Role of endocrine factors and stem cells in skeletal muscle regeneration
Barbara Morawin 1 , Agnieszka Zembroń-Łacny 1Abstract
The process of reconstructing damaged skeletal muscles involves degeneration, inflammatory and immune responses, regeneration and reorganization, which are regulated by a number of immune-endocrine factors affecting muscle cells and satellite cells (SCs). One of these molecules is testosterone (T), which binds to the androgen receptor (AR) to initiate the expression of the muscle isoform of insulin-like growth factor 1 (IGF-1Ec). The interaction between T and IGF-1Ec stimulates the growth and regeneration of skeletal muscles by inhibiting apoptosis, enhancement of SCs proliferation and myoblasts differentiation. As a result of sarcopenia, muscle dystrophy or wasting diseases, the SCs population is significantly reduced. Regular physical exercise attenuates a decrease in SCs count, and thus elevates the regenerative potential of muscles in both young and elderly people. One of the challenges of modern medicine is the application of SCs and extracellular matrix scaffolds in regenerative and molecular medicine, especially in the treatment of degenerative diseases and post-traumatic muscle reconstruction. The aim of the study is to present current information on the molecular and cellular mechanisms of skeletal muscle regenera,tion, the role of testosterone and growth factors in the activation of SCs and the possibility of their therapeutic use in stimulating the reconstruction of damaged muscle fibers.
References
- 1. Agapitou V., Tzanis G., Dimopoulos S., Karatzanos E., Karga H.,Nanas S.: Effect of combined endurance and resistance trainingon exercise capacity and serum anabolic steroid concentration inpatients with chronic heart failure. Hellenic. J. Cardiol., 2018; 59:179-181
Google Scholar - 2. Allen D.L., Teitelbaum D.H., Kurachi K.: Growth factor stimulationof matrix metalloproteinase expression and myoblast migration andinvasion in vitro. Am. J. Physiol. Cell. Physiol., 2003; 284: C805-C815
Google Scholar - 3. Amir R., Ben-Sira D., Sagiv M.: IGF-I and FGF-2 responses to Wingateanaerobic test in older men. J. Sports. Sci. Med., 2007; 6: 227-232
Google Scholar - 4. Annibalini G., Lucertini F., Agostini D., Vallorani L., GioacchiniA., Barbieri E., Guescini M., Casadei L., Passalia A., Del Sal M., PiccoliG., Andreani M., Federici A., Stocchi V.: Concurrent aerobic and resistancetraining has anti-inflammatory effects and increases bothplasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabeticpatients. Oxid. Med. Cell. Longev, 2017; 2017: 3937842
Google Scholar - 5. Archacka K., Kowalski K.K., Brzóska-Wójtowicz E.: Czy komórkisatelitowe są macierzyste? Post. Bioch., 2013; 59: 205-218
Google Scholar - 6. Archacka K., Moraczewski J., Grabowska I.: Udział niemięśniowychkomórek macierzystych w regeneracji mięśni szkieletowych. Post.Biol. Komórki, 2010; 37: 187-207
Google Scholar - 7. Basualto-Alarcón C., Varela D., Duran J., Maass R., Estrada M.: Sarcopeniaand androgens: A link between pathology and treatment.Front. Endocrinol., 2014; 5: 217
Google Scholar - 8. Beauchamp J.R., Morgan J.E., Pagel C.N., Partridge T.A.: Dynamicsof myoblast transplantation reveal a discrete minority of precursorswith stem cell-like properties as the myogenic source. J. Cell. Biol.,1999; 144: 1113-1122
Google Scholar - 9. Bhasin S., Storer T., Berman N., Callegari C., Clevenger B., PhillipsJ., Bunnell T.J., Tricker R., Shirazi A., Casaburi R.: The effects of supraphysiologicdoses of testosterone on muscle size and strength innormal men. N. Engl. J. Med., 1996; 335: 1-7
Google Scholar - 10. Bosiacki M., Lubkowska A.: Starzenie się a ekspresja metaloproteinazmacierzy zewnątrzkomórkowej w mięśniach. Pomeranian J.Life. Sci., 2019; 65: 105-112
Google Scholar - 11. Burdzińska A., Berwid S., Orzechowski A.: Transplantacje komórekmięśniowych – oczekiwania, możliwości i ograniczenia. Postępy Hig.Med. Dośw., 2005; 59: 299-308
Google Scholar - 12. Carmeli E., Moas M., Lennon S., Powers S.K.: High intensity exerciseincreases expression of matrix metalloproteinases in fast skeletalmuscle fibres. Exp. Physiol., 2005; 90: 613-619
Google Scholar - 13. Charifi N., Kadi F., Féasson L., Denis C.: Effects of endurance traningon satellite cell frequency in skeletal muscle of old men. MuscleNerve, 2003; 28: 87-92
Google Scholar - 14. Chaudhary S., Shenoy S.: Analysis of hormonal responses to aerobicand anaerobic zone training. J. M. S. C. R., 2015; 3: 4677-4683
Google Scholar - 15. Chen H.T., Chung Y.C., Chen Y.J., Ho S.Y., Wu H.J.: Effects of differenttypes of exercise on body composition, muscle strength, andIGF-1 in the elderly with sarcopenic obesity. J. Am. Geriatr. Soc., 2017;65: 827-832
Google Scholar - 16. Chen X., Li Y.: Role of matrix metalloproteinases in skeletal muscle:Migration, differentiation, regeneration and fibrosis. Cell. Adh.Migr., 2009; 3: 337-341
Google Scholar - 17. Chernausek S.D., Backeljauw P.F., Frane J., Kuntze J., UnderwoodL.E., GH Insensitivity Syndrome Collaborative Group: Long-term treatmentwith recombinant insulin-like growth factor (IGF)-I in childrenwith severe IGF-I deficiency due to growth hormone insensitivity. J.Clin. Endocrinol. Metab., 2007; 92: 902-910
Google Scholar - 18. Cho S.Y., Roh H.T.: Taekwondo enhances cognitive function as aresult of increased neurotrophic growth factors in elderly women.Int. J. Environ. Res. Public Health, 2019; 16: 962
Google Scholar - 19. Chyu M.C., Zhang Y., Brismée J.M., Dagda R.Y., Chaung E., Von BergenV., Doctolero S., Shen C.L.: Effects of martial arts exercise on bodycomposition, serum biomarkers and quality of life in overweight/obese premenopausal women: A pilot study. Clin. Med. Insights WomensHealth, 2013; 6: 55-65
Google Scholar - 20. Clemmons D.R.: Role of IGF-binding proteins in regulating IGFresponses to changes in metabolism. J. Mol. Endocrinol., 2018; 61:T139-T169
Google Scholar - 21. Collins C.A., Olsen I., Zammit P.S., Heslop L., Petrie A., PartridgeT.A., Morgan J.E.: Stem cell function, self-renewal, and behavioralheterogeneity of cells from the adult muscle satellite cell niche. Cell,2005; 122: 289-301
Google Scholar - 22. Corotchi M.C., Popa M.A., Simionescu M.: Testosterone stimulatesproliferation and preserves stemness of human adult mesenchymalstem cells and endothelial progenitor cells. Rom. J. Morphol. Embryol.,2016; 57: 75-80
Google Scholar - 23. Cottle B.J., Lewis F.C., Shone V., Ellison-Hughes G.M.: Skeletalmuscle-derived interstitial progenitor cells (PICs) display stem cellproperties, being clonogenic, self-renewing, and multi-potent in vitroand in vivo. Stem Cell. Res. Ther., 2017; 8: 158
Google Scholar - 24. Cui S.F., Li W., Niu J., Zhang C.Y., Chen X., Ma J.Z.: Acute responsesof circulating microRNAs to low-volume sprint interval cycling. FrontPhysiol., 2015; 6: 311
Google Scholar - 25. Cunha P.M., Nunes J.P., Tomeleri C.M., Nascimento M.A., SchoenfeldB.J., Antunes M., Gobbo L.A., Teixeira D., Cyrino E.S.: Resistancetraining performed with single and multiple sets induces similar improvementsin muscular strength, muscle mass, muscle quality, andIGF-1 in older women: A randomized controlled trial. J. Strength Cond.Res., 2020; 34: 1008-1016
Google Scholar - 26. Deane C.S., Hughes D.C., Sculthorpe N., Lewis M.P., Stewart C.E.,Sharples A.P.: Impaired hypertrophy in myoblasts is improved withtestosterone administration. J. Steroid. Biochem. Mol. Biol., 2013; 138:152-161
Google Scholar - 27. Dreyer H.C., Blanco C.E., Sattler F.R., Schroeder E.T., Wiswell R.A.:Satellite cell numbers in young and older men 24 hours after eccentricexercise. Muscle Nerve, 2006; 33: 242-253
Google Scholar - 28. Englund D.A., Peck B.D., Murach K.A., Neal A.C., Caldwell H.A., Mc-Carthy J.J., Peterson C.A., Dupont-Verteegden E.E.: Resident musclestem cells are not required for testosterone-induced skeletal musclehypertrophy. Am. J. Physiol. Cell Physiol., 2019; 317: C719-C724
Google Scholar - 29. Forcales S.V.: Potential of adipose-derived stem cells in muscularregenerative therapies. Front. Aging Neurosci., 2015; 7: 123
Google Scholar - 30. Fukada S.I.: The roles of muscle stem cells in muscle injury, atrophyand hypertrophy. J. Biochem., 2018; 163: 353-358
Google Scholar - 31. Gomes R.V., Moreira A., Lodo L., Nosaka K., Coutts A.J., Aoki M.S.:Monitoring training loads, stress, immune-endocrine responses andperformance in tennis players. Biol. Sport, 2013; 30: 173-180
Google Scholar - 32. Grabowska I., Zimowska M., Maciejewska K., Jablonska Z., BazgaA., Ozieblo M., Streminska W., Bem J., Brzoska E., Ciemerych M.A.: Adiposetissue-derived stromal cells in matrigel impacts the regenerationof severely damaged skeletal muscles. Int. J. Mol. Sci., 2019; 20: 3313
Google Scholar - 33. Harridge S.D.: Plasticity of human skeletal muscle: Gene expressionto in vivo function. Exp. Physiol., 2007; 92: 783-797
Google Scholar - 34. Hashimoto H., Rebagliati M., Ahmad N., Muraoka O., KurokawaT., Hibi M., Suzuki T.: The Cerberus/Dan-family protein Charon is anegative regulator of Nodal signaling during left-right patterning inzebrafish. Development, 2004; 131: 1741-1753
Google Scholar - 35. Hayes L.D., Grace F.M., Sculthorpe N., Herbert P., Ratcliffe J.W.,Kilduff L.P., Baker J.S.: The effects of a formal exercise training programmeon salivary hormone concentrations and body compositionin previously sedentary aging men. Springerplus, 2013; 2: 18
Google Scholar - 36. Heatwole C.R., Eichinger K.J., Friedman D.I., Hilbert J.E., JacksonC.E., Logigian E.L., Martens W.B., McDermott M.P., Pandya S.K., QuinnC., Smirnow A.M., Thornton C.A., Moxley R.T.3rd: Open-label trial ofrecombinant human insulin-like growth factor-1/recombinant humaninsulin-like growth factor binding protein-3 (rhIGF-1/rhIGFBP-3) inmyotonic dystrophy type 1. Arch. Neurol., 2011; 68: 37-44
Google Scholar - 37. Hejazi K., Hosseini S.R.: Influence of selected exercise on serumimmunoglobulin, testosterone and cortisol in semi-endurance eliterunners. Asian J. Sports Med., 2012; 3: 185-192
Google Scholar - 38. Higashi Y., Gautam S., Delafontaine P., Sukhanov S.: IGF-1 and cardiovasculardisease. Growth. Horm. IGF Res., 2019; 45: 6-16
Google Scholar - 39. Huard J., Gharaibeh B., Usas A.: Regenerative medicine basedon muscle-derived stem cells. Oper. Tech. Orthop., 2010; 20: 119-126
Google Scholar - 40. Itariu B.K., Zeyda M., Prager G., Stulnig T.M.: Insulin-like growthfactor 1 predicts post-load hypoglycemia following bariatric surgery:A prospective cohort study. PLoS One, 2014; 9: e94613
Google Scholar - 41. Jung P., Zimowska M.: Metaloproteinazy macierzyzewnątrzkomórkowej w rozwoju, fizjologii i procesach degeneracyjnychmięśni szkieletowych. Post. Bioch., 2016; 62: 25-35
Google Scholar - 42. Junnila R.K., List E.O., Berryman D.E., Murrey J.W., Kopchick J.J.:The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol.,2013; 9: 366-376
Google Scholar - 43. Jȕrimäe J., Jȕrimäe T.: Leptin responses to short term exercise incollege level male rowers. Br. J. Sports Med., 2005; 39: 6-9
Google Scholar - 44. Kadi F., Schjerling P., Andersen L.L., Charifi N., Madsen J.L., ChristensenL.R., Andersen J.L.: The effects of heavy resistance training anddetraining on satellite cells in human skeletal muscles. J. Physiol.,2004; 558: 1005-1012
Google Scholar - 45. Kilian Y., Engel F., Wahl P., Achtzehn S., Sperlich B., Mester J.: Markersof biological stress in response to a single session of high-intensityinterval training and high-volume training in young athletes. Eur. J.Appl. Physiol., 2016; 116: 2177-2186
Google Scholar - 46. Kim T., Chang J.S., Kim H., Lee K.H., Kong I.D.: Intense walking exerciseaffects serum IGF-1 and IGFBP3. J. Lifestyle Med., 2015; 5: 21-25
Google Scholar - 47. Kraemer W.J., Ratamess N.A., Hymer W.C., Nindl B.C., Fragala M.S.:Growth hormone(s), testosterone, insulin-like growth factors, andcortisol: Roles and integration for cellular development and growthwith exercise. Front. Endocrinol., 2020; 11: 33
Google Scholar - 48. Kvorning T., Andersen M., Brixen K., Schjerling P., Suetta C., MadsenK.: Suppression of testosterone does not blunt mRNA expression ofmyoD, myogenin, IGF, myostatin or androgen receptor post strengthtraining in humans. J. Physiol., 2007; 578: 579-593
Google Scholar - 49. Liu W., Wen Y., Bi P., Lai X., Liu X.S., Liu X., Kuang S.: Hypoxia promotessatellite cell self-renewal and enhances the efficiency of myoblasttransplantation. Development, 2012; 139: 2857-2865
Google Scholar - 50. Maass A., Düzel S., Brigadski T., Goerke M., Becke A., Sobieray U.,Neumann K., Lövdén M., Lindenberger U., Bäckman L., Braun-DullaeusR., Ahrens D., Heinze H.J., Müller N.G., Lessmann V., Sendtner M., Düzel E.: Relationships of peripheral IGF-1, VEGF and BDNF levels to exerciserelatedchanges in memory, hippocampal perfusion and volumes inolder adults. Neuroimage, 2016; 131: 142-154
Google Scholar - 51. Mackey A., Kjaer M., Dandanell S., Mikkelsen K.H., Holm L., DøssingS., Kadi F., Koskinen S.O., Jensen C.H., Schrøder H.D., Langberg H.: The influenceof anti-inflammatory medication on exercise-induced myogenicprecursor cell response in humans. J. Appl. Physiol., 2007; 103: 425-431
Google Scholar - 52. Mañes S., Mira E., Barbacid M.M., Ciprés A., Fernández-Resa P.,Buesa J.M., Mérida I., Aracil M., Márquez G., Martıń ez-A C.: Identificationof insulin-like growth factor-binding protein-1 as a potentialphysiological substrate for human stromelysin-3. J. Biol. Chem., 1997;272: 25706-25712
Google Scholar - 53. Marcell T.J., Harman S.M., Urban R.J., Metz D.D., Rodgers B.D.,Blackman M.R.: Comparison of GH, IGF-I, and testosterone with mRNAof receptors and myostatin in skeletal muscle in older men. Am. J.Physiol. Endocrinol. Metab., 2001; 281: E1159-E1164
Google Scholar - 54. Mendell J.R., Kissel J.T., Amato A.A., King W., Signore L., Prior T.W.,Sahenk Z., Benson S., McAndrew P.E., Rice R., Nagaraja H., Stephens R.,Lantry L., Morris G.E., Burghes A.H.: Myoblast transfer in the treatmentof Duchenne’s muscular dystrophy. N. Engl. J. Med., 1995; 333: 832-838
Google Scholar - 55. Meng J., Muntoni F., Morgan J.: CD133+ cells derived from skeletalmuscles of Duchenne muscular dystrophy patients have a compromisedmyogenic and muscle regenerative capability. Stem. Cell Res.,2018; 30: 43-52
Google Scholar - 56. Mierzejewski B., Archacka K., Grabowska I., Florkowska A., CiemerychM.A., Brzoska E.: Human and mouse skeletal muscle stemand progenitor cells in health and disease. Semin. Cell. Dev. Biol.,2020; 104: 93-104
Google Scholar - 57. Milewska M., Grabiec K., Grzelkowska-Kowalczyk K.: Interakcjeszlaków sygnałowych proliferacji i różnicowania w biogenezie.Postępy Hig. Med. Dośw., 2014; 68: 516-526
Google Scholar - 58. Miller R.G., Sharma K.R., Pavlath G.K, Gussoni E., Mynhier M.,Lanctot A.M., Greco C.M., Steinman L., Blau H.M.: Myoblast implantationin Duchenne muscular dystrophy: The San Francisco study.Muscle Nerve, 1997; 20: 469-478
Google Scholar - 59. Mitchell K.J., Pannérec A., Cadot B., Parlakian A., Besson V., GomesE.R., Marazzi G., Sassoon D.A.: Identification and characterization ofa non-satellite cell muscle resident progenitor during postnatal development.Nat. Cell Biol., 2010; 12: 257-266
Google Scholar - 60. Molsted S., Andersen J.L., Eidemak I., Harrison A.P., JørgensenN.: Resistance training and testosterone levels in male patients withchronic kidney disease undergoing dialysis. Biomed. Res. Int., 2014;2014: 121273
Google Scholar - 61. Molsted S., Andersen J.L., Harrison A.P., Eidemak I., Mackey A.L.:Fiber type-specific response of skeletal muscle satellite cells to highintensityresistance training in dialysis patients. Muscle Nerve, 2015;52: 736-745
Google Scholar - 62. Montarras D., Morgan J., Collins C., Relaix F., Zaffran S., CumanoA., Partridge T., Buckingham M.: Direct isolation of satellite cells forskeletal muscle regeneration. Science, 2005; 309: 2064-2067
Google Scholar - 63. Morawin B.: Rola testosteronu w regeneracji mięśni szkieletowychpo wysiłku fizycznym. Rocznik Lubuski, 2014; 40: 95-105
Google Scholar - 64. Møller A.B., Lønbro S., Farup J., Voss T.S., Rittig N., Wang J., HøjrisI., Mikkelsen U.R., Jessen N.: Molecular and cellular adaptations to exercisetraining in skeletal muscle from cancer patients treated withchemotherapy. J. Cancer Res. Clin. Oncol., 2019; 145: 1449-1460
Google Scholar - 65. Mueller S.M., Mihaylova V., Frese S., Petersen J.A., Ligon-AuerM., Aguayo D., Flück M., Jung H.H., Toigo M.: Satellite cell contentin Huntington’s disease patients in response to endurance training.Orphanet J. Rare Dis., 2019; 14: 135
Google Scholar - 66. Mukund K., Subramaniam S.: Skeletal muscle: A review of molecularstructure and function, in health and disease. Wiley Interdiscip.Rev. Syst. Biol. Med., 2020; 12: e1462
Google Scholar - 67. Negaresh R., Ranjbar R., Baker J.S., Habibi A., Mokhtarzade M.,Gharibvand M.M., Fokin A.: Skeletal muscle hypertrophy, insulin-likegrowth factor 1, myostatin and follistatin in healthy and sarcopenicederly men: The effect of whole-body resistance training. Int. J. Prev.Med., 2019; 10: 29
Google Scholar - 68. Nemet D., Portal S., Zadik Z., Pilz-Burstein R., Adler-Portal D.,Meckel Y., Eliakim A.: Training increases anabolic response and reducesinflammatory response to a single practice in elite male adolescentvolleyball players. J. Pediatr. Endocrinol. Metab., 2012; 25: 875-880
Google Scholar - 69. Nindl B.C., Alemany J.A., Tuckow A.P., Rarick K.R., Staab J.S., KraemerW.J., Maresh C.M., Spiering B.A., Hatfield D.L., Flyvbjerg A., FrystykJ.: Circulating bioactive and immunoreactive IGF-I remain stable inwomen, despite physical fitness improvements after 8 weeks of resistance,aerobic, and combined exercise training. J. Appl. Physiol.,2010; 109: 112-120
Google Scholar - 70. Onambele-Pearson G.L., Pearson S.J.: The magnitude and characterof resistance-training-induced increase in tendon stiffness at oldage is gender specific. Age, 2012; 34: 427-438
Google Scholar - 71. Partridge T.: Myoblast transplantation. Neuromuscul. Disord.,2002; 12: S3-S6
Google Scholar - 72. Peng H., Huard J.: Muscle-derived stem cells for musculoskeletaltissue regeneration and repair. Transpl. Immunol., 2004; 12: 311-319
Google Scholar - 73. Petriz B.A., Gomes C.P., Almeida J.A., De Oliveria G.P.Jr., RibeiroF.M., Pereira R.W., Franco O.L.: The effects of acute and chronic exerciseon skeletal muscle proteome. J. Cell Physiol., 2017; 232: 257-269
Google Scholar - 74. Pronsato L., Milanesi L., Vasconsuelo A., La Colla A.: Testosteronemodulates FoxO3a and p53-related genes to protect C2C12 skeletalmuscle cells against apoptosis. Steroids, 2017; 124: 35-45
Google Scholar - 75. Qu Z., Balkir L., van Deutekom J.C., Robbins P.D., Pruchnic R., HuardJ.: Development of approaches to improve cell survival in myoblasttransfer therapy. J. Cell Biol., 1998; 142: 1257-1267
Google Scholar - 76. Rando T.A, Blau H.M.: Primary mouse myoblast purification, characterization,and transplantation for cell-mediated gene therapy. J.Cell Biol., 1994; 125: 1275-1287
Google Scholar - 77. Renault V., Thornell L.E., Eriksson P.O., Butler-Browne G., MoulyW.: Regenerative potential of human skeletal muscle during aging.Aging Cell, 2002; 1: 132-139
Google Scholar - 78. Riederer I., Negroni E., Bencze M., Wolff A., Aamiri A., Di SantoJ.P., Silva-Barbosa S.D., Butler-Browne G., Savino W., Mouly V.: Slowingdown differentiation of engrafted human myoblasts into immunodeficientmice correlates with increased proliferation and migration.Mol. Ther., 2012; 20: 146-154
Google Scholar - 79. Rodriguez A.M., Pisani D., Dechesne C.A., Turc-Carel C., KurzenneJ.Y., Wdziekonski B., Villageois A., Bagnis C., Breittmayer J.P., GrouxH., Ailhaud G., Dani C.: Transplantation of a multipotent cell populationfrom human adipose tissue induces dystrophin expression inthe immunocompetent mdx mouse. J. Exp. Med., 2005; 201: 1397-1405
Google Scholar - 80. Sacco A., Doyonnas R., Kraft P., Vitorovic S., Blau H.M.: Self-renewaland expansion of single transplanted muscle stem cells. Nature,2008; 456: 502-506
Google Scholar - 81. Saini A., Mastana S., Myers F., Lewis M.P.: ‘From death, lead meto immortality’ – mantra of ageing skeletal muscle. Curr. Genomics,2013; 14: 256-267
Google Scholar - 82. Sato K., Iemitsu M., Katayama K., Ishida K., Kanao Y., Saito M.: Responsesof sex steroid hormones to different intensities of exercise inendurance athletes. Exp. Physiol., 2016; 101: 168-175
Google Scholar - 83. Schmidt M., Schüler S.C., Hüttner S.S., von Eyss B., von MaltzahnJ.: Adult stem cells at work: Regenerating skeletal muscle. Cell. Mol.Life Sci., 2019; 76: 2559-2570
Google Scholar - 84. Schoenfeld B.J.: The mechanisms of muscle hypertrophy andtheir application to resistance training. J. Strength Cond. Res., 2010;24: 2857-2872
Google Scholar - 85. Schulze M., Belema-Bedada F., Technau A., Braun T.: Mesenchymalstem cells are recruited to striated muscle by NFAT/IL-4-mediated cellfusion. Genes. Dev., 2005; 19: 1787-1798
Google Scholar - 86. Snijders T., Nederveen J.P., Bell K.E., Lau S.W., Mazara N., KumbhareD.A., Phillips S.M., Parise G.: Prolonged exercise training improvesthe acute type II muscle fibre satellite cell response in healthy oldermen. J. Physiol., 2019; 597: 105-119
Google Scholar - 87. Song T., Sadayappan S.: Featured characteristics and pivotal rolesof satellite cells in skeletal muscle regeneration. J. Muscle. Res. Cell.Motil., 2020; 41: 341-353
Google Scholar - 88. Streuli C.: Extracellular matrix remodelling and cellular differentiation.Curr. Opin. Cell Biol., 1999; 11: 634-640
Google Scholar - 89. Sutkowy P.B., Augustyńska B., Woźniak A., Rakowski A.: Physicalexercise combined with whole-body cryotherapy in evaluating thelevel of lipid peroxidation products and other oxidant stress indicatorsin kayakers. Oxid. Med. Cell. Longev., 2014; 2014: 402631
Google Scholar - 90. Thompson J.L., Butterfield G.E., Marcus R., Hintz R.L., Van LoanM., Ghiron L., Hoffman A.R.: The effects of recombinant human insulin-like growth factor-I and growth hormone on body compositionin elderly women. J. Clin. Endocrinol. Metab., 1995; 80: 1845-1852
Google Scholar - 91. Torrente Y., Belicchi M., Sampaolesi M., Pisati F., Meregalli M.,D’Antona G., Tonlorenzi R., Porretti L., Gavina M., Mamchaoui K., PellegrinoM.A., Furling D., Mouly V., Butler-Browne G.S., Bottinelli R. iwsp.: Human circulating AC133+ stem cells restore dystrophin expressionand ameliorate function in dystrophic skeletal muscle. J. Clin.Invest., 2004; 114: 182-195
Google Scholar - 92. Tota Ł., Piotrowska A., Pałka T., Morawska M., Mikuľáková W.,Mucha D., Żmuda-Pałka M., Pilch W.: Muscle and intestinal damagein triathletes. PLoS One, 2019; 14: e0210651
Google Scholar - 93. Tsuchiya Y., Sakuraba K., Ochi E.: High force eccentric exercise enhancesserum tartrate-resistant acid phosphatase-5b and osteocalcin.J. Musculoskelet. Neuronal. Interact., 2014; 14: 50-57
Google Scholar - 94. Vassilakos G., Barton E.R.: Insulin-like growth factor I regulationand its actions in skeletal muscle. Compr. Physiol., 2018; 9: 413-438
Google Scholar - 95. Velloso C.P.: Regulation of muscle mass by growth hormone andIGF-I. Br. J. Pharmacol. 2008; 154: 557-568
Google Scholar - 96. Vlachopapadopoulou E., Zachwieja J.J., Gertner J.M., Manzione D.,Bier D.M., Matthews D.E., Slonim A.E.: Metabolic and clinical responseto recombinant human insulin-like growth factor I in myotonic dystrophy- a clinical research center study. J. Clin. Endocrinol. Metab.,1995; 80: 3715-3723
Google Scholar - 97. Wegner M., Koedijker J.M., Budde H.: The effect of acute exerciseand psychosocial stress on fine motor skills and testosterone concentrationin the saliva of high school students. PLoS One, 2014; 9: e92953
Google Scholar - 98. Wennberg A.M., Hagen C.E., Machulda M.M., Hollman J.H., RobertsR.O., Knopman D.S., Petersen R.C., Mielke M.M.: The associationbetween peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functionaland cognitive outcomes in the Mayo Clinic Study of Aging.Neurobiol. Aging, 2018; 66: 68-74
Google Scholar - 99. Wennberg A.M., Hagen C.E., Petersen R.C., Mielke M.M.: Trajectoriesof plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Studyof Aging. Exp. Gerontol., 2018; 106: 67-73
Google Scholar - 100. Wędrychowicz A., Dziatkowiak H., Sztefko K., Nazim J.: Zachowaniesię IGF-I i jego białek wiążących IGFBP-1 i IGFBP-3 u dzieci imłodzieży chorych na cukrzycę typu 1 oraz ich zależność od kontrolimetabolicznej cukrzycy. Diabetol. Dośw. Klin. 2003; 3: 489-499
Google Scholar - 101. Wiewelhove T., Schneider C., Döweling A., Hanakam F., RascheC., Meyer T., Kellmann M., Pfeiffer M., Ferrauti A.: Effects of differentrecovery strategies following a half-marathon on fatigue markers inrecreational runners. PLoS One, 2018; 13: e0207313
Google Scholar - 102. Yamakawa H., Kusumoto D., Hashimoto H., Yuasa S.: Stem cellaging in skeletal muscle regeneration and disease. Int. J. Mol. Sci.,2020; 21: 1830
Google Scholar - 103. Zammit P.S., Relaix F., Nagata Y., Ruiz A.P., Collins C.A., PartridgeT.A., Beauchamp J.R.: Pax7 and myogenic progression in skeletal musclesatellite cells. J. Cell Sci., 2006; 119: 1824-1832
Google Scholar - 104. Zembroń-Łacny A., Krzywański J., Ostapiuk-Karolczuk J., KasperskaA.: Cell and molecular mechanisms of regeneration and reorganizationof skeletal muscles. Ortop. Traumatol. Rehabil., 2012; 14: 1-11
Google Scholar - 105. Zhang Y., Zhu Y., Li Y., Cao J., Zhang H., Chen M., Wang L., ZhangC.: Long-term engraftment of myogenic progenitors from adiposederivedstem cells and muscle regeneration in dystrophic mice. Hum.Mol. Genet., 2015; 24: 6029-6040
Google Scholar - 106. Żebrowska A., Gąsior Z., Langfort J.: Serum IGF-I and hormonalresponses to incremental exercise in athletes with and without leftventricular hypertrophy. J. Sports. Sci. Med., 2009; 8: 67-76
Google Scholar