiological significance. Prostaglandins Leukot. Essent. FattyAcids, 2002; 66: 173-192
    Google Scholar
  • 90. Sugiura T., Kodaka T., Nakane S., Kishimoto S., Kondo S., WakuK.: Detection of an endogenous cannabimimetic molecule, 2-arachidonoylglycerol,and cannabinoid CB1 receptor mRNA in humanvascular cells: is 2-arachidonoylglycerol a possible vasomodulator?Biochem. Biophys. Res. Commun., 1998; 243: 838-843
    Google Scholar
  • 91. Sugiura T., Kodaka T., Nakane S., Miyashita T., Kondo S., SuharaY., Takayama H., Waku K., Seki C., Baba N., Ishima Y.: Evidence thatthe cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor.Structure-activity relationship of 2-arachidonoylglycerol, ether–linked analogues, and related compounds. J. Biol. Chem., 1999; 274:2794-2801
    Google Scholar
  • 92. Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., ItohK., Yamashita A., Waku K.: 2-Arachidonoylglycerol: a possible endogenouscannabinoid receptor ligand in brain. Biochem. Biophys.Res. Commun., 1995; 215: 89-97
    Google Scholar
  • 93. Szekeres M., Nádasy G.L., Turu G., Soltész-Katona E., Tóth Z.E.,Balla A., Catt K.J., Hunyady L.: Angiotensin II induces vascular endocannabinoidrelease, which attenuates its vasoconstrictor effectvia CB1 cannabinoid receptors. J. Biol. Chem., 2012; 287: 31540-31550
    Google Scholar
  • 94. Tam J., Trembovler V., Di Marzo V., Petrosino S., Leo G., AlexandrovichA., Regev E., Casap N., Shteyer A., Ledent C., Karsak M.,Zimmer A., Mechoulam R., Yirmiya R., Shohami E., Bab I.: The cannabinoidCB1 receptor regulates bone formation by modulating adrenergicsignaling. FASEB J., 2008; 22: 285-294
    Google Scholar
  • 95. Tanimura A., Yamazaki M., Hashimotodani Y., Uchigashima M.,Kawata S., Abe M., Kita Y., Hashimoto K., Shimizu T., Watanabe M.:The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerollipase a mediates retrograde suppression of synaptic transmission.Neuron, 2010; 65: 320-327
    Google Scholar
  • 96. Turu G., Várnai P., Gyombolai P., Szidonya L., Offertaler L., BagdyG., Kunos G., Hunyady L.: Paracrine transactivation of the CB1 cannabinoidreceptor by AT1 angiotensin and other Gq/11 protein-coupledreceptors. J. Biol. Chem., 2009; 284: 16914-16921
    Google Scholar
  • 97. Ueda N., Tsuboi K., Uyama T., Ohnishi T.: Biosynthesis and degradationof the endocannabinoid 2-arachidonoylglycerol. Biofactors,2011; 37: 1-7
    Google Scholar
  • 98. Varga K., Wagner J.A., Bridgen D.T., Kunos G.: Platelet- and macrophage-derivedendogenous cannabinoids are involved in endotoxin-inducedhypotension. FASEB J., 1998; 12: 1035-1044
    Google Scholar
  • 99. Wagner J.A., Abesser M., Harvey-White J., Ertl G.: 2-Arachidonylglycerolacting on CB1 cannabinoid receptors mediates delayedcardioprotection induced by nitric oxide in rat isolated hearts. J.Cardiovasc. Pharmacol., 2006; 47: 650-655
    Google Scholar
  • 100. Wagner J.A., Abesser M., Karcher J., Laser M., Kunos G.: Coronaryvasodilator effects of endogenous cannabinoids in vasopressin-preconstrictedunpaced rat isolated hearts. J. Cardiovasc. Pharmacol.,2005; 46: 348-355
    Google Scholar
  • 101. Wagner J.A., Hu K., Bauersachs J., Karcher J., Wiesler M., GoparajuS.K., Kunos G., Ertl G.: Endogenous cannabinoids mediatehypotension after experimental myocardial infarction. J. Am. Coll.Cardiol., 2001; 38: 2048-2054
    Google Scholar
  • 102. Wagner J.A., Varga K., Ellis E.F., Rzigalinski B.A., Martin B.R.,Kunos G.: Activation of peripheral CB1 cannabinoid receptors in haemorrhagicshock. Nature, 1997; 390: 518-521
    Google Scholar
  • 103. Wahn H., Wolf J., Kram F., Frantz S., Wagner J.A.: The endocannabinoidarachidonyl ethanolamide (anandamide) increases pulmonaryarterial pressure via cyclooxygenase-2 products in isolated rabbitlungs. Am. J. Physiol. Heart. Circ. Physiol., 2005; 289: H2491-H2496
    Google Scholar
  • 104. Wang P.F., Jiang L.S., Bu J., Huang X.J., Song W., Du Y.P., HeB.: Cannabinoid-2 receptor activation protects against infarct andischemia-reperfusion heart injury. J. Cardiovasc. Pharmacol., 2012;59: 301-307
    Google Scholar
  • 105. Wang Y., Liu Y., Ito Y., Hashiguchi T., Kitajima I., YamakuchiM., Shimizu H., Matsuo S., Imaizumi H., Maruyama I.: Simultaneousmeasurement of anandamide and 2-arachidonoylglycerol by polymyxinB-selective adsorption and subsequent high-performanceliquid chromatography analysis: increase in endogenous cannabinoidsin the sera of patients with endotoxic shock. Anal. Biochem.,2001; 294: 73-82
    Google Scholar
  • 106. Weis F., Beiras-Fernandez A., Sodian R., Kaczmarek I., ReichartB., Beiras A., Schelling G., Kreth S.: Substantially altered expressionpattern of cannabinoid receptor 2 and activated endocannabinoidsystem in patients with severe heart failure. J. Mol. Cell. Cardiol.,2010; 48: 1187-1193
    Google Scholar
  • 107. Zoerner A.A., Gutzki F.M., Batkai S., May M., Rakers C., Engeli S.,Jordan J., Tsikas D.: Quantification of endocannabinoids in biologicalsystems by chromatography and mass spectrometry: a comprehensivereview from an analytical and biological perspective. Biochim.Biophys. Acta, 2011; 1811: 706-723
    Google Scholar
  • 108. Zygmunt P.M., Ermund A., Movahed P., Andersson D.A., SimonsenC., Jönsson B.A., Blomgren A., Birnir B., Bevan S., EschalierA., Mallet C., Gomis A., Högestätt E.D.: Monoacylglycerols activateTRPV1- a link between phospholipase C and TRPV1. PLoS One,2013; 8: e81618
    Google Scholar
  • 109. Zygmunt P.M., Petersson J., Andersson D.A., Chuang H., SørgårdM., Di Marzo V., Julius D., Högestätt E.D.: Vanilloid receptors on sensorynerves mediate the vasodilator action of anandamide. Nature,1999; 400: 452-457
    Google Scholar

Full text

Skip to content